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Abstract—In the context of autonomous driving, new chal-
lenges arise also in the requirements engineering process. The
specification needs to deal with a complex, open and highly
dynamic context, which makes it hard to find an appropriate
and still comprehensible formalism for the specification. Also,
the requirements come from different sources, such as traffic
regulations and consumer needs, which makes it difficult but
yet important to maintain requirements consistency. This work
focuses on consistency of those requirements that specify execu-
tion of driving maneuvers. In previous work, Traffic Sequence
Charts have been introduced as a specification language for
those requirements. Traffic Sequence Charts are a graphical
formalism with a well-defined formal semantics that enables
formal methods to support the development process. In this
paper, a formal definition of consistency for TSCs is proposed,
and its applicability in a tool-supported development process
elaborated. Experimental results with a prototypical consistency
analysis tool for TSCs are provided.

Index Terms—Requirements engineering, Automated driving,
Formal methods, Consistency, Traffic Sequence Charts

I. INTRODUCTION

The development of a system is typically starting with a
requirement elicitation process, which aims for a complete,
unambiguous and conflict-free specification of the system
under design. For systems like highly automated vehicles
(HAV), the specification needs to deal with a complex, open
and highly dynamic context, which makes it hard to find a
appropriate and still comprehensible formalism for the spec-
ification. Additionally, not only system-specific requirements
have to be handled, but also requirements that are induced
from outside. For example, the requirements for the HAV will
contain safety goals that come from hazard and risk analysis,
traffic regulations, and consumer needs. This makes it hard but
even more important to maintain requirement consistency, i.e.
to ensure that the requirements do not conflict with each other.
Although inconsistencies in the requirements will probably
become visible during later development steps, finding them
early saves development costs [1] and avoids implementation
faults caused by conflicting specifications. This work focuses
on requirements that describe the behavior of the HAV as
a traffic participant, i.e. driving maneuvers by the HAV and
the situations that trigger them. For that kind of requirement,
Traffic Sequence Charts [2], [3] (TSCs for short) have been
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developed as a formal specification language. The contribution
of this paper is a formal but yet practical approach to find
inconsistencies in TSC specifications.

Traffic Sequence Charts are a graphical specification lan-
guage for traffic scenarios. As a running example, Figure 1
shows a TSC that specifies how the HAV under develop-
ment (white car in the figures) shall overtake slower ve-
hicles (black car) on a highway. The TSC is described in
detail in Section II. The core idea of TSCs is to represent
a scenario as a seamless sequence of traffic situations, so
called snapshots. In each snapshot, the placement of symbols
describes the spatial relations of traffic participants to each
other and the road infrastructure. This distinguishes TSCs
from other formal requirements specification languages such
as ForSeL [4] which require to express spatial constraints
textually. In contrast to other scenario specification formats,
such as OpenSCENARIO [5], TSCs allow a high degree of
freedom and abstraction. Being a graphical language with an
intuitive semantics, understanding TSCs does not require deep
knowledge in formal methods. Hence, a TSC can be used to
display a requirement on the behavior of the driving function to
different stakeholders. Furthermore, TSCs have a well-defined
formal semantics that enable the use of formal methods and a
wide range of tool support and automation in the development
process. As such, it is possible to identify inconsistencies in
TSCs automatically.

Safety standards such as ISO 26262 in the automotive indus-
try define consistency as conflict-freeness of requirements. ISO
26262 distinguishes between internal consistency, meaning a
requirement is free of contradictions within itself, and external
consistency, that is a requirement does not contradict other re-
quirements. This informal definition of consistency as conflict-
freeness is too vague for the application of formal methods,
though. Therefor two formal definitions of consistency, called
existential and partial consistency are presented in this work.
They have originally been defined and evaluated in [6], [7] for
pattern-based functional requirements. In this paper, they are
lifted to TSCs. In the context of TSCs, existential consistency
is a form of internal consistency, and partial consistency –
an extension of existential consistency – a notion of external
consistency. The basic idea of existential consistency is to
find at least one exemplary trajectory, i.e. a timed sequence
of system states, that fulfills a TSC, or show that this is
impossible. In the latter case, the TSC is called existentially
inconsistent. Partial consistency does something similar for

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



a pair of TSCs. For partial consistency, possible cases are
identified where the TSCs are concurrently active. For each of
these cases it is checked whether it is possible to fulfill both
TSCs. The term partial has been chosen, because the critical
cases are found based on a heuristic (in the case of TSCs
by synchronizing the start of snapshots in the different TSCs).
Missing some conflicts in a specification is acceptable because
experience shows that it is more important for industrial
acceptance to not block the development process by reporting
spurious conflicts that need to be checked manually than
certifying conflict freeness [6], [8]. It is future work to extend
partial consistency so that more conflicts can be found.

