
OWL SAIQL —
An OWL DL Query Language for Ontology Extraction

Alexander Kubias1, Simon Schenk1, Steffen Staab1, and Jeff Z. Pan2

1 University of Koblenz-Landau, 56070 Koblenz, Germany,
(kubias|sschenk|staab)@uni-koblenz.de,

2 The University of Aberdeen, Aberdeen AB24 3UE, UK,
jpan@csd.abdn.ac.uk

Abstract. Existing approaches for querying OWL DL do either only operate on
syntactic constructs without taking into account the semantics of OWL or do
only have a restricted access to the T-Box. We present SAIQL, the novel Schema
And Instance Query Language for OWL DL, that is well suited for ontology
extraction. We describe its syntax and explain a basic evaluation strategy. We
illustrate the use of SAIQL with an example for ontology extraction and re-use.

Key words: OWL, Query Language, Schema, Ontology Extraction

1 Introduction

With the standardization of the Web Ontology Language OWL [1], the use and re-use
of ontological knowledge has gained significant momentum. For using web ontologies
it is crucial to be able to access web ontologies in an intuitive and versatile manner.
In contrast to RDF, where SPARQL [2] is providing access to RDF data and RDF
schema information, a corresponding query language is missing for OWL. Existing
OWL querying approaches, e.g. OWL-QL [3], have only a restricted access to the T-
Box so that only named classes and individuals can be retrieved. Using SPARQL [2]
for querying OWL allows the user to query OWL A-Box and T-Box, but it is not aware
of OWL semantics and it is very cumbersome, because of its triple semantics. In fact,
we will give some examples of querying desiderata that cannot easily be fulfilled by
SPARQL or OWL-QL.

The requirements for querying OWL naturally include conjunctive queries of the
OWL A-Box [4], but as has also been recently argued for other ontology languages
with explicitly queryable schema representations (cf. [5]), the querying of schema as
well as instance information constitutes an important feature of the querying language.

We illustrate our requirements for querying OWL with an application from ontol-
ogy extraction (cf., [6]) for re-using parts of an ontology. While implementations of
ontology extraction algorithms are currently dominated by imperative style program-
ming, re-using parts of an ontology would be greatly facilitated by a query language
that would allow querying for schema and instance information. For instance, it is use-
ful to ask for all individuals of classes, which are defined using a restriction with a
certain property or having a specific subclass.

As one main contribution, our query language can handle class descriptions in ad-
dition to class names and individuals. The extraction of these class descriptions is of
major importance as they provide the definition for a certain class name. Instead of ex-
tracting isolated class names and individuals like in OWL-QL, the class names, class
descriptions and individuals are returned as OWL DL axioms. Thus, the result is a fully
working OWL DL ontology.

In the following, we present our small example use case in ontology extraction and
derive some requirements from it (section 2). We then discuss some of the foundations
on which we build our approach in section 4. In section 5, we present the original query-
ing language SAIQL (Schema And Instance Query Language) that is able to combine
T-Box and A-Box querying in an integrated manner. Finally, we discuss some related
work, before we conclude.

2 Use Case and Requirements

In our running example, we assume a large ontology, MotorOntology, parts of
which we want to extract and re-use for a new information system about cars in or-
der to save costs and ensure high quality (cf., [7] on the benefits of ontology re-use).
Naturally, we do not want to adopt the given ontology one by one, as we are only inter-
ested in schema and instance information related to cars.

For extracting our target ontology from MotorOntology (see an excerpt in Fig-
ure 1), we are interested in all axioms that contain class names, which are subclasses
of the cardinality restriction with the value 4 for the property hasWheel, and their
descriptions. Additionally, we are interested in all axioms about individuals of these
classes. Given the running example in Figure 1, the class names Car, Convertible
and Van and their descriptions should be delivered as class axioms. Furthermore, the
individual axioms about c and v need to be extracted.
EquivalentClasses(MotorBike restriction(hasWheel cardinality(2)))
EquivalentClasses(Car restriction(hasWheel cardinality(4)))

