CEUR-WS.org/Vol-2580/DLT_2020_paper_8.pdf

Software Engineering for DApp Smart Contracts managing
workers Contracts

Giorgia Lallai', Andrea Pinna?, Michele Marchesi', and Roberto Tonelli!

! Department of Mathematics and Computer Science - University of Cagliari
giorgia.lallai@hotmail.it,marchesi@unica.it, roberto.tonelli@dsf.unica.it
2 Department of Electrical and Electronic Engineering (DIEE)- University of Cagliari

a.pinna@diee.unica.it

Abstract

We present an application of the BOSE and ABCDE development methodology to build
a DApp system for managing real world contracts for temporary workers so that, by design,
agreements, commitments and rules are respected for the specific domain and employment
sector and so that employers and employees are safeguarded by design. This includes the
possibility to provide access from public regulatory bodies to all the information and em-
ployment history. Ethereum Solidity Smart Contracts are designed to manage all the steps
and to keep track of all Commitments and Agreements, of Employers and Employees and
of job history. We built a working prototype of application where the system management
is automated by mean of an easy to use web interface acting as a front-end interacting
with the blockchain back-end.

1 Introduction

Blockchain applications are blooming in the most disparate sectors aside from the cryptocur-
rency original start. The introduction of the Ethereum platform solicited developers to produce
decentralized applications that nowadays constitute the Ethereum DApp ecosystem. Despite
such exponential increase of interest most DApp still lack of organized software development
methodologies and even when the domain of application may seem interesting such un-organized
DApp development does not guaranty security in sensitive applications neither grants that con-
straints and rules from the application domain are respected.

This is especially critical when Smart Contracts are meant to substantiate real life contracts,
such as in the domain of employment. Contractors who want to recur to automated and self
enforcing Smart Contracts to respect agreements and to fulfill commitments must be secure by
design that some domain specific constraints are respected and the software code does not fail
to fulfill the agreed rules.

In this work we present a case study where temporary employments are managed by a
blockchain software system designed according to the Blockchain Oriented Software Engineering
(BOSE) [7] approach to deliver blockchain software systems and using the ABCDE methodology
[3] to identify actors, user stories, activity and sequence diagrams in order to provide the DApp
system architecture with the desired properties by design.

In this specific case study the advantages of using a blockchain DApp system rather than a
traditional software system are multiples.

First, the nature of the relationships between the employer and the employees in the specific
case of temporary workers is controversial. In fact the first usually wants to optimize earnings
and minimize costs, and usually the power of bargaining between the parties is unbalanced,

OCopyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribu-
tion 4.0 International (CC BY 4.0).

SW Eng. for DApp Smart Contracts managing workers Contracts Lallai, Pinna, Marchesi and Tonelli

since the the temporary workers need to quickly find a job and are exposed to a competition
with offers to downside for the salary in order to get the job. Using blockchain all data are
recorded and accessible to anyone so that any offer to downside became transparent. Workers
have access to information regarding average salaries and can ask for a pay comparable to the
average. Public bodies can access to salaries and can verify if minimal Union salaries rules are
fulfilled in the agreements.

Second, given the unbalance between each single temporary worker and a big company, the
latter can take advantage of its position of power to delay or reduce payments, counting on
the low probability of being suited from a temporary worker. Using Smart Contracts payments
amounts and deadlines are automatically respected by the execution of the smart contract code.

Third, the employer can automate checks and steps needed to pay the workers and by
automatic execution of smart contract code can verify if the workers completely fulfilled the
agreed duties before any payment is executed.

Fourth, and most important, in this case study the application of BOSE and ABCDE
methodology helps to simplify the system and the smart contract configuration and to clarify
to all involved figures the actor roles and duties, so that anyone can easily understand conditions,
agreements and duties.

