
Hey! You Got Imperative in My Declarative! or
A Mashup Made in Heaven:

Making OWL friendlier with Javacript.

Alan Ruttenberg1

Science Commons, Cambridge, MA 02127, USA

Abstract. We propose that OWL 1.1 incorporate the use of Javascript.
By choosing to make use of Javascript within OWL, adoption and utility
of OWL might be improved in two different ways. First, it could be used
in a facility that lets users specify Javascript code to translate domain
specific languages into OWL.
Second, Javascript is well known to a large number of web developers.
By enabling OWL documents to have property values that are computed
by Javascript functions, we extend the language in a useful way, and en-
courage the use of OWL in different applications than it might otherwise
be used.
OWL needs a method of extending its syntax to enable concise expres-
sion of domain statements without compromising its expressiveness. For
example, a current debate over the whether to use OWL as the ”na-
tive” format for the OBO ontologies, is driven (away from using OWL)
by OWL’s unappealing syntax and the relative ease of understanding
OBO’s current format. We describe a model for how to use Javascript,
included as part of an OWL ontology, to parse domain specific languages
into native OWL. Two levels of operation are distinguished, the first a
lexical translation into a language which extends the functional syntax,
and a second macro expansion which translates the extended functional
syntax to expressions that only use the defined OWL vocabulary.
For an implementation of computed property values, we propose that
they have a status similar to annotation properties, in that they are not
reasoned over. Instead they can be computed in terms of non-annotation
property values. In this way, we allow for useful expressivity gains with-
out complicating the OWL reasoning or imposing a complicated eval-
uation model. We discuss what access to the environment, such as the
ability to query against the ontology, could profitably (and safely) be
had by these scripts. Use cases motivated from experience in validating
BioPAX and from other applications are provided.
Javascript interpreters are available for use from within the program-
ming languages that the major reasoners are implemented in, and should
therefore not pose an excessive burden on reasoner developers.