Class(Convertible partial Car
restriction(hasConvertibleTop someValuesFrom(owl:Thing)))

Class(Van partial restriction(hasWheel cardinality(4))
restriction(hasSlidingDoor someValuesFrom(owl:Thing)))

DisjointClasses(Convertible Van);

Individual(c type(Convertible))
Individual(v type(Van))
Individual(m type(MotorBike))

Fig. 1. Example MotorOntology given in OWL DL (in OWL abstract syntax)

From the presented use case we derive the following requirements: First, the query
language should regard and use the semantics of OWL DL ontologies. By exploiting
their semantics, additional knowledge can be inferred that is not explicitly stated in the
ontology. Thus, in our running example the class Van could be returned as a subclass
of Car without being explicitly mentioned as its subclass.

As a further requirement, the query language should not only retrieve class names
and individuals, but also class descriptions. As shown in our use case, it is not suf-
ficient to return the class Convertible without knowing its definition. We also

want to retrieve the class description of the class Convertible, namely that it is
a subclass of the class Car and that it has an existential restriction for the property
hasConvertibleTop.

Instead of extracting isolated class names and individuals, we want to return the
class names, class descriptions and individuals as OWL DL axioms so that the result
is a fully working OWL DL ontology. Thus, it should be possible to use the result of a
SAIQL query as an input for another SAIQL query.

As models of OWL ontologies are infinite in general, query answering might cause
infinite results. In order to ensure finite answers to queries, we need to define privileged
sets of class names, class descriptions and individuals that are used in query results.
These sets should be determined by the concrete syntactic notation of the queried on-
tology, which is always finite.

Finally, we want to state join-like conditions on selected classes and individuals by
using identical names for variables. Thus, it should be possible to select all classes ?X
so that an individual ?i belongs to this class ?X and so that the same class ?X must be
a subclass of another class ?Y .

3 SAIQL in a Nutshell

In our running example, we want to extract the axioms for our target ontology from
MotorOntology. As we are interested in all axioms about class names, which are
subclasses of the cardinality restriction with value 4 for the property hasWheel, their
descriptions and their individuals, the SAIQL query in figure 2 is formulated. Within
this query, three variables ?i, ?X and ?Z are used. The variable ?i is treated as a place-
holder for an individual, whereas the variable ?X is a placeholder for a class name and
?Z for a class description. Furthermore, the SAIQL query consists of four clauses: The
CONSTRUCT clause determines the format of the extracted axioms, the FROM clause
determines from which ontology axioms are extracted, the LET clause associates vari-
ables with value ranges and the WHERE clause constitutes the conditions under which
axioms are extracted.
CONSTRUCT Class(?X partial ?Z); Individual(?i type(?X))
FROM MotorOntology
LET IndividualName ?i; ClassName ?X; ClassDescription ?Z
WHERE Class(?X partial restriction(hasWheel cardinality(4)))

AND Individual(?i type(?X)) AND Class(?X partial ?Z)

Fig. 2. SAIQL query for our example

4 Abstract Syntax and Semantics for OWL DL

SAIQL is a query language for OWL DL. In this section, we repeat some of the foun-
dations of OWL DL that we need for defining SAIQL.

4.1 Abstract Syntax for OWL DL
In the following, we present the abstract syntax for OWL DL by means of an ex-
tended BNF. The syntax is adopted from [8]. For the sake of simplicity and consis-
tency, the syntax is slightly simplified leaving out annotation properties and import com-
mands. Additionally, some terms are renamed. For example, the term fact is called

individualAxiom in order to be consistent with the rest of the paper. Furthermore,
we omit datatypes and datatype properties. Based on this syntax, we will define the
syntax of SAIQL. Below you find an excerpt of the OWL abstract syntax in EBNF:
ontology ::= ’Ontology(’ [ontologyID] { axiom } ’)’
axiom ::= classAxiom | propertyAxiom | individualAxiom
...

classAxiom ::= ’Class(’ classID modality { description } ’)’
| ’EnumeratedClass(’ classID { individualID } ’)’
| ’DisjointClasses(’ description description { description } ’)’
| ’EquivalentClasses(’ description { description } ’)’
| ’SubClassOf(’ description description ’)’

description ::= classID | restriction | ’unionOf(’ { description } ’)’
| ’intersectionOf(’ { description } ’)’ | ’complementOf(’ description ’)’
| ’oneOf(’ { individualID } ’)’

...

individualAxiom ::= individual
| ’SameIndividual(’ individualID individualID {individualID} ’)’
| ’DifferentIndividuals(’ individualID individualID {individualID} ’)’

...