The paper is structured as follows. Section II introduces
TSCs in detail. In Section III a generalized software archi-
tecture for consistency analysis of TSCs is proposed, together
with the two concrete consistency notions for TSCs. This also
includes a short report on our prototypical implementation of
the approach. The paper closes with a short summary and
outlook in Section IV.

II. TRAFFIC SEQUENCE CHARTS FOR REQUIREMENTS

Traffic Sequence Charts are a relatively new graphical
specification language for traffic scenarios. They enable a wide
range of applications in the development process, because
they have an intuitive, yet formal semantics. In [9], a wide
range of applications (including the use as a requirement
specification language) have already been identified. Recent
work [10] exploits the use of TSCs in testing. Another work
[11] describes a discovery process for abstract scenarios –
represented as TSCs – that exposes the violation of a safety
goal. In the following, the structure and semantics for TSCs is
introduced. This paper uses only a subset of the TSC language.
For the complete language, refer to [2].

A. An Overview on TSCs

Figure 1 shows a TSC that specifies an overtaking scenario.
Intuitively, the TSC specifies the following behavior of the
HAV:

Whenever you are on the right of two lanes and
there is another vehicle in front of you that is nearer
than 50 meters and slower than you, perform the
following operations within 40 seconds, as long as
the other vehicle stays on the right lane and does
not accelerate:

1) Move to the left lane, accelerate until you are
at least 20 km/h faster than the other vehicle,
but stay behind

2) Pass the other vehicle on the left lane
3) When you are at least 50 meters in front of the

vehicle, move back to the right lane
As mentioned shortly in the introduction, the basic building

block of TSCs are the so-called snapshots, which are the
boxes numbered (1) to (6) in Figure 1. Every snapshot de-
scribes a traffic situation. Snapshots are assembled to so-called
snapshot-charts. A TSC consists of three snapshot charts,
the history, the future and the consequence. Informally, the
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Fig. 1: TSC “Overtaking”

semantics of a TSC is as follows: Whenever the TSC’s history
held from some point in the past until now, and the TSC’s
future will hold from now till some point in the future, then
also the consequence shall hold from now on. History and
future form the so-called pre-chart of a TSC. The pre-chart is
drawn as a bisected dashed hexagon, where the history is in the
left, and the future is in the right part (in Figure 1 history and
future consist of single snapshots). Everything that follows the
pre-chart in a TSC (i.e. the second and third row of Figure 1)
is part of the consequence. The rounded rectangle in Figure 1
is the bulletin board of the TSC and explained later.

In the following, we describe the different graphical no-
tations that are used in snapshots. In a snapshot, symbols
are placed to describe the spatial relations of their real-
world counterparts. For example, the snapshots (a) and (b)
in Figure 2 specify that the ego-vehicle (the HAV under
development, white car) is on a lane, and that there exists a
second lane with another vehicle (black car) on the left of ego.
The relative placement of symbols induces somewhat strict
constraints: Snapshot (a) is only satisfied in traffic situations
where front and rear of the two vehicles are exactly aligned,
snapshot (b) is satisfied only if the front of ego is strictly
between front and rear of the other vehicle. Somewhere-
boxes as in snapshot (c) can be used to weaken some of the
constraints. The somewhere box in snapshot (c) means that
there is a vehicle somewhere on the left lane, next to or in
front of ego. Note that the left border of the box is aligned with
the left border of the ego-symbol, so the box does not match
cars on the left lane behind ego. To this end, snapshots speak
only about the presence of objects at certain positions, but do
not restrict the existence of other objects. For example, there
could be additional cars around the ego vehicle in snapshots
(a) to (c). To specify absence, nowhere-boxes are used. They
are used analogous to somewhere-boxes, but with the opposite
meaning. For example, the nowhere-box in snapshot (d) states
that there must not be another vehicle on the left lane next to
or in front of ego. The graphical placement of symbols in a
snapshot is accomplished by textual annotations. A distance
line as in snapshot (5) restricts the distance between objects
and/or boxes. The distance line in snapshot (e) states that the
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Fig. 3: Snapshot chart operations

other vehicle is at most 50 meters behind ego. Additionally,
textual constraints on the objects can be placed in a snapshot,

as shown in snapshot (f). Note that the empty snapshot is
always satisfied.

