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Abstract. While the Web makes an increasing number of ontologies
widely available for applications, how to discover ontologies becomes a
more challenging issue. Existing approaches are mainly based on key-
words and metadata information of ontologies, rather than semantic en-
tailments of ontologies. In this paper, we present an ontology search
engine, ONTOSEARCH2, which provides three approaches to search-
ing ontologies semantically. These approaches take advantage of ON-
TOSEARCH2’s efficient query answering capability.

1 Introduction

Searching for relevant ontologies is one of the key tasks to enable ontology reuse.
Now the W3C ontology language OWL has become the defacto standard for
ontologies and semantic data, there are progressively more ontology libraries
online, such as the DAML Ontology Library and Protégé Ontologies Library.
While the Web makes an increasing number of ontologies widely available for
applications, how to discover ontologies becomes a more challenging issue.

Currently it is difficult to find ontologies suitable for a particular purpose.
Semantic Web search engines like Swoogle [1] and OntoKhoj [2] allow ontolo-
gies to be searched using keywords, but further refinement of the search criteria
based on semantic entailments is not possible. For example, if one wants to
search ontologies in which Professor is a sub-class of Client, using the keywords
based approach is not satisfactory, as any ontologies that contain the classes
Professor and Client would be returned, whether or not the subsumption re-
lationship holds between them. In this paper, we present an ontology search
engine, called ONTOSEARCH2, which provides three approaches to searching
ontologies semantically. A keyword-based search tool, a search tool based on
query answering and a search tool based on fuzzy query answering. A detailed
example of the three different kinds of searches is presented in Section 4.

The core of ONTOSEARCH2 is a DL-Lite [3] query engine. Semantic ap-
proximation recasts the idea of knowledge compilation to provide sound ap-
proximation for query answering over OWL DL ontologies. For queries without
non-distinguished variables1, this approach guarantees soundness and complete-
ness. ONTOSEARCH2 also contains a fuzzy DL-Lite [4] query engine, which is

1 Variables which exist in the body of a query, but not its head



able to answer threshold queries and some general fuzzy queries over fuzzy DL-
Lite ontologies. Preliminary evaluations indicate the two querying components
in ONTOSEARCH2 are very efficient. They provide a good infrastructure for
the search functionality in ONTOSEARCH2.

The rest of the paper is organised as follows. Section 2 briefly introduces
OWL, DL-Lite and fuzzy DL-Lite. Section 3 presents the ONTOSEARCH2 sys-
tem, explaining the idea of semantic approximation and fuzzy query answering,
as well as the search functionality. Section 4 presents an example to illustrate
these three search functionalities of ONTOSEARCH2. We briefly review related
work, before concluding the paper.

2 Background

2.1 Ontologies and OWL

An ontology [5] typically consists of a set of classes, properties, and constraints
about these classes and properties. An ontology language provides constructors
to construct class and property descriptions based on named classes and prop-
erties, as well as some forms of axioms about classes, properties and individuals.
For example, RDFS [6] provides some axioms (such as domain and range axioms),
but no class or property constructors. OWL DL [7] provides class constructors
(e.g. conjunction C t D and number restriction ≥ nR), property constructors
(e.g. inverse properties R) and more kinds of axioms (such as individual equality
axioms a ≡ b) than RDFS. Usually, we call the set of class and property axioms
TBox, while the set of individual axioms are called ABox. OWL DL is an ex-
pressive Description Logic [8], in which the complexity of logical entailment is
Nexptime.

2.2 DL-Lite

The trade-off between expressive power and efficiency has been one of the main
themes in Description Logic research. Recently, Calvanese et al [3] proposed
DL-Lite which can express most features in UML class diagrams but still has
a low reasoning overhead (worst case polynomial time, compared to worst case
exponential time in the case of most Description Logics). DL-Lite supports the
following axioms:

1. class inclusion axioms: B v C where B is a basic class B := A | ∃R | ∃R¯
and C is a general class C := B | ¬B | C1uC2 (where A denotes an named
class and R denotes a named property);

2. functional property axioms: Func(R), Func(R )̄, where R is a named prop-
erty;

3. individual axioms: B(a), R(a, b) where a and b are named individuals.