4.2 Excerpt of OWL DL semantics

In the following, we describe parts of the model-theoretic semantics for OWL DL. The
presented semantics is taken from [9]. We have slightly modified its presentation given
here in order to use it more easily for the definition of SAIQL in the remainder of the
paper.

Definition 1. Let NC , NIP , NDP , NI be the sets of URI references that can be used
to denote classes, individual-valued properties, data-valued properties and individuals.
An OWL DL interpretation is a tuple I = (∆I ,∆D, .I , .D) where

– the individual domain ∆I is a nonempty set of individuals,
– the datatype domain ∆D is a nonempty set of data values,
– .I is a individual interpretation function, and
– .D is a datatype interpretation function.

Definition 2. An individual interpretation function .I is a function that maps

– each individual name a ∈ NI to an element aI ∈ ∆I ,
– each class name C ∈ NC to a subset CI ⊆ ∆I ,
– each individual-valued property name R ∈ NIP to a binary relation

RI ⊆ ∆I ×∆I , and
– each data-valued property name T ∈ NDP to a binary relation T I ⊆ ∆I ×∆D.

Definition 3. A class is a group of individuals. If a class is only defined by naming it,
we call it an atomic class. A class description is a declaration of a class using its name
(for atomic classes) or OWL class constructors (for non-atomic classes). Thus, each
atomic class is also a class description.

OWL class constructors are e.g. union, intersection or complement of classes, restric-
tions or enumerations. As mentioned in section 4.1, datatypes and datatype properties
are not considered in detail in this paper. More details of the semantics of OWL DL can
be found in [8].

As models of OWL ontologies are infinite in general, query answering could cause
infinite answers. In oder to ensure finite answers to queries, we have defined the four
finite sets NC , NIP , NDP and NI . Additionally, we must define the finite set of class
descriptions used in the OWL DL ontology O.

Definition 4. Given an OWL DL ontology O, the finite set of class descriptions NCD

consists of all elements that appear in O and that are produced by the description
rule in the OWL DL EBNF.

Example. Given the knowledge base in Figure 1, we have NC = {Car, Con-
vertible, MotorBike, Van}, NIP = {hasWheel, hasConvertibleTop, hasSlidingDoor},
NDP = ∅, NI = {c,v,m} and, finally, NCD = NC ∪ { restriction(hasWheel cardi-
nality(2)), restriction(hasWheel cardinality(4)), intersectionOf(Car restriction(has-
ConvertibleTop someValuesFrom(owl:Thing))), intersectionOf(restriction(hasWheel
cardinality(4)) restriction(hasSlidingDoor someValuesFrom(owl:Thing))), restriction(
hasConvertibleTop someValuesFrom(owl:Thing)), restriction(hasSlidingDoor some-
ValuesFrom(owl:Thing)) }.

Furthermore, we need to define what an axiom is. Axioms are the central elements
of OWL DL ontologies and play an important role for SAIQL.

Definition 5. Given an OWL DL ontology O, an axiom is a statement that is produced
by the axiom rule in the OWL DL EBNF and that appears in O relating classes, prop-
erties or individuals. The whole set of axioms forms the ontology O.

As proposed in [9], we distinguish class axioms, individual axioms and property ax-
ioms.

5 OWL SAIQL

In this section the syntax of SAIQL is described. Additionally, a basic evaluation strat-
egy for SAIQL queries is proposed.

5.1 Syntax

As mentioned before, axioms are the central elements of OWL DL ontologies and they
are also important for SAIQL queries. Their definition is extended by allowing variables
in them.