We do not further bother the reader describing and discussing here the other well known
and general advantages carried on by the use of a blockchain system in this specific case such
as immutability, privacy, traceability and so on, that are easily understood for a blockchain
system. For a comprehensive discussion about these aspects we remand to the conceptual
proposal presented in [6]

2 The Employment Eco-system

The target of our design is to simplify the temporary employment procedure, to provide trace-
ability of the procedure, to protect both employer and employee against misbehavior, to prevent
out of law agreements, to provide public bodies devoted to controls and checks with an easy to
use system, to render public and secure the ecosystem, to provide an easy to use and practical
interface for the interaction between employer and employees.

Most importantly, we apply the BOSE and ABCDE methodology to devise the overall
system’s architecture showing how these approaches help to define actores, roles, constraints,
functionalities and requirements for a specific domain.

The ABCDE methodology starts with the subdivision of the system in out-of-chain and
in-chain components using the diagrams as prescribed by BOSE. This requires also to identify
the system’s actors.

We design the system so that there are two actors typologies, three human actors and two
actors which are system components, for a total of five main actors.

The first typology, the human actors, are:

e The employer: it creates the work activity, it announces the request for one or more
workers, it describes the job, the pay, the duties, the worker features, the time period for
the request, and so on.

o The worker: it typically applies for a job, provides his CV, if possible examines and
chooses among different job offers.

e The work inspector: he can access the employer’s data and check how many hours he has
registered for each worker. He will be able to compare these data with the results of any

SW Eng. for DApp Smart Contracts managing workers Contracts Lallai, Pinna, Marchesi and Tonelli

workplace inspection.
The second typology are system components, in and out of chain:

e The web platform: a simplified web platform with an interface allowing to post new job
offers, to insert job candidacies, to access information about the posted jobs.

e The blockchain infrastructure: it records smart contracts and transactions for the various
job contracts, it allows to manage direct payments, it grants security and privacy

The blockchain infrastructure has the role of master ledger but also the role of protecting
both parties against misbehavior and scams. In order to make concrete our system we used the
most popular blockchain at the moment, namely the Ethereum blockchain, since it provides a
nice environment to write smart contracts, compilers and debuggers are available, testnets for
trials are free and working properly, and finally a complete environment for interacting with the
blockchain from a web interface is provided by the web3.js library. Ethereum in fact provides
a well tested ecosystem where many examples are available to use standard procedures and
datatypes for developing decentralized applications. Ethereum smart contracts, implemented in
Solidity, are well suited for the application of BOSE and ABCDE methodology and procedures
for data recording and transaction managing are easily implemented. Furthermore the Ether
cryptocurrency holds a true value in the market, since exchanges deal it in large amounts
aganst fiat currency, and so it can be used to implement real money transfers and payments.
In this specific contest public regulatory bodies are usually involved but nowadays the market
of temporary jobs is setting the traditional system into a sort of crisis, especially because
multinational firms can hire workers behind the protection of different legislative systems where
regulatory bodies find it hard to intervene. The blockchain can be an alternative where contract
conditions are directly guaranteed by the technology itself.

3 The model architecture and the Scenario

The initial system state is idle. This means that the system still has to receive an input
deposit in order to create a new job offer from an employer which initially does not contain
any information about the employer or the employee. This deposit will grant the workers that
there is some initial amount of money to pay for the job. This must be considered as a set up
before starting.

The first event is the creation of a new job offer where the employer uses the webApp
to complete the procedure for inserting the offer with all the information needed. Each job
offer has several properties, such as: a name, an id, a description, the working hours, the pay,
the deadline. All the transitions could be represented by a state diagram according to UML
representation which can be adapted to the blockchain specific features.

After this step the employer can create the announcement where the salary is limited to a
maximum according to what deposited. At the end of the procedure the system automatically
creates and sends to the blockchain various messages which include all the information needed
to create the set of smart contracts for managing the job, this will be discussed later.