After some careful query rewriting, query answering over DL-Lite ontologies
can be carried out by an SQL engine, so as to take advantage of existing query
optimisation strategies and algorithms provided by modern database manage-
ment systems.



2.3 Fuzzy DL-Lite

Straccia [4] proposed fuzzy DL-Lite (which we call f-DL-Lite), which extends
DL-Lite core with fuzzy assertions of the forms B(a) ≥ n, R(a, b) ≥ n, where B
is basic class, R is a property, a and b are individuals and n is a real number in
the range [0, 1].

The semantics of f-DL-Lite ontologies are defined in terms of fuzzy interpre-
tations [9]. A fuzzy interpretation is a pair I = (∆I , ·I) where the domain ∆I

is a non-empty set of objects and ·I is a fuzzy interpretation function, which
maps:

– an individual a to an element of aI ∈ ∆I ,
– a named class A to a membership function AI : ∆I → [0, 1], and
– a named property R to a membership function RI : ∆I ×∆I → [0, 1].

Using the fuzzy set theoretic operations [10], fuzzy interpretations can be ex-
tended to interpret f-DL-Lite class and property descriptions. Following Strac-
cia [4], we use the Lukasiewicz negation, c(a)=1-a and the Gödel t-norm for
interpreting conjunctions, t(a, b) = min(a, b). The semantics of f-DL-Lite class
and property descriptions, and f-DL-Lite axioms are given in [11]. Given these
semantics, it is obvious that crisp assertions B(a), R(a, b) are special forms of
fuzzy assertions where n = 1.

As indicated by Straccia [4], algorithms for subsumption checking and ontol-
ogy consistency checking in f-DL-Lite are similar to those in DL-Lite [12]. There
are two steps here: 1) Normalisation of class axioms: given an ontology Ø, the
set of class axioms T can be normalised to T ′ which consists of class axioms
of the forms B v B1 (Positive Inclusion, or simply PI), B v ¬B2 (Negative
Inclusion, or simply NI), where B,B1, B2 are basic classes. Accordingly, sub-
sumption checking can be done as follows: O |= B v B1 (O |= B v ¬B2) iff
B v B1 ∈ T ′ (B v ¬B2 ∈ T ′, respectively) [12]. 2) Normalisation and storage
of individual axioms: Firstly, given an ontology O and the set A of individual
axioms, ∃R(a) ≥ n and ∃R−(b) ≥ n are added into A if R(a, b) ≥ n ∈ A.
Secondly, for each basic class B occurring in A, we define a relational table tabB

of arity 2, such that 〈a, n〉 ∈ tabB iff B(a) ≥ n (where n > 0), and, for each
property R occurring in A, we define a relational table tabR of arity 3, such
that 〈a, b, n〉 ∈ tabR iff R(a, b) ≥ n (where n > 0).2 Accordingly, O is consis-
tent iff the following two conditions are satisfied: (i) there exist no a such that
B v ¬B2 ∈ T ′, B(a) ≥ n1 ∈ A, B2(a) ≥ n2 ∈ A and n1 + n2 > 1 [4]; (ii) there
exist no a, b, c such that Func(R) ∈ O (resp. Func(R−) ∈ O), R(a, b) ≥ n ∈ A
and R(a, c) ≥ m ∈ A (resp. R(b, a) ≥ n ∈ A and R(c, a) ≥ m ∈ A).

2 To simplify the presentation, we assume that if there exist multiple fuzzy class as-
sertions about B(a), such as B(a) ≥ n1, B(a) ≥ n2 with n1 ≥ n2, we only keep
B(a) ≥ n1 in O; similarly, this assumption holds for fuzzy property assertions.



3 ONTOSEARCH2

ONTOSEARCH2 [13] has two principal components, namely an ontology repos-
itory and query engine. It stores approximations of OWL ontologies in DL-
Lite, and allows queries to be executed over all or part of this repository using
SPARQL [14]. By using a DL-Lite approximation ONTOSEARCH2 is signifi-
cantly faster than other comparable tools which perform full OWL DL entail-
ment (up to two orders of magnitude faster on larger datasets [13]).

3.1 Semantic Approximation

Query answering over OWL DL is a hard problem. It has been shown that the
complexity of ontology entailment in SHOIN (D+), i.e., OWL DL, is Nexp-
time. This indicates query answering over OWL DL ontologies is at least Nex-
ptime. Approximation has been identified as a potential way to reduce the com-
plexity of reasoning over OWL DL ontologies. Previous approaches [15–19] are
mainly based on syntactic approximation of ontological axioms and queries. All
these approaches can introduce unsound answers. To the best of our knowledge,
we have not seen any published framework on sound (and possibly incomplete)
approximations for ontology query answering, not to mention efficient ones.

We have reformulated the idea of knowledge compilation [20] as semantic ap-
proximation of OWL DL ontologies. The idea of knowledge compilation is simple:
users write statements in an expressive representation language and these state-
ments are compiled into a restricted language that allows efficient inference. In
this way, users do not have to use a less expressive language which might be too
limited for practical applications. In [20], Selman and Kautz showed how propo-
sitional logical theories can be compiled into Horn theories that approximate
the original information; they also applied this idea on subsumption reasoning
for the Description Logic fL. We have applied knowledge compilation on query
answering over OWL DL ontologies [21].

This approach guarantees soundness and completeness for all queries with
non-distinguished variables. By using this technique to reduce the complexity
of query answering, we can perform conjunctive queries against large knowl-
edge bases. By treating the combined TBoxes of the ontologies in the knowledge
base as a single ABox for a meta-ontology representing the underlying struc-
ture of DL-Lite, we can allow users to perform searches for structural patterns
across multiple ontologies. In tests we have found the performance of the ON-
TOSEARCH2 query engine to exceed that of other knowledge base systems [13].

3.2 Fuzzy Query Answering

Encouraged by Straccia’s work [4], we investigated query languages and query
answering (using these languages) over f-DL-Lite. We implemented two different
languages for querying a fuzzy DL-Lite knowledge base in ONTOSEARCH2 [11].

We define conjunctive threshold queries (CTQ) which extend atoms A(v), R(v1, v2)
in conjunctive queries of the form (1) into the following forms A(v) ≥ t1, R(v1, v2) ≥



t2, where t1, t2 ∈ (0, 1] are thresholds. It is obvious that threshold queries are
more flexible than queries of the crisp form in that users can specify different
thresholds for different atoms in their queries.

Since f-DL-Lite associates assertions with degrees of truth, another useful
feature for its query language is to associate degrees of truth with answers in
answer sets of queries over f-DL-Lite ontologies. In threshold queries, an eval-
uation [X 7→ S] either satisfies the query entailment or not; hence, answers of
such queries are crisp. We introduce general fuzzy queries [11] which allow fuzzy
answers. Syntactically, general fuzzy conjunctive queries (GFCQ) generalise the
fuzzy threshold query language and Straccia’s query language, [11].

In performance tests of these query languages, our fuzzy query engine is in
most cases close to the performance of the crisp query engine used for DL-Lite
queries in ONTOSEARCH2.

3.3 Ontology Search

When a new OWL ontology is submitted to ONTOSEARCH2, the ontology is
first examined for metadata. This is stored as a mapping between the objects in
the ontology (OWL ontologies, classes, properties, and instances) and keywords
that appear in the metadata attached to that object (currently, the label and
comment properties, and the URL of the object). How the keyword is related to
the object is used to give a weighting for each mapping: for example, a keyword
occurring in a label is given the highest weighting, and a keyword in a comment
is given the lowest. In addition, keywords can be inherited from parents of an
object (super classes or super properties); instances inherit the keywords of their
classes, and all objects in an ontology will inherit the metadata of the ontology
itself. In all cases, the greater the semantic distance between two objects which
have an inheritance relationship, the lower the weighting is for the keywords
inherited. Punctuation is removed from keywords before they are added to the
metadata repository. If a keyword is less than three characters long or is a
common word such as “and”, “the”, or “some”, it is discarded.