Definition 6. An axiom pattern p is defined analogously to an axiom, but allows vari-
ables at positions of class descriptions and individual names. The range of these vari-
ables can be either NC , NI or NCD. The name of a variable must start with a “?”.

In contrast to [3], we do not support non-distinguished variables. As proposed for
axioms without any variables, axiom patterns can be either class axiom patterns, indi-
vidual axiom patterns or property axiom patterns.

Example. The SAIQL query in Figure 2 contains two individual axiom patterns
and three class axiom patterns in the CONSTRUCT clause and in the WHERE clause. For

instance, Class(?X partial ?Z) is a class axiom pattern and Individual(?i
type(?X)) is an individual axiom pattern.

The range of a variable is specified in the LET clause. In our running example in
Figure 2, the variable ?X is specified as a class name, the variable ?Z is specified as a
class description and the variable ?i is specified as an individual name.

Definition 7. An OWL SAIQL query has the form

’CONSTRUCT’ constructClause
’FROM’ fromClause
’LET’ letClause
’WHERE’ whereClause

where constructClause contains a sequence of axiom patterns, fromClause
contains an URI reference of an ontology, letClause specifies the range of the vari-
ables and whereClause is a sequence of axiom patterns.

In this paper, we restrict ourselves to a single ontology, from which axioms can be
extracted. The complete syntax for SAIQL is as follows:
SAIQL-query ::= ’CONSTRUCT’ constructClause ’FROM’ fromClause

’LET’ letClause ’WHERE’ whereClause

constructClause ::= axiomPattern {’;’ axiomPattern}
fromClause ::= ontologyID
letClause ::= variableBinding {’;’ variableBinding}
whereClause ::= axiomPattern {’AND’ axiomPattern}

axiomPattern ::= classAxiomPattern | propertyAxiomPattern | individualAxiomPattern

classID ::= URIreference
individualID ::= URIreference
ontologyID ::= URIreference
individualvaluedPropertyID ::= URIreference

variableBinding ::= classNameBinding | individualNameBinding | classDescriptionBinding
classNameBinding ::= ’ClassName’ classNameVar {’,’ classNameVar}
individualNameBinding ::= ’IndividualName’ individualNameVar {’,’ individualNameVar}
classDescriptionBinding ::= ’ClassDescription’ classDescriptionVar {’,’ classDescriptionVar}

lexicalForm ::= a unicode string in normal form C
classNameVar ::= ’?’lexicalForm
individualNameVar ::= ’?’lexicalForm
classDescriptionVar ::= ’?’lexicalForm

className ::= classNameVar | classID
individualName ::= individualNameVar | individualID
classDescription ::= classDescriptionVar | description

classAxiomPattern ::= ’Class(’ className modality { classDescription } ’)’
| ’EnumeratedClass(’ className { individualName } ’)’
| ’DisjointClasses(’ classDescription classDescription { classDescription } ’)’
| ’EquivalentClasses(’ classDescription { classDescription } ’)’
| ’SubClassOf(’ classDescription classDescription ’)’

modality ::= ’complete’ | ’partial’

description ::= className | restriction | ’unionOf(’ { classDescription } ’)’
| ’intersectionOf(’ { classDescription } ’)’
| ’complementOf(’ classDescription ’)’ | ’oneOf(’ { individualName } ’)’

restriction ::= restriction(individualvaluedPropertyID individualRestrictionComponent
{ individualRestrictionComponent })

individualRestrictionComponent ::= allValuesFrom(classDescription)
| someValuesFrom(classDescription) | value(individualName) | cardinality

cardinality ::= ’minCardinality(’ non-negative-integer ’)’
| ’maxCardinality(’ non-negative-integer ’)’
| ’cardinality(’ non-negative-integer ’)’

propertyAxiomPattern ::= ’ObjectProperty(’ individualvaluedPropertyID
{ ’super(’ individualvaluedPropertyID ’)’ }
[’inverseOf(’ individualvaluedPropertyID ’)’] [’Symmetric’]
[’Functional’ | ’InverseFunctional’ | ’Functional’ ’InverseFunctional’ | ’Transitive’]
{ ’domain(’ classDescription ’)’ } { ’range(’ classDescription ’)’ } ’)’

| ’EquivalentProperties(’ individualvaluedPropertyID individualvaluedPropertyID
{ individualvaluedPropertyID } ’)’

| ’SubPropertyOf(’ individualvaluedPropertyID individualvaluedPropertyID ’)’

individualAxiomPattern ::= individual
| ’SameIndividual(’ individualName individualName {individualName} ’)’
| ’DifferentIndividuals(’ individualName individualName {individualName} ’)’

individual ::= ’Individual(’ [individualName] { ’type(’ classDescription ’)’ } { value } ’)’
value ::= ’value(’ individualvaluedPropertyID individualName ’)’

| ’value(’ individualvaluedPropertyID individual ’)’

5.2 Canonical Process for the Query Evaluation

The query evaluation consists of three steps. In the first step the LET clause is evaluated:
From the ontology O declared in the FROM clause we retrieve three sets of ontology ele-
ments, namely the finite set of class names NC , the finite set of class descriptions NCD

and the finite set of individual names NI . The finite set of class names NC contains
the names of all atomic classes and the names of all named complex classes. Addition-
ally, the finite set of class descriptions NCD contains all class descriptions that appear
in the concrete syntactic notation of O (note that this includes all class names). Thus,
NC ⊆ NCD. The range of every variable is bound to one of these sets:

Definition 8. A binding is a substitution [?x1/a1] of a variable ?x1 by a value a1 from
the range as defined in the LET clause, that is from NC , NCD or NI . A solution
s = [?x/a] = [?x1/a1][?x2/a2] . . . [?xn/an] of a SAIQL query is a composition of
substitutions3, one for every variable declared in the LET clause. The set of all possible
solutions is called Sall.

In the second step the WHERE clause is evaluated. The conjunction of the axiom patterns
in the WHERE clause is split into single axiom patterns. Afterwards, each single axiom
pattern is instantiated:

Definition 9. An axiom pattern p instantiated with a solution s = [?x/a] is an axiom
pattern p[?x/a] where every occurrence of a variable is replaced by the value of its
binding in the solution.

By replacing each variable of a single axiom pattern with a constant value, we can
decide for the resulting (instantiated) axiom if it is implied by O.

Definition 10. Let O be the ontology that is specified in the FROM clause. A solution
s = [?x/a] is valid w.r.t. an axiom pattern p, if O |= p[?x/a].

Definition 11. A solution is valid w.r.t. the WHERE clause if it is valid w.r.t. every axiom
pattern in the WHERE clause. The set of valid solutions Sv ⊆ Sall of a SAIQL query is
the set of solutions of this query, which are valid w.r.t. the WHERE clause.

In the third and last step, the CONSTRUCT clause is evaluated and the result of the query
is generated.

Definition 12. The set of resulting axioms of a SAIQL query is the set of axiom patterns
in the CONSTRUCT clause instantiated with every s ∈ Sv .

The result of the query evaluation is a new set of axioms, i.e. a new ontology.
3 Note that the composition of substitutions here is commutative. Hence, we can easily write a

particular order of substitutions to denote an equivalence class of composed substitutions and
call this one solution.

5.3 Example for Query Evaluation

As mentioned in our use case in section 2, an information system about a company’s
cars has to be developed. Because of the benefits of re-using ontologies, an appropriate
part of the company’s ontology, called MotorOntology, should be re-used. In order
to extract the correct part of the original ontology, the following query is formulated:
“Retrieve all class names that are subclasses of the cardinality restriction with the value
4 for the property hasWheel, and their descriptions and individuals which exist in the
ontology MotorOntology!”

Given the ontology MotorOntology in Figure 1, the SAIQL query in Figure 2
is formulated. In the first step of the query evaluation, the LET clause is evaluated.
Thereby, we extract NC = {Car, Convertible, MotorBike, Van}, NI = {c, m, v}
and, finally, NCD = NC ∪ { restriction(hasWheel cardinality(2)), restriction(has-
Wheel cardinality(4)), intersectionOf(Car restriction(hasConvertibleTop someValues-
From(owl:Thing))), intersectionOf(restriction(hasWheel cardinality(4)) restriction(
hasSlidingDoor someValuesFrom(owl:Thing))), restriction(hasConvertibleTop some-
ValuesFrom(owl:Thing)), restriction(hasSlidingDoor someValuesFrom(owl:Thing))}.

Afterwards, the set of all possible solutions Sall is created. As the LET clause con-
tains a variable ?i representing individual names, a variable ?X representing class
names and a variable ?Z representing class descriptions, |Sall| = |NI |× |NC |× |NCD|
and Sall = {[?i / c][?X / Convertible][?Z / restriction(hasWheel cardinality(2))], [?i /
c][?X / MotorBike][?Z / restriction(hasWheel cardinality(4))], . . ., [?i / v][?X / Van][?Z
/ restriction(hasSlidingDoor someValuesFrom(owl:Thing))] }.

In the second step, the conjunction of the axiom patterns in the WHERE clause is
split into single axiom patterns. In our example, the first and the third single axiom
pattern is a class axiom pattern and the second single axiom pattern is an individual
axiom pattern. After checking the first single axiom pattern, all solutions are removed
in which ?X = MotorBike because MotorBike is not a subclass of restriction(hasWheel
cardinality(4)).

After checking the second and the third single axiom pattern, Sv ⊆ Sall is retrieved.

Class(Car partial Car)
Class(Car partial restriction(hasWheel cardinality(4)))

Class(Convertible partial Car)
Class(Convertible partial restriction(hasWheel cardinality(4)))
Class(Convertible partial Convertible)
Class(Convertible partial restriction(hasConvertibleTop someValuesFrom(owl:Thing)))
Class(Convertible partial Car

restriction(hasConvertibleTop someValuesFrom(owl:Thing)))

Class(Van partial Car)
Class(Van partial restriction(hasWheel cardinality(4)))
Class(Van partial Van)
Class(Van partial restriction(hasSlidingDoor someValuesFrom(owl:Thing)))
Class(Van partial restriction(hasWheel cardinality(4))

restriction(hasSlidingDoor someValuesFrom(owl:Thing)))

Individual(c type(Car))
Individual(v type(Car))
Individual(c type(Convertible))
Individual(v type(Van))

Fig. 3. Resulting OWL Ontology for the Given Query Example

In the third and last step, the CONSTRUCT clause is evaluated. Each single axiom
pattern of the CONSTRUCT clause is instantiated with each valid solution s ∈ Sv . Thus,
the classes Car, Van and Convertible, their descriptions and the individuals c and v are
inserted as axioms into a new OWL ontology that is shown in Figure 3.

6 Related Work

The most common way for querying OWL DL for schema and instance information is
by using languages like SPARQL [2] or RQL [10]. They can retrieve RDF triples that
match a given pattern. Compared to SAIQL, the RDF query languages are not able to
retrieve schema information from the T-Box, which is not explicitly stated. They can
only query the T-Box by inspecting the underlying RDF triples on a syntactic level. By
using SAIQL, explicit and inferred knowledge can be found.

For instance, in our running example in section 2 it would not be possible to achieve
the same answer that was retrieved by the SAIQL query by performing OWL-QL or
SPARQL queries. OWL-QL has only a restricted access to the T-Box so that only named
classes and individuals can be retrieved. Thus, it is not possible to retrieve the class de-
scriptions that define the named classes. SPARQL is not aware of OWL semantics.
Thus, the class name Convertible could not be retrieved because it is not explicitly
stated as a subclass of the cardinality restriction for the property hasWheel. Even if we
use an OWL reasoner such as Pellet [11] to infer such a relation, there is no standard way
to explicitly store the results of the inferencing in RDF. Additionally, there are ambigu-
ous serializations e.g. for qualified number restrictions. In our use case restriction(has-
Wheel cardinality(4)) could also be expressed as intersectionOf(restriction(hasWheel
minCardinality(4)) restriction(hasWheel maxCardinality(4))).

Although it is possible to extract the desired part of an ontology manually, this is
naturally a harder task than specifying a SAIQL query and, of course, it is error-prone.
Thus, it is certainly easier and more reasonable to use a SAIQL query instead. The
need for such an automatic extraction is even increased if the former large ontology is
changed and, thus, an update of the extracted ontology is required. Because changes
of company-wide ontologies can happen very often, manual approaches for ontology
extraction are almost infeasible. Further information about ontology extraction or on-
tology segmentation can be found in [12].

7 Conclusion and Future Work

In this paper we have presented a novel query language for OWL DL, called SAIQL
(Schema And Instance Query Language), that is suited for querying the T-Box and the
A-Box in a uniform way.

As one main contribution, our query language cannot only handle class names and
individuals, but also class descriptions. The extraction of these class descriptions is
of major importance as they provide the definition for a certain class name. By con-
structing OWL DL axioms that contain the extracted class names, individuals and class
descriptions, the query answer will be a fully working OWL DL ontology that can be
directly re-used.

We have described the syntax of our query language and we have provided a basic
evaluation strategy for it. As we demonstrated in our running example, SAIQL is appro-
priate for extracting parts of an ontology (schema and instances) that shall be re-used
in other applications.

In our future work, we will implement the evaluation of SAIQL queries. We will
also extend the expressivity of SAIQL, e.g. by allowing more than one ontology, from
which axioms can be retrieved, or by introducing variable bindings for properties. As
another important extension, the retrieval of anonymous individuals and classes will be
handled.

Acknowledgments

This work has been partially supported by the EU in the projects NeOn (IST-2006-
027595) and K-Space (FP6-027026).

References

1. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: The
Making of a Web Ontology Language . Journal of Web Semantics 1(1) (2003)

2. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. Technical report,
W3C http://www.w3.org/TR/rdf-sparql-query/, October 2006.

3. Fikes, R., Hayes, P., Horrocks, I.: OWL-QL - A Language for Deductive Query Answering
on the Semantic Web. Web Semantics: Science, Services and Agents on the World Wide
Web 2(1) (2004) 19–29

4. Horrocks, I., Tessaris, S.: A Conjunctive Query Language for Description Logic Aboxes. In:
Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth
Conference on Innovative Applications of Artificial Intelligence, AAAI Press / The MIT
Press (2000) 399–404

5. Cali, A., Kifer, M.: Containment of Conjunctive Object Meta-Queries. In: VLDB’2006:
Proceedings of the 32nd International Conference on Very Large Data Bases, VLDB En-
dowment (2006) 942–952

6. Sleeman, D.H., Potter, S., Robertson, D., Schorlemmer, W.M.: Ontology extraction for dis-
tributed environments. In: Knowledge Transformation for the Semantic Web. IOS Press,
Amsterdam (2003) 80–91

7. Elena Paslaru Bontas, Malgorzata Mochol, R.T.: Case Studies on Ontology Reuse. In:
Proceedings of I-KNOW 05. (2005)

8. Patel-Schneider, P., Hayes, P., Horrocks, I.: Web Ontlogy Language (OWL) Abstract Syntax
and Semantics. http://www.w3.org/TR/owl-semantics, February 2003.

9. Pan, J.Z., Horrocks, I.: Owl-eu: Adding customised datatypes into owl. J. Web Sem. 4(1)
(2006) 29–39

10. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.: RQL: A
Declarative Query Language for RDF. In: WWW ’02: Proceedings of the 11th International
Conference on World Wide Web, ACM Press (2002) 592–603

11. Sirin, E., Parsia, B.: Pellet: An OWL DL Reasoner. In Haarslev, V., Möller, R., eds.: De-
scription Logics. (2004)

12. Seidenberg, J., Rector, A.: Web Ontology Segmentation: Analysis, Classification and Use.
In: WWW ’06: Proceedings of the 15th International Conference on World Wide Web, New
York, NY, USA, ACM Press (2006) 13–22