After created the offer the system’s state changes passing to a waiting state for the candidates
workers. The system is configured in order to accept, at this point, the workers applications
for the job. Each worker sends a message to a specific Smart Contract for registering his/her
candidature. Once a candidate is selected for a job the hiring event is launched. The employer
obtains the id and the data of the applicant and sends a message to the blockchain to announce

SW Eng. for DApp Smart Contracts managing workers Contracts Lallai, Pinna, Marchesi and Tonelli

the start of the working period. From this moment on, the worker can verify its working
situation: the worked hours can automatically be certified according to different schemes and
agreements but in any case the employer must certify the worked hours with a message sent
to the appropriate smart contract. Once the amount of agreed working hours is reached the
smart contract ends the job and sends the pay. During this event the system moves the salary
deposited at the beginning to the employee account concluding the relationship. The worker,
since everything is recorded, will be able to recover all the data history for any job performed.

3.1 Smart Contracts Design

We implemented two Smart Contracts typologies using the ERC721 token that we call JobOf-
ferManager and Employment which are already registered and ready in the webApp. The
platform can customize the Smart contracts by the data inserted from the employer according
to the previous section. Once the event of creation of a new job offer is launched the two Smart
Contracts are created, configured according to the information inserted by the employer, and
deployed into the blockchain, linked to each other. The JobOfferManager implements various
functions, such as the insertion of the deposit in ETH, the creation of a new job offer, the hiring
and the payment. The Employment Smart Contracts contains all the information related to
candidates. It also allows to the employer to increase and certify the working hours as worked
by the employee, to end the job once the working hours are completed. The worker can apply
to different job offers, withdraw a candidacy, send a request for a job. The features of the two
Smart Contracts are described by user stories which are reported as a list or according to the
diagram shown in fig. 1

The user stories are:

e ETH deposit: the employer put a deposit into the contract

e Announce: the employer sets a new job offer with description and features.
e Candidacy: workers send a job application to non expired offers

e Candidacy Withdraw: a worker can withdraw a candidacy

e Visualization: the employer can examine the candidacies

e Hiring: the employer selects a candidate and hires him /her.

e Hour registering request: the employee send a request to the employer to record and
certify all worked hours up to that day.

e Confirm: the employer examines the request and can decide to asseverate the worked
hours.

e Announcements Visualization: the employer visualizes the job offers he/she created
e Candidacy Visualization: the applicant visualizes the job offers he/she applied to

e Work Visualization: the employee visualizes the job he/she is working on.

e Career: the worker visualizes his/her work history

e Offers Visualization: any user visualizes all job offers (expired or active)

e Expired Offers: any user visualizes the expired job offers

SW Eng. for DApp Smart Contracts managing workers Contracts Lallai, Pinna, Marchesi and Tonelli

S.C.System

_— Create employment
system
Administrator @
Send application

e

View current jobs

4 View completed jobs

Require {

“(View Worker Career
Inspector
/w\

L .

Add new job offer

Web interface
worker

Worker

N
|

Web interface
employer

Requ
R i
Employer
Hours to be
Add hours confirmed, which

the worker has
entered

view created jobs

Figure 1: User Stories diagram for the Smart Contract implementation.

e Current Offers Visualization: any user visualizes all job offers not yet expired

For each user story we implemented a corresponding web page in the prototype.

Once the use case diagram for actors has been designed it is easy to proceed to the de-
sign of the Smart Contracts. According to what reported above, we implemented into the
JobOfferManager Smart Contracts the following state variables:

- address owner: address of contract’s creator - uint32 lastid: token holding the number of
created offers - struct jobOffer (data representing one job offer)

e 1int256 expirationDate: the expiration day
e address payable worker: Ethereum employee’s account address
e address employer: Ethereum employer’s account address

e string name: offer’s name

string info: offer’s description

uint8 workhours: working hours to be worked

uint salary: salary offered

- struct Jobs:
— uint32[] jobs: array holding all the job offers created

SW Eng. for DApp Smart Contracts managing workers Contracts Lallai, Pinna, Marchesi and Tonelli

- struct OnGoingJobs — uint32[] onGoingJobs: array holding all the jobs a specific worker
is working on at the moment

- mapping(address => uint256) internal depositOf : mapping returning the ETH deposited
in the Smart Contract by a specific address (associated to an employer)

- mapping(address => Jobs) internal offersBy: mapping returning the job offers created by
a specific address

- mapping(address => OnGoingJobs) private hiredinjobs: mapping associating the em-
ployee address to all the job he/she is actually working on

- mapping(uint32 => jobOffer) private jobs: mapping returning the description of a job
offer given the offer id

- mapping(uint32 => bool) public moneyIsReturn: mapping returning a boolean stating if
the deposit has been withdrawn given an offer id.

The ABI interface is reported below according to the user stories diagram devised above.

-Constructor

-getNumberOfOffers(): outputs the number of offers created

-getName(uint32): outputs the offer’s name

-getExpirationDate(uint32): outputs the expiration date

-getSalary(uint32): outputs the offer’s salary

-getAddressWorker (uint32): outputs the employee’s address

-getAddressEmployer (uint32): outputs the employer’s address

-getInfo(uint32): outputs the offer’s description

-getAmountHours(uint32): outputs the number of minutes to be worked for a job

-getJobOffer(uint32): outputs all the features of a job offer

-getArrayActiveOffer (): outputs all non expired offers

-getDeposited Amount(): outputs the amount deposited in the contract from a given address

-getOffersBy (address): outputs the offers created by a give address

-getApplicantOf (address): outputs an array containing all the jobs a worker is hired for

-getTokenlId(): outputs the token’s actual value

-getBalance(): outputs the amount deposited in wei

-getIsActiveOffer(uint32): verifies if an offer is expired or not

-getIsMoneylIsReturn (uint32): outputs if, given a job offer, the deposit has been withdrawn

-newJob(uint256, string memory, string memory, uint8, uint): creates a new job offer with
all the details

-hireWorker(address payable, uint32): starts the work relationship. It is called by the
employer to hire the employee for a given job offer

-payment(uint32): once the job duties are completed this function is called by the employer
to pay the employee.

-moneyReturnsEemployer(uint32): it reimburses the employer once a job offer has expired
without any worker hired.

Next we report as well the state variables for the Employment Smart Contract:

-address owner: address of contract’s creator

-address payable scJobOfferManager: address referring to the Smart Contract managing the
job offers

-struct Applicant:

——address]] applicant: array containing all candidacies

-struct JobDone

SW Eng. for DApp Smart Contracts managing workers Contracts Lallai, Pinna, Marchesi and Tonelli

—uint32[] jobsDone: array containing all the jobs done by a worker

-struct RequestHours (data realted to the hours requested by a worker)

—- uint32[] idOffer: array containing all id of job offers without requests of adding hours

—- uint[] numberHours: array containing the number of requested work hours

-mapping (uint32 => uint) internal workhours: mapping providing the number of hours
worked by an employee given the offer id

-mapping (uint32 => Applicant) internal applicantsOf: mapping providing the candidates
of an offer given its id

-mapping (uint32 => uint) internal requestHours: mapping providing the number of hours
requested for being added given the offer id

-mapping (address => RequestHours) internal requestHoursForEmployer: mapping pro-
viding the offer id and the number of requested hours given the employer’s address

-mapping (address => JobDone) internal jobsDone: mapping providing the work concluded
given the worker’s address

Finally we report the ABI Interface for the Smart Contract Employment

-Constructor

-setJobOffer Address(address payable): the function for setting the address of JobOfferMan-
ager Smart Contract

-getJobOfferAddress(): outputs the address of JobOfferManager contract

-getIsSetJobOfferAddress(): returns if the address of JobOfferManager contract has been
set or not

-getIsEqualToJobOffer Address(address payable): verifies if the value of variable scJobOfferManager
matches the address of the contract provided in input (the contract Employment can refer only
to one single contract managing the job offers)

-getApplicantOf(uint32): outputs the array containing candidates for an offer

-getJobsDone(): outputs the array containing all concluded jobs

-getRequestHours(uint32): outputs the number of hours required for an offer

-getRequestHoursForEmplyer(): outputs two arrays containing the offers’ ids and the num-
ber of hours requested by each offer

-getHoursDone(uint32): outputs the number of hours worked up to that moment by an
employee

-getHourMissing(unit32): outputs the number of remaining working hours to be completed

-jobCompleted(uint32): verifies if the work has been executed and performs the payment

-addWorkdays(uint32, uint): it is called by the employer to update the hours worked by an
employee and activates the payment procedure (calling jobCompleted) once if the number of
working hours agreed has been reached

-requestAdditionalHours(uint32, uint): is called by the employee to ask for adding the
worked hours

-worker Applies(uint32): called by a user to apply for a job offer

-withdrawCandidacy(uint32): called by a user to withdraw from a job offer

3.2 Contracts Diagrams

Solidity allows to define Smart Contract in a way very similar to how classes are defined in Ob-
ject Oriented (OO) programming languages. It supports inheritance, it includes a Constructor
to deploy the Smart Contract on the blockchain, it supports interactions among contracts by
means of transactions messages, so that a contract can call and activate functions of another

SW Eng. for DApp Smart Contracts managing workers Contracts Lallai, Pinna, Marchesi and Tonelli

<<fse>
worker

viewOfiers()

sendApplication()

Apllicat getJobOffer(id)
viewApllication('workerApply(id)
withDrawApliication() withdrawCandidacy(id)
requestAdditionalHours(id.numHours)
viewWorHours() getJobsDone()
getApplicantCfiaddress)
addWorkHours()
viewCurrentJobs()
viewCompletedJobs() ¢<contract»>
Employment
<<ss>
employer
viewCffers()
viewJobOfferApplies() <<contracty >
JobOfferManager
depositMoney()
addNewJobOffer()
hireWarks gellobOffer(id)
reWorker) getApplicantCi(id)
iewCreatedJob pourlaney()
viewCreatedJobs() daNewORer)
addHours() addWorkdays(id numHours)
payment(id)
payment() moneyReturnsEemployer()

viewCareerWarker()

Figure 2: Smart Contract - Class diagram for the DApp implementation.

one, it supports events managing. According to BOSE and ABCDE methodology it’s conve-
nient to develop diagrams for Smart Contracts design and interaction which adopt the same
schemes used in OO Software Engineering such as UML diagrams. We already presented the
diagrams for Blockchain Software Engineering for users stories and for state diagrams in the
previous section. In this section we describe the devised Smart Contracts and their interaction
using the Contracts Diagram. Figures 2, 3 and 4 show the Smart Contracts diagrams and the
relationships among them. These are described as in the usual UML diagrams, with similar
meanings and with the use of stereotypes to characterize specific aspects of blockchain soft-
ware. In particular the use of data structures and of libraries is easily described and allows for
a clear and fast development of the smart contract software code in Solidity acting as a guide
for developers. Fig. 2 also shows how it is possible to represent the interaction among in-chain
and out-of-chain components.

3.3 Activity Diagram

In order to define and analyze the dynamic behavior of the system we designed the activity
diagrams for the employer and for the employee. This is particularly important in Blockchain
Software Engineering since the activity flow correspond to dynamic behaviours on the blockchain
as well for the messages flow. In fact activities can match transactions in the blockchain which
may occur between smart contracts. On the other hand, for activities that are performed
internally to a single smart contract there is the possibility of generating the events related
to these activities (this is typical in solidity). Thus in the design phase the activity diagrams
provide a useful analysis tool to understand which operations need to be executed by means
of blockchain transactions and which operations need to be recorded and tracked by means of
events. The various activities in the diagram in general correspond to code execution or message

SW Eng. for DApp Smart Contracts managing workers Contracts

<<contracty>
JobOfferManager

<<mapladdress]>>

<<contract>>
Employment

Lallai, Pinna, Marchesi and Tonelli

1, 's¢c_JobOfferManager: address payable

+setJobCfferAddress(address payable)
+gelJobOfferAddressi): address payable

+ getisSetJobOfferAddress(): bool

+ getApplicantOf{uint32): address[| memory
+getJobsDone(): uint32[] memory
+getRequestHours{uint32): uint

+getRequestHoursForEmplyer(): uint32[] memory
uint32(] memory

+getHoursDone(uint32): uint
+getHourMissing (uint32): uin

+ JobCompleted(uint32)

+ addWorkdays(uint32, uint)

+ requestAdditionalHours{uint32, uint)
+WorkerApplies(uint32)

+ withdrawCandidacy(uint32)

+ getisEqualToJobOfferAddress(address payable): bool

<<rqodif\er3 > on\yEmponer(ui;\tsm

<<library contracts» <<PrimitiveType>>
4D ‘Ownable Address
+ owner: address
<<library contracty»
ERC721
is + balanceOf(): Integer
+ownerOf(): Integer
_mint(): null
B <<map[uint32]>> workhours ((Prlmnﬁwpe”
L uini
<emap[uint32]>> _requestHours
f

<<mapladdress]>

<emapuintzz]>>
icantsOf

_requestHoursForEmployer _jobsDone
<<structy > <<siruct>> <<struct>>
RequestHours JobDone Applicant

+idOffer: uint32[|
+ numbersHours: uint(]

+ JobsDone: uint32[]

+ appliant: address[]

Figure 3: Smart Contract Class diagram for the Employer Smart Contract.

<<mapladdress]>> _hiredinjobs

\1/—0

<<contracty»
JobOfterManager

+ lastid: uint32

<«library contracts>
Ownable

<<PrimitiveType>>
Address

+ getNumberOfOffers(). uint256
+ getName(uinta2): string memory
+ getExpirationDate(uint32): uint256

1+ getSalary(uint32): uin

<<structy>
OnGolngJobs

+onGoingJobs: uint32[]

<<map[address]>>
_oflersBy

<¢struety>
Jobs

+ jobs: uint32[]

<<map[uint32]>> _jobs

<<structyy
JobOffer

+ expirationDate: uInt256
+ worker: address payable
+employer: address
+name: string

+infa: string

+workhours: uintg

+salary :uint

Figure 4: Smart Contract Class diagram for the JOBOfferManager Smart Contract.

+ 0 (uint32): address payable
+ getAddressEmployer(uint32): address

+ getinfo(uint32): string memory

+ getAmountHours(uint32): uint

+ getArrayActiveCffer(uint32): uint] | memory
1+ getJobCffer(uint32): uinta2

+ getDepositedAmount(uint32): uini256

+ getOffersBy(address): uint32[| memory

+ getApplicantOf{address): uint32[| memory
+ getTokenid(uint32): uint

1 getBalance(uint32): uint256

+ getisActiveCffer(uint32): bool

+ getisMoneylsReturn(uint32): bool

+ pourhoney(uint)

+ payment{uint32)

+ hireWorker(address payable, uint32)

+ newJob(uint256, string memary, string memory
uint8, uint)

+Owner: address

<«library contract>>
ERC721

is + balanceOf(): Integer
+ ownerOf(): Integer

_mint(): null

Primitive’
L«map[address]n _depositof <P :‘ntzs.laype»
1 <<map[uint]>> _IsRefound ((Prlm:oiv;Wpe»

SW Eng. for DApp Smart Contracts managing workers Contracts Lallai, Pinna, Marchesi and Tonelli

leaves the site
. View Home page ! 1 %

[login]

Insert New Job Offer

[no candidate] and [expired offer]

[selected a candidate]

and
[active offer]

Hire worker

[Wiew hours done Add hours }
i [iob not completed]
llob completed{

Payment
employer.png [)

Figure 5: Activity diagram for the Employer.

calls. In figures 5 6 we report the activity diagram for the employer and for the employee. The
diagrams provide useful insights for identifying blocks and pieces of working software code for
the in and out of blockchain components.

3.4 Sequence diagram

In the diagram 7 we represent the sequence of operations that the actors and the system perform
to add work hours for a given job until the completion of the agreed number of hours. The
worker accesses the workers’ web interface and adds work hours to a job. He provides the job
id. The web interface collects the request and calls the function ”requestAdditionalHours (id,
n)” of the employment smart contract which verifies that the worker (the sender of the request)
is actually registered as a worker of the given job (with a given id) and the job is active. If so, it
adds the N work hours as requested. The employer can check the amount of work hours to be
confirmed calling the function viewHours() of the employers’ web interface. The web interface
loops in the job created by the employer and requests the employment smart contract to return
the work hours waiting to be confirmed. Once data are collected, the web interface shows the
list to the employer. The employer can now certify the work hours of a worker, given a job
id. He accesses the employers’ web interface and calls the function ”selectJobOffer” to request

SW Eng. for DApp Smart Contracts managing workers Contracts Lallai, Pinna, Marchesi and Tonelli

View Home page

[login]
[he leaves the site]

i

Send candidacy [View old jobs done J { View on going jobs J

View your candidacies

[offer expired]
or
[worker hired]

[offer active]
and

[no worker hired|

Withdraw candidacy

[you have not been hired]

[you have been hired]

T

[View hours done } [Requestadd hours]

|

[iob completed]

Payment
worker.png

Figure 6: Activity diagram for the Employee.

[lob not completed]

the validation of the requested work hours. The interface calls the function ”"addWorkdays”
for a given id and an amount N. If the id is valid, the work hours are validated. Now, if the
contractual limit of work hours is reached, the system calls the jobCompleted function which
runs the ”payment” function of the jobOfferManager contract.

4 The Prototype

Based on the application of all principles and methods adopted from BOSE and ABCDE
methodologies we developed the Solidity code for the Smart Contracts (not reported here)
and built the DApp system which provides the users with a user friendly web interface enabling
the implementation of all the features described. In fig. 8 we report as an example the web
interface providing the functionality for the insertion of a new job offer by the employer. The
web interface uses “metamask”, a bridge to run Ethereum DApps right in your browser with-

SW Eng. for DApp Smart Contracts managing workers Contracts Lallai, Pinna, Marchesi and Tonelli

web interface
worker

empioyer ’ worker

addHours(id)

web interface Cortract Contract
empioyer empioyment jobOffersvianager

alt / [1bOTer(id) sadive 28 0 BVald 25 worker s fired] v e
requestAdditionalHours id.n) ,— the number hours.

send confirmation

view hours updal

L ; For every Job afer]

H : for which a worker

viewHours) has been hired, It

lgets tne hours 1o be
med

getRequestHours (id)

view hours request |

‘selectobOfter(id)

L

Joniy for the ofters
|created by him

alt { {idisVald &8 worker s set]
‘addWorkdays(id n)

i/ TVerking hours reaciea]
fobCompleted(id)

viewconfimation

Figure 7: Sequence diagram of the hours registration and of the payment phases.

out running a full Ethereum node, for providing the communication channel between DApp
and blockchain. The web interface allows the various actors of the system to interact with the
blockchain through the DApp so that no actor needs to understand or to know the working
principles of the blockchain system. Every feature is provided by a user friendly web page were
input and output data can be inserted and read and events and function calls can be managed.
We devised various interfaces to provide specific features depending on the users roles with
menus adapted to the different roles. We deployed the Smart Contracts on the Ropsten test
net in order to test our prototype under all working conditions.

5 Related works

In recent years, the research on the blockchain application in hiring management and work
management is slowly expanding. In 2018, Oink et al. [4] proposed a blockchain based system
to avoid errors in the recruitment phase of industrial personnel and in the management of
human resources. That system uses a blockchain architecture to store, validate and manage
workers’ information. In this way, highly interconnected industries (i.e. 4.0 industry) and smart
cities can share trusty data.

More recently, Peisl and Shah [5] evaluated the potentiality and the impact of the block
chain technology applied to the work management, focusing on the employment life cycle and
analyzing a set of use cases. They remark need of further study. For instance, current studies
include literature reviews on the use of the blockchain technology in work contexts [1].

The design of blockchain based system for recruitment is the topic of the work of Won-
Yong and Min [2] which focus on workers’ skill certification, that helps the recruiters to chose
the best applicant of a given job. From the other point of view, Gandhi et al. presented the
implementation of a decentralized system to improve transparency of contractual conditions in
the freelancer working relationships.

SW Eng. for DApp Smart Contracts managing workers Contracts Lallai, Pinna, Marchesi and Tonelli

@ localhost:63342/DapplobOffer/DapplobOffer/Employer.htmli?address)obOffer=0xc81AH B MetaMask Notification - O X ploye. B @

® Ropsten Test Network

Visualizza candidati Depositare denaro Nuova Offer| . Aecount] 2 ’ OreaIA.00. Home
BURMENEE p

| CONTRACT INTERACTION |

Account:
0x738d8a8b408c385f15890f50d2d4b3b8e6c6742d Q O

Nuova offerta

DETAILS DATA
Numero giorni di validita dell'offerta
2 EDIT
BGAS FEE 40.004
Nome L o
lo Conversion Rate Available
Insegnante
Informazioni: FHOUNT GRS RS
Si ricerca insegnate di filosofia TomaL #0.004

No Conversion Rate Available

ore di lavoro:

2

Stipendio(ETH):
Reject
0.1 .

Aggiungi offerta

Figure 8: Web interface developed for the interaction with the DApp system.

All these works present two weakness. They focus only on the creation of the contractual
relationship and does not include a specific automation in payment when work is completed
nor provide additional protection to the worker or they do it only marginally.

6 Conclusions

In this case study we applied the BOSE and ABCDE methodology to devise a DApp for
managing temporary employments so that by design the employers and the employees are able
to easily identify roles, constraints, commitments in the specific domain. This approach allows
to build a DApp software product in which all the requirements and features are determined
and recovered by the diagrams adopted by the methodology so that Smart Contracts variables
and ABI are quickly and precisely identified. The approach reduces risks of failure since in-
chain and out-of-chain components are identified by design since the very beginning, and smart
contract structure and interactions are well defined before the software development. We show
how the approach successfully guided us to produce a working prototype for managing the case
study of the temporary employments.

References

[1] Amer A Hijazi, Srinath Perera, Ali Alashwal, and Rodrigo N Calheiros. Blockchain adoption in
construction supply chain: A review of studies across multiple sectors.

SW Eng. for DApp Smart Contracts managing workers Contracts Lallai, Pinna, Marchesi and Tonelli

2]
8]

Won-Yong Jeong and Min Choi. Design of recruitment management platform using digital certificate
on blockchain. Journal of Information Processing Systems, 15(3), 2019.

Michele Marchesi, Lodovica Marchesi, and Roberto Tonelli. An agile software engineering method
to design blockchain applications. 14th Central and Eastern European Software Engineering Con-
ference Russia, page 3. ACM, 2018.

MH Onik, Mahdi H Miraz, and Chul-Soo Kim. A recruitment and human resource management
technique using blockchain technology for industry 4.0. 2018.

Thomas Peisl and Bahadur Shah. The impact of blockchain technologies on recruitment influenc-
ing the employee lifecycle. In Alastair Walker, Rory V. O’Connor, and Richard Messnarz, editors,
Systems, Software and Services Process Improvement, pages 695-705, Cham, 2019. Springer Inter-
national Publishing.

Andrea Pinna and Simona Ibba. A blockchain-based decentralized system for proper handling
of temporary employment contracts. In Kohei Arai, Supriya Kapoor, and Rahul Bhatia, editors,
Intelligent Computing, SAI pages 1231-1243, Cham, 2018. Springer International Publishing.

S. Porru, A. Pinna, M. Marchesi, and R. Tonelli. Blockchain-oriented software engineering: Chal-
lenges and new directions. 2017 IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), pages 169-171, May 2017.

	Introduction
	The Employment Eco-system
	The model architecture and the Scenario
	Smart Contracts Design
	Contracts Diagrams
	Activity Diagram
	Sequence diagram

	The Prototype
	Related works
	Conclusions