Snapshot charts combine snapshots with the operations se-
quence, concurrency, choice, and negation shown in Figure 3.
We use rounded rectangles (e.g. A ) as placeholders for
arbitrary sub-charts. A sequence of two snapshots means that
first the first snapshot has to hold, followed by the second.
The snapshots directly follow each other; there is no time
frame between the first and the second snapshot. Concurrency
means that both snapshot (charts) have to hold simultaneously,
choice means that at least one of the charts has to hold,
respectively. Negation means the chart must not hold. There
are two kinds of timing constraints in TSCs. Hour glasses
constrain the duration of a snapshot chart. A full hour glass
( ) starts a clock, and the empty hour glass ( ) specifies
a clock constraint. Another form of timing constraints are
synchronization lines (dotted horizontal line in Figure 3 (f),
also called time-pins). When two snapshots are connected by a
synchronization line, they have to start at the same time point.

The bulletin board binds symbols in the snapshots to certain
objects. A symbol that is contained in the bulletin board
refers to the same object in every snapshot. The bulletin board
(rounded box) in Figure 1 binds the white car symbol to the
ego vehicle, and the lane symbols to certain lanes of the road
where ego is on. Also, the black car symbol is bound to another
vehicle; if the black car would not be in the bulletin board, it
could be a different vehicle in any snapshot.

A TSC is always interpreted over some world model. As its
name suggests, the world model models the different objects
that a TSC can speak about. First of all, a world model
specifies a hierarchy of object types (e.g. obstacles, lanes, cars,

pedestrians, . . . ) and their attributes. Furthermore, the world
model defines their dynamics, for example in form of hybrid
automata [12]. World models can be defined on different
abstraction levels. Especially for analysis of requirements it
might be desirable to start the development process with a very
abstract world model that does not restrict the dynamics of
the system, and use more detailed world models in later steps.
As discussed later in Section III-A, a simpler world model
lowers the complexity of an analysis and allows complete
model-checking. During test-case generation for example, a
more exact world model is needed.

The link between the world model and a TSC is defined in
form of a so-called symbol dictionary. The symbol dictionary
links the graphical symbols used in the TSCs to object classes
in the world model (in contrast to the bulletin board, which
binds symbols to certain objects). In this paper, a very simple
symbol dictionary is used that consists of only a symbol for
straight lanes and a symbol for cars. The car symbol is used
with different colors to distinguish the different symbols in the
bulletin board.

B. TSC Formal Semantics

In [2], [3] the semantics of TSCs are formally defined. In
the following, we recall the semantics in a condensed form.
We refer the reader to the related literature for the complete
semantics.

Every snapshot chart SC can be translated to a multi-sorted
real-time logic (MSRTL) formula ϕSC that is interpreted over
some world model WM.

Definition 1 (Multi-sorted Real-time Logic [2], [3]). A tra-
jectory over an (ordered) set X of variables is a piece-wise
continuous differentiable function π : R≥0 → RX. The term
πt0 denotes a trajectory π time-shifted by t0, i.e. πt0(t) =
π(t+ t0).

A MSRTL formula ϕ over variables X is of the form

ϕ ::= φ | ∃t : ϕ | ¬ϕ | ϕ1 ∧ϕ2 | ϕ1 ∨ϕ2 | �[τ1,τ2)ϕ | τ1 ∼ τ2
where φ is a predicate over X, t a time variable,, ∼ ∈ {<,≤
}, and τ1, τ2 are linear expressions with free time variables.
Satisfaction of a MSRTL formula ϕ by a trajectory π and a
valuation µ that assigns values to free time variables in ϕ is
defined as follows:
π, µ |= φ :⇔ π(0) |= φ
π, µ |= �[τ1,τ2)ϕ :⇔ ∀t ∈ [µ(τ1), µ(τ2)) : π

t |= ϕ
π, µ |= ∃t : ϕ :⇔ ∃v ∈ R≥0 : π, µ ∪ {t 7→ v} |= ϕ
π, µ |= τ1 ∼ τ2 :⇔ µ(τ1) ∼ µ(τ2)

Boolean operators are defined as usual.

We write a valuation that assigns values v1, v2, . . . to
variables t1, t2, . . . as {t1 7→ v1, t2 7→ v2, . . . }. The term
µ∪{t 7→ v} denotes valuation µ extended by mapping t 7→ v.
Note that we do not define the structure of predicates φ
explicitly here. We assume that the set X in the definition
is the union of the attributes of all the objects defined by
the world model WM. Hence, π(t) is the state of the world
model at time t. Accordingly, the considered predicates φ are
expressions over the world model’s state.



Now, we are ready to define TSC semantics in terms of
MSRTL.

Definition 2 (Snapshot Chart Translation). A snapshot chart
SC is translated to a MSRTL formula ϕSC with free time
variables bSC and eSC that stand for begin and end of the chart
in a trajectory. In the following, [x\y] denotes substitution of
variable x by variable y.

• If SC is a snapshot node, then ϕSC := bSC < eSC ∧
�[bSC,eSC)φ, where φ is the translation of the snapshot
content into a predicate (see [2], [3] for the translation of
snapshots).

• Concurrency: If SC =
A

B
then

ϕSC := ϕA[bA\bSC, eA\eSC] ∧ ϕB [bB\bSC, eB\eSC]

• Choice: If SC =
A

B
then

ϕSC := ϕA[bA\bSC, eA\eSC] ∨ ϕB [bB\bSC, eB\eSC]

• Negation: If SC = A then

ϕSC := ¬ϕA[bA\bSC, eA\eSC]

• Sequence: If SC = A B then

ϕSC := ∃t : ϕA[bA\bSC, eA\t] ∧ ϕB [bB\t, eB\eSC]

Note, that in the above inductive definition, the substitu-
tions [x\y] only replace free variables. The resulting MSRTL
formula ϕSC has exactly two free time variables bSC and eSC.

Definition 3 (TSC Semantics). A TSC TSC with history H ,
future F , and consequence C is satisfied by some trajectory
π, written π |= TSC, if

∀b,m, e ∈ R≥0 : π, {bH 7→ b, eH 7→ m, bF 7→ m,

eF 7→ e, bC 7→ m, eC 7→ e} |= ¬(ϕH ∧ ϕF ) ∨ ϕC .

Note that the original work [2], [3] defines a more expres-
sive MSRTL. Furthermore, [2], [3] defines the translation of
timing constraints and synchronization (time pins).

Example 1. The consequence C of the TSC in Figure 1 is
translated to the MSRTL formula

ϕC := ∃t1, t2, t3 : bC < t1 < t2 < eC

∧�[bC ,t1)φ3 ∧�[t1,t2)φ4 ∧�t2,t3)φ5�[t3,eC)φ6

where φ3, . . . , φ6 are the predicates derived from snapshots
(3)–(6).

III. PARTIAL CONSISTENCY FOR TSCS

A lot of previous work has been done that lead to formal
definitions of requirement consistency. When lifting existing
formal consistency notions to TSCs, care must be taken that
they can be applied in practice. In order to integrate formal
methods in a development process, easy to use tool support
is essential. In the following, we start with proposing a

general architecture for a TSC consistency analysis tool. The
architecture is independent from a concrete consistency notion,
but takes the state of the art in the analysis of dense time and
hybrid systems into account. Afterwards, based on previous
work, two consistency notions for TSCs are developed that can
be implemented within the architecture. The section concludes
with a short evaluation based on a research prototype and the
running example.

A. An Architecture for TSC Analysis

For consistency checking of formal requirements, symbolic
model checking is the means of choice in most related work
[6]–[8], [13]–[16]. An alternative approach is the simulation
of the requirements in order to find conflicts [17]. Because
TSCs by intention have a high degree of freedom (specifying
a sequence of state invariants instead of concrete trajectories),
simulation can only give incomplete results for TSCs. Except
for some case studies [18], [19], model checking (and also sim-
ulation) has not been applied to TSCs so far. Also, decidability
questions for TSCs have not been elaborated, yet. However,
it is possible to transfer some results for hybrid automata and
Duration Calculus (DC) [20] to TSCs.

Duration Calculus is an interval logic on dense time. Al-
though TSCs are not intended to be an interval logic, there are
many similarities between snapshot charts and DC formulas.
Similar to snapshot charts, DC combines state invariants using
boolean connectives and a sequence operator, called chop.
Timing constraints are expressed in DC by bounding the
duration of state invariants. Our research prototype that is
shown briefly in Section III-D uses a combination of results
from [21], [22] originally developed for DC. It translates
snapshot charts into Satisfiability Modulo Theories (SMT) [23]
problems and reduces consistency questions to the following
satisfiability problem: Given a snapshot chart SC, do a tra-
jectory π ∈ T (WM) and time point e ∈ R≥0 exist such
that π, {bSC 7→ 0, eSC 7→ e} |= ϕSC? Here and in the rest
of the paper, T (WM) refers to all the trajectories possible
within a world model WM. Unfortunately, the translation to
SMT problems based on [21], [22] does not allow dynamics
in the world model or negated sequences in the snapshot chart,
except for some special cases.

We see advantages in reducing consistency of TSCs to
satisfiability of snapshot charts without negated sequences as
above also for other model-checking approaches. For example,
in [24] a translation from a subset of DC into hybrid automata
is presented. Related work [25] gives a translation from
negation-free DC into timed regular expressions, which in
turn are expressible as timed automata. So we are optimistic
that it is possible to define similar translations from negation-
free snapshot charts into hybrid automata. This reduces the
satisfiability problem of snapshots charts to reachability in
hybrid automata, and allows also to use a network of hybrid
automata as a world model. A wide range of model-checking
tools for hybrid automata already exists, for example [26]–[29]
to mention a few.

With this considerations on model checking, we propose
the layered architecture depicted in Figure 4. As an input, the



World Model WM + TSCs TSC1, . . . ,TSCn

Derive Snapshot Charts SC1, . . . , SCm and satisfaction problems
∃πi ∈ T (WM), ei ∈ R≥0 : πi, {bSCi

7→ 0, eSCi
7→ ei} |= ϕSCi

Translate to model checking problem

Call backend model checker/solver

Extract consistency result

Trace source of (in)consistencies back to TSCs

for each SCi

Fig. 4: Architecture for a consistency analysis

analysis takes a set of TSCs and a world model definition. The
input is translated into a set SC1, . . . ,SCn of snapshot charts
and satisfaction problems of the form

∃πi ∈ T (WM), ei ∈ R≥0 : πi, {bSCi
7→ 0, eSCi

7→ ei} |= ϕSCi

for i = 1, . . . , n. This and the following steps are independent
from the concrete consistency notion—the consistency notions
defined in Sections III-B and III-C are only one possibility.
The satisfaction problems are translated into an intermediate
representation that is input for a model checking tool or
a solver. In our research prototype, this is a translation to
an SMT problem in the SMT-Lib format [30], but other
formats, e.g. a network of hybrid automata, are also possible.
The problem descriptions are fed into a model checker or
solver backend. Finally, a consistency result is extracted from
the model checker/solver results, and presented to the user.
In many cases, the model checking tools give additional
information on a result, that can be used to identify the cause
of an inconsistency, or give a witness for consistency.

B. Existential Consistency

We propose a notion for consitency of TSCs based on
previous work for pattern-based requirements [6]–[8] due to
the following reasons:

• The considered pattern languages define the semantics of
requirements in terms of unbounded trajectories (system
runs)

• They allow “don’t care”s in the requirements
• The considered requirements are structured in a

premise/consequence scheme
Here, “don’t care” means that a requirement only restricts
some variables of the system, and even these restrictions may
allow a high degree of freedom. For example, a TSC typically
specifies the behavior of traffic participants in terms of distance
intervals. Within the interval, any behavior is valid. Also,
the TSCs that are considered in this paper consist of two
parts: the pre-chart (history and future) and the consequence.
On any sub-trajectory, where the history is followed by the
future, the consequence must hold in parallel to the future. The
requirements tackled in [6]–[8] are structured similar: They
specify some consequence (called action in [6], [7]) that shall
occur in response to some premise (called trigger in [6], [7]).

The authors of [6], [8] define consistency as follows: A set
of requirements is consistent, if there exists at least one trajec-
tory that satisfies all the requirements in the set. This is called
existential consistency in [6]. Lifting existential consistency
to TSCs means the following: A set of TSCs is existentially
consistent, if there exists at least one trajectory that satisfies
all the TSCs. In the following, we restrict ourselves to a set
consisting of a single TSC and consider the case of multiple
TSCs later. By Definition 3, a trajectory satisfies a TSC if,
for any time points b < m < e where the history holds from
b to m and the future holds from m to e, the consequence
holds from t to e. This is problematic for two reasons: On the
one hand, the property is difficult to check, because there are
typically infinitely many triples (b, t, e) on a trajectory where
history and future hold. On the other hand, we may choose
a trajectory for witness, where history and future are never
satisfied at all, in which case the consistency argument is not
of practical use. The authors of [6], [8] had to deal at least
with the second problem. They solved this by requiring that
the premise of the requirements shall be satisfied at least once
on the witness trