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Abstract. Stream Processing Applications analyze large volumes of
streaming data in real-time. These applications, consist of data sources,
which produce raw streams, and processing elements, which operate on
the streams to produce new derived streams. In this paper, we describe an
OWL-based model for describing these stream processing components.
The streams produced by data sources are described as RDF graphs,
consisting of OWL ABox assertions. The input requirements and output
capabilities of PEs are described using RDF graph patterns. The main
use of this model is to allow automatic composition of applications that
produce certain desired results. Our model allows us to answer two key
questions in automatic composition: can a certain stream be given as in-
put to a processing element, and what are the new streams produced as a
result. Based on this model, we outline a planning approach to automatic
application composition.

1 Introduction

Stream processing systems are needed in situations where the source data is
too voluminous to be stored before being analyzed. Such data, collected at high
rate, must be processed on the fly by stream processing applications that are de-
ployed response to user queries. The data may be unstructured, semi-structured
or structured, and may be in different formats including text, video, audio and
images. Examples of such systems include multimedia processing and delivery
networks, stream-processing systems, sensor networks and other information
analysis, mining and retrieval systems.

Many systems model stream processing applications as processing graphs
of components, that are deployed in (possibly distributed/networked) computer
systems, and that can extract meaningful information from streaming data. In
our work, we use a specific stream processing system called System S [1], which
provides a scalable distributed runtime for stream processing of structured or
unstructured data. There are two kinds of components in a System S processing
graph : Data Sources and Processing Elements (PE). Data sources produce raw
streaming data to be analyzed. PEs are reusable software components that can
take in one or more input streams, process them and produce one or more
new, derived output streams. Such a component-based programming model has
various advantages, including reusability and scalability.

A key challenge in stream processing systems lies in the construction of the
processing graphs that can satisfy user queries. With large numbers of disparate
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data sources and processing elements to choose from, we cannot expect the end-
user to craft these graphs manually. The set of PEs and data sources can also
change dynamically as new sources are discovered or new PEs are developed.
Different end-users express widely varying queries, requiring a large number of
different graphs to be constructed. Since there is a large number of possible
graphs for a given number of data sources and PEs, it is not feasible to pre-
construct all the graphs, manually, to satisfy the wide variety of end-user queries.

Hence, for purposes of usability and scalability, the system must compose the
processing graphs on behalf of the end-user automatically, and on-the-fly, when-
ever a query is submitted. For automatic composition, we need rich descriptions
of the different components and the kinds of data they take as input and pro-
duce as output. In this paper, we propose an expressive model for describing
these software components that is based on OWL. The streams produced by
data sources are described as RDF graphs, consisting of OWL ABox assertions.
The input requirements and output capabilities of PEs are described using RDF
graph patterns.

A key element of our semantic model is in laying out the conditions for
connecting a stream to a PE and determining the semantics of the output stream
produced by the PE. We use Description Logic reasoning to determine if a stream
matches the input requirements of a PE. The use of reasoning helps increase the
power of matching. Our model also includes the notion of semantic propagation,
i.e. the semantics of the output stream produced by the PE depends on the
semantics of the input stream.

There is an important difference between our model and other existing com-
ponent models. Many other component description models, both semantic and
syntactic (like WSDL, OWL-S, SAWSDL, Java interfaces, CORBA IDL, etc.),
describe the inputs and outputs of components in terms of datatypes or classes
(or concepts in an ontology in the case of semantic models). Our model describes
inputs and outputs in terms of semantic graphs based on instances (or individ-
uals). Our instance-based approach allows associating constraints on the input
and output data based on both the classes they belong to and their relationship
to other instances. Such constraints are more difficult to express in class-based
representations and often require the creation of a large number of additional
classes corresponding to different combinations of constraints. As a result, our
model allows associating rich semantic information about components, which
aids the automatic composition of processing graphs.

There is another key difference between our model and semantic web service
models (like OWL-S and WSML). OWL-S and WSML define preconditions and
effects on the state of the world for a service. WSML also defines preconditions
and postconditions on the information space of a service. Our model, however,
defines rich constraints on the input and output streams for a component. This
model is particularly suited for describing stream processing components, whose
primary job is to process data, and which hence need rich descriptions of the
data that they process.