From this fuzzy ontology, we find objects within the repository which match
the requirements of the original query. The weightings are used to specify mini-
mum weights required for each term in the query, or they are used to rank the
results by relevance to the initial terms.

Queries can be made through a simple keyword based search form, or can be
submitted as SPARQL queries, optionally containing fuzzy extensions that can
specify the degree of confidence required for each term in the query. Keyword
based queries are expanded into fuzzy SPARQL queries, so all searches use the
same internal process. The most basic search is for a set of keywords, where the
results will list ontologies containing all the keywords. The query can be made
more specific by adding search directives to the query:

1. TBox Searching Restrictions on the search query can specify that a partic-
ular keyword should only be matched against a Class or a Property, but
not against instance values in the repository. This is done by prefixing the



keyword with class:, so the query class:red wine would match the keyword
”red” in class definitions only, and match the keyword wine across the entire
ontology. Similarly a keyword can be restricted to only occur within property
definitions within the ontology by prefixing the keyword with property:. For
queries where all keywords should only match class and/or property defini-
tions, the directives pragma:Class and/or pragma:Property can be added to
the query.

2. ABox Searching To restrict a search term to only match within ABox (or
instance) data, it can be prefixed with instance: Similarly the directive
pragma:Instance will direct the search engine to search instance data only
for every keyword. If used with both pragma:Class and pragma:Property, the
search will exhibit its default behaviour, searching the entire contents of the
repository (Class and Property definitions as well as instance data).

3. Other Search Directives By adding the search directive pragma:Resource, the
search engine will find the object within each ontology which best matches
the search terms. It will also cause the results to be listed as individual
resources rather than as ontologies. Therefore if an ontology contains a single
class or instance which has a very high match for the keywords, but which as
an ontology has a low score, this class will be displayed above other matches.
The default behavior is for the whole ontology with the highest sum of its
objects’ scores to be returned first.

Search results can be ranked as entire ontologies, or as individual objects
within each ontology (by using the pragma:Resource directive in a query). In
the first instance, we sum the total weightings for each object/keyword pairing
that matched in an ontology. This total is used to sort the results, with the
highest total being returned at the top of the rankings. By ranking results based
on the semantic significance of the matches themselves, rather than by tracking
the number of links to the ontology ([2], [1]) we are able to find ontologies which
are the closest match for a particular query regardless of their popularity.

In the case that results are to be returned as individual objects, the total
sum of object/keyword weightings for each object in the repository is used to
determine rank. This is used to return a list of all the different objects which
matched the search terms.

4 Example

In this section we present a simple example, where we perform the same query
in each of the three search mechanisms in ONTOSEARCH2.

4.1 Metadata Keyword Search

The initial search is a keyword based search of the ontology metadata. This
matches all objects in the repository, and returns a list of ontologies based on
the total value of all matches on objects within each ontology.



The initial search is simply “Chablis Wine”, this returns the ontology which
contains the most significant instances of these keywords. Assuming the repos-
itory contains only the Wine ontology, this ontology is returned as a match.
To improve the search to target the best matching objects within the Wine
ontology, the query can be rewritten as “Chablis Wine pragma:Resource”. The
pragma:Resource directive instructs the search engine to find and rank individual
objects in the ontologies. This search then returns a list of all classes, properties,
and instances which are associated with these keywords, ranked in order of the
semantic significance of those associations. To improve the results further, the
directive pragma:Class restricts the search to keyword relationships for classes
only. The final query “Chablis Wine pragma:Resource pragma:Class” will return
a ranked list of all classes in the repository which match the two keywords.

4.2 Query-based Search

This search uses the query answering facilities of ONTOSEARCH2 to find a
class which has a particular label, which is a subclass of a class with a different
label.

The search is specified in SPARQL. The query is for a class with a label of
“Chablis” which is a subclass of a class with a label “Wine”. The query used is
shown in listing 1.

SELECT ?X WHERE {
?X rdfs:label "Chablis" .
?X rdfs:subClassOf ?Y .
?Y rdfs:label "Wine" .

}
Listing 1: SPARQL Query

This is a standard SPARQL query which searches for some class with a rdfs:label
of exactly “Wine” which has some subclass with a rdfs:label of exactly “Chablis”.
This query may return classes which are not direct subclasses because of the DL-
Lite semantics which underlie the query engine in ONTOSEARCH2, a search
engine that used RDF semantics would not match any indirect subclasses.

4.3 Fuzzy Query-based Search

This search uses the fuzzy query engine in ONTOSEARCH2 to find a class which
is a subclass of a different class, where both classes have particular metadata
associated with them, with a certain level of confidence.

The search is specified using SPARQL with additional fuzzy values included
as comments. This current query is for a class with a metadata keyword of
“Chablis” with a degree of confidence ≥ 0.7 which is a subclass of a class with a
keyword of “Wine” with a confidence of ≥ 0.5. The query is shown in listing 2.

SELECT ?X WHERE {
?X os2:hasKeyword "Chablis" . #FT# 0.7



?X rdfs:subClassOf ?Y .
?Y os2:hasKeyword "Wine" . #FT# 0.5

}
Listing 2: fuzzy SPARQL Query

The property os2:hasKeyword is a fuzzy property in the ONTOSEARCH2 fuzzy
metadata ontology which associates objects with keywords.

5 Related Work

5.1 Ontology Search

Currently the two main ontology search engines are Swoogle [1] and OntoKhoj [2].
These both use indexes of metadata and allow users to search using keywords.
Because they both only store metadata about ontologies, but not representa-
tions of the ontologies themselves, they do not allow queries which specify how
two search terms may be related. Both also use the number of links to an ontol-
ogy or to an object within the ontology to rank the results. This is in contrast
to ONTOSEARCH2 which attempts to determine the semantic strength of the
association between an object and each keyword that is applicable to that object.

The approach taken by Swoogle and OntoKhoj offers higher performance for
purely keyword based searches, but cannot offer the flexibility of ONTOSEARCH2.
It is not possible to check requirements more complex than the presence of key-
words using a keyword based search tool, further tools must be used to check
whether any matching ontology satisfies these requirements.

5.2 Ontology Querying

Ontology querying can be provided by a tableax DL reasoner such as Pellet
or Racer, or by OWL repositories such as KAON2 [22] or OWLIM [22]. When
posing queries against an ontology with a large ABox, tableax based reasoners
suffer because of the Nexptime requirement for querying OWL. In [23], Motik
and Sattler compare the performance of various knowledge management tools
using several benchmark ontologies. When using the Lehigh University bench-
mark [24] with large datasets, both the reasoners tested were unable to perform
the queries against larger ontologies within the time constraints.

The KAON2 system uses novel algorithms to reduce a SHIQ(D) ontology
to a disjuntive datalog program. This provides sound and complete reasoning
for all queries not containing non-distinguished variables, similar to the seman-
tic approximation technique used in ONTOSEARCH2, but preliminary results
indicate the performance of KAON2 is less than that of ONTOSEARCH2 for
most ontologies tested [21]. OWLIM uses a subset of OWL-DL, a restricted
subset of OWL-DLP. This gives OWLIM excellent performance for performing
queries against large OWL ontologies, but it does not guarantee sound or com-
plete results.



6 Conclusions and Future Work

In this paper we have presented three methods for semantically searching ontolo-
gies. By offering different methods of querying for data, we can allow users to
choose the best tool available for their level of expertise and their requirements.
We make use of the semantic significance of different forms of metadata to cre-
ate a fuzzy DL-Lite ontology mapping objects to the keywords used to describe
them.

Future work is centered around improving the metrics used to give differ-
ent weightings. Additionally, we plan to investigate the use of machine learning
techniques to evaluate the success of the weightings currently being used by com-
paring the ontologies users eventually select for their application, the position
in the results which that ontology held, and the weightings used to generate the
results. To help users to find the best ontology or resource we are working on an
ontology browser integrated with the search engine which will allow ontologies
to be explored graphically, with matching resources highlighted, on the results
page.

Another aim is to expand the metadata captured to include other recognised
sources of metadata such as Dublin Core [25] and to eventually index all datatype
properties present in an ontology as potential metadata.
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