The main purpose of this model is to enable automatic composition of pro-
cessing graphs given a user query, which is also expressed as an RDF graph
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pattern. We are investigating various approaches for automatic composition in-
cluding a planning and a rule-based approach. We have developed a planner
that can automatically build applications given a user query. The planner uses
reasoning based on Description Logic Programs (DLP) [2]. One of the features
of the planner is the use of a two-phase approach, where offline reasoning is per-
formed on component descriptions, and plans are built online for different user
queries using the cached results of the offline reasoning.

The key contribution of our paper is the description of an OWL-based model
for describing stream processing components and for determining if a data stream
can be connected as input to a component. We have experimented with this
model and described several stream processing components in our system, Sys-
tem S [1]. In Section 2, we describe stream processing graphs. In Sections 3
and 4, we describe the stream, source and PE models. In Section 6, we briefly
describe our planning approach. Section 7 has related work and conclusions.

2 Stream Processing Applications

Stream Processing Applications in System S are modeled as Processing Graphs,
that describe the flow of data from the sources and through a number of PEs to
finally produce some desired end result. In our work, the processing graphs are
described as DAGs (Directed Acyclic Graphs).

Fig. 1. Example Processing Graph

The running example that we will
use in the paper is based on a system
that provides real time traffic informa-
tion and vehicle routing services based
on analysis of real-time data obtained
from various sensors, web pages and
other data sources. Let us assume that
a user has given a continuous query
for traffic congestion levels for a partic-
ular roadway intersection, say Broad-
way and 42’nd St. in New York City. A
data flow that is constructed for such an query may use raw data from different
sources. It may use video from a camera at the intersection by extracting images
from the video stream and examining them for alignment to visual patterns of
congestion at an intersection (the upper thread in Figure 1). In order to improve
the accuracy, it may also get audio data from a sound sensor at the intersection
and compare it with known congestion audio patterns. The end result is achieved
by combining feeds from the two analytic chains. In the following sections, we
will describe how these components are described.

3 The Stream Model and Description of Data Sources

A stream carries zero or more data objects, that we call SDOs (Stream Data
Objects). Each stream is associated with a semantic description, which describes
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the data elements present in a typical (or exemplar) SDO on the stream, and
any constraints that are satisfied by the data in terms of a set of OWL facts.

Formally, a stream is of the form S(E,R) where

– E is the set of data elements in a typical SDO, that are represented as OWL
individuals or literals.

– R is an RDF graph that describes the semantics of the data elements in the
message. The RDF graph consists of a set of OWL facts (ABox assertions).

One challenge with such a description is that different SDOs carried by the
stream may have different values of the data elements. Hence, we provide a layer
of abstraction over the actual values and define the data elements contained in
an exemplar SDO as exemplar individuals or exemplar literals. An exemplar in-
dividual is represented in OWL as belonging to a special concept called Exemplar.
An exemplar literal is of a user defined type called xs:exemplar, which is derived
from xs:string.

Exemplar individuals and literals act as existentially quantified variables. In
a particular SDO, they may be substituted by a value that belongs to the set of
non-exemplar individuals (i.e. an OWL individual not belonging to the concept
Exemplar) or non-exemplar literals (i.e. a literal that is not of type xs:exemplar).
In this paper, we represent all exemplar individuals and literals with a preceding
“ ”. In order to allow exemplar literals to be value of datatype properties, we
model all OWL datatype properties as having a range which is the union of the
original datatype and xs:exemplar.

Fig. 2. Data Source semantic description

For example, consider the
stream produced by the video
camera source in Figure 2. Ev-
ery SDO on this stream has
two data elements: a video
segment and a time inter-
val. These elements are de-
scribed as exemplar individuals,
VideoSegment 1 and
TimeInterval 1. The semantic

constraints obeyed by these
data elements are described as
an RDF graph, consisting of
OWL ABox assertions.

The power of this semantic
description is that it explicitly describes all the semantic relationships between
the different data elements in a typical SDO as well as between the elements and
other in the domain (such as BwayAt42nd). It describes the streams in terms of
individual-based graph patterns. This is in contrast to class-based descriptions
that are commonly used in various other models (like OWL-S). The individual-
based descriptions allow associating rich semantics to the web service, by spec-
ifying complex inter-relationships between different instances (for example, the
relations between VideoSegment 1, TimeInterval 1, TrafficCamera10036-1 and
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Fig. 3. PE semantic description

BwayAt42nd. Such relationships are more difficult to capture using class-based
descriptions without having to create a large number of new classes for different
combinations of the relationship constraints. Also, class-based descriptions can-
not capture cyclic relationships between individuals (e.g. when two individuals
are related to another anonymous individual via different property paths). Such
cyclic relationships can be captured in individual-based descriptions.

The semantic descriptions are based on one or domain ontologies in OWL
that define various concepts, properties and instances (i.e. both TBox and some
parts of the ABox) in a domain of interest. A domain ontology in this scenario
may define concepts like Intersection and TrafficVideoSegment, properties like
capturedBy and hasVideoSeg, and individuals like BwayAt42nd.

4 Model of PEs

PEs are described by the kinds of streams they require as input and the kinds of
streams they produce as output. A PE takes m input graph patterns, processes
(or transforms) them in some fashion and produces n output graph patterns. Our
model provides a blackbox description of the PE; it only describes the inputs
and outputs, and doesn’t model the internal state of the PE.

For example, consider the VideoImageSampler in Figure 3, which has one in-
put and one output. Any input stream connected to this PE must carry SDOs
that contain two data elements: a video segment (?VideoSegment 1) and a time
interval (?TimeInterval 1). The component analyzes this input SDO and produces
as output an SDO containing two new objects: an image ( Image 1) that it
extracts from the video segment, and a time ( Time 1) for the image, which
lies within the input time interval. There are other constraints associated with
these data elements in the input and output SDO, such as(?VideoSegment 1 take-

nAt ?TimeInterval 1), and (?VideoSegment 1 hasSegmentWidth PT.5S^^xsd:duration).
Namespaces of terms are not shown in the figure.

We now describe the component model formally. Some of the elements of this
model are adapted from SPARQL, a standard RDF query language.

Let U be the set of all URIs and RDFL the set of all RDF Literals. The set
of RDF Terms, RDFT , is U ∪RDFL.
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A variable is a member of the set V where V is infinite and disjoint from
RDFT . A variable is represented with a preceding “?” .

A triple pattern is a member of the set (RDFT ∪ V )× U × (RDFT ∪ V ).
A graph pattern is a set of triple patterns.
An input stream pattern describes the properties of SDOs in an input

stream required by a PE. It is of the form ISP (V S,GP ):

– V S is a set of variables representing the data elements that must be contained
in the exemplar SDO. V S ∈ 2V .

– GP is a graph pattern that describes the semantics of the data elements in
the SDO.

In an output SDO, a PE may create new objects that did not appear in
the input SDO. In the output stream pattern description, these new objects are
represented as exemplars.

Let E represent the set of all exemplars. An output stream pattern is of
the form OSP (OS,GP ):
– OS is a set of variables and exemplars, that represent the data elements that

are contained in the exemplar output SDO. OS ∈ 2V ∪E .
– GP is an graph pattern that describes the semantics of the data elements in

the output message.

The output stream description has a combination of variables and exem-
plars. Variables represent those entities that were carried forward from the input
stream description; and exemplars represent those entities that were created by
the PE in the output stream description.

A PE is described as taking a set of input stream patterns and transforming
into a set of output stream patterns. It is of the form PE(〈ISP 〉 , 〈OSP 〉) where
– 〈ISP 〉 is a set of input stream patterns that describe the input requirements

of the component. The different message patterns may overlap; i.e. the graph
patterns they contain may share common nodes and edges. The overlap helps
describe dependencies between different input stream patterns.

– 〈OSP 〉 is a set of output stream patterns, that describe the outputs of the
component. Again, the different stream patterns may overlap amongst them-
selves as well as with the input message patterns.

– The set of variables in 〈OSP 〉 is a subset of the set of variables that are
described in 〈ISP 〉. This helps ensure that no free variables exist in the
output description.

Note that the actual messages need not be in the form of RDF graphs. De-
pending on the actual middleware and communication mechanism, these mes-
sages may be in different formats (such as XML messages in the case of web
services; serialized objects in the case of CORBA and Jini; or various stream-
ing audio, video and image formats in the case of multimedia networks). In our
system, each message is formatted as a collection of serialized Java objects. For
example, the component description states that the format of ?VideoSegment 1

should be the Java class (com.egs.mpeg4), which represents a byte array contain-
ing the video segment.
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5 Matching streams to the input requirements of PEs

The semantic description of a PE gives a general, application-independent, de-
scription of the kinds of streams it takes in and the kinds of streams it produces.
In a given application, the PE is going to be given a set of input streams, as a
result of which it produces certain output streams.

One of the key parts of any automatic composition process in our system
is to determine if a given set of streams can be given as input to a PE. We
define the notion of a match between a stream and an input stream pattern that
represents the component’s input requirement. We define the match, in terms of
a pattern solution, which expresses a substitution of the variables in the input
message pattern.

Fig. 4. Example stream that has been matched to the input message pattern of the
PE. The corresponding output stream is also shown. Inferences performed to obtain
match are not shown.

Pattern Solution. A pattern solution is a substitution function (θ : V →
RDFT ) from the set of variables in a graph pattern to the set of RDF terms. For
example, some of the mappings defined in a possible definition of θ for the ex-
ample graph pattern include : θ(?VideoSegment 1) = VideoSegment 1, θ(?Subject)

= BWayAt42nd, etc.
The result of replacing a variable, v is represented by θ(v). The result of

replacing all the variables in a graph pattern, GP , is written as θ(GP ).
Condition for match. Consider an input stream-pattern P (V S,GP ), and

a stream, S(E,R). We define that P is matched by S, based on an ontology, O,
if and only if there exists a pattern solution, θ, defined on all the variables in
GP , such that following conditions hold:

– θ(V S) ⊆ E, i.e. the stream contains at least those data elements that the
pattern states it must contain.

– R∪O |=E θ(GP ) where O is the common ontology, and |=E is an entailment
relation defined between RDF graphs. In our system, we consider entailment
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based on OWL-DLP; though, in general the entailment may be based on
RDF, OWL-Lite, OWL-DL or other logics.

We represent this match as S ./θ P to state that stream S matches the input
stream pattern, P with a pattern solution, θ. One way of looking at the above
definition is that the stream should have at least as much semantic informa-
tion as described in the pattern. Figure 4 shows how the BWay-42nd VideoStream

might match the VideoInputStreamPattern. The dashed arrows show the variable
substitutions. In order to make the match, some DLP reasoning based on sub-
class and inverse property relationships must be done. For example, the triple
( VideoSegment 1 videoOf BwayAt42nd) is inferred, since videoOf is declared to be an
inverse property of hasVideoSeg. Also, the triple ( VideoSegment 1 type VideoSeg-

ment) is inferred, since TrafficVideoSegment is declared to be a subclass of VideoSeg-

ment. Once the inferences are done, it is clear to see that the graph on the right
is a subgraph of the graph on the left; hence a match is obtained.

In a more general case, for a component that has m input stream requirements
(P1 . . . Pm), we need to give it m input streams (S1 . . . Sm) to it, such that
Si ./θ Pi, for i = 1 . . .m and for some substitution function θ that is common
across all streams.

When a set of input streams are given to a PE, the component generates
output streams. The actual description of the output streams is generated by
combining the descriptions of the input messages with the output message pat-
terns of the component. This combination is defined in terms of a graph trans-
formation operation [3]. This operation captures the notion that some of the
semantics of the input streams are propagated to the output streams. This is
accomplished by substituting the variables in the output stream pattern by RDF
graphs extracted from the input stream. An example is shown in Fig 4, where
the output stream of VideoImageSampler is generated based on the stream that
is given as input to it. Note how the some of the semantics of the input stream
(such as the traffic camera and intersection information) are propagated to the
output stream. We call this property semantic propagation, where the semantics
of the output streams depend on the semantics of the input streams.

6 Automatic Composition

The model of data sources and PEs lends itself to automatic composition through
a variety of approaches, such as planning and rules. We have developed a planner
that builds an application given a user query. Due to lack of space, we shall only
briefly outline the features of the planner and not go into details.

We represent a query to a stream processing system as an input stream
pattern. This stream pattern describes the kind of messages (data objects in
the message and the semantics of the data objects) that the user is interested
in. This stream pattern becomes a goal for our planner. It needs to construct
a processing graph that produces a stream which satisfy the stream pattern.
The syntax of the query is similar to SPARQL (where SELECT is replaced
by PRODUCE to emphasize the continuous query aspect of stream processing
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systems). An example continuous query for real-time traffic congestion levels at
the Broadway-42’nd St intersection is
PRODUCE ?congestionLevel, ?time

WHERE (?congestionLevel rdf:type CongestionLevel) , (?time rdf:type Time),

(?congestionLevel ofLocation BwayAt42nd) , (?congestionLevel atTime ?time)

Our planner works by checking if a set of streams can be connected to a PE,
and if so, it generates new streams corresponding to the outputs of the com-
ponent. It performs this process recursively and keeps generating new streams
until it produces a stream that matches the goal, or until no new unique streams
can be produced, or a certain limit on the size of the plan has been crossed.

One of the key design decisions of the planner is to split DL reasoning and
plan-building into separate phases so as to avoid calling a reasoner during plan-
ning and thus improve performance, while potentially sacrificing completeness.
In the first phase, which occurs offline, it translates the descriptions of compo-
nents into a language called SPPL (Stream Processing Planning Language) [4].
SPPL is a variant of PDDL and models the state of the world as a set of streams
and interprets different predicates only in the context of a stream. During the
translation process, the generator also does reasoning based on OWL-DLP (De-
scription Logic Programs) on the output descriptions to generate additional in-
ferred facts about the outputs. The actual reasoner used in this phase is Minerva
[5]. The SPPL descriptions of different components are persisted and re-used for
multiple queries. The second phase is triggered whenever a query is submitted to
the system. During this phase, the generator translates the query into an SPPL
planning goal. The SPPL Planner produces a plan by recursively connecting
components to one another [4].

A feature of our planning process is that DLP reasoning is performed only
once for a component, in an offline manner. During actual plan generation, the
planner does not do any reasoning. It only does subgraph matching. This allows
the matching process to be faster than if reasoning was performed during match-
ing. The actual reasoning is performed on the DLP fragment of OWL. DLP lies
in the intersection of Description Logic and Horn Logic Programs (like Datalog).
Inference on the ABox in DLP can be performed using a set of logic rules. This
allows us to take a certain assertion and enumerate all possible assertions that
can be inferred from this assertion and an ontology using the rules. The ability to
enumerate all inferences is a key reason for the choice of DLP for reasoning. Since
we cannot directly perform inferences on variables, we convert them into OWL
individuals that belong to a special concept called Variable. Using this process,
a graph pattern can be converted into an OWL/RDF graph for the purposes of
reasoning, and additional facts about variables can be inferred.

Note that the plan building is performed once for a query. No planning or
DL reasoning is performed at runtime for each individual stream record, which
may arrive at a very high rate.

7 Related Work, Conclusion and Experiences

There is a huge body of work in the area of web service composition (e.g. [6],
[7],[8],[9],[10]). Many of these approaches are based on OWL-S, or its predecessor
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DAML-S. The main novelty of our approach is in modeling the preconditions
and effects of stream processing components in terms of the properties of input
and output streams, expressed as individual-based graph patterns. This is in
contrast to models like OWL-S and DAML-S which model inputs and outputs
as concepts in an ontology. Our composition problem also differs from web service
composition, since it requires the production of a stream that satisfies the users
query rather than achieving a change in the state of the world.

In this paper, we have presented a model for describing stream processing
components based on OWL that allows specifying rich constraints on inputs and
outputs. We have experimented with this model in our stream processing system,
and have described a number of data sources and PEs in this manner. So far,
we have restricted ourselves to the DLP fragment of OWL, as a constraint im-
posed by our planning process. However, we are investigating other composition
approaches that would allow the use of more expressive DL logics.

In our model, we have introduced a novel modeling technique in the use
of exemplars to help describe the properties of a class of individuals (i.e. the
properties of all SDOs in a stream). This technique allows using ABox assertions
to describe the class, rather than TBox axioms. This approach is more natural
in a variety of situations, especially when the individuals are related to other
individuals in the domain of interest (such as a traffic camera or an intersection).

There are a number of areas of future work, especially focused on making the
descriptions of data sources and PEs easy to write for a large number of devel-
opers in a collaborative manner. This requires the use of an ontology engineering
framework that supports such collaboration. Such a framework is a pre-requisite
for automatic composition.
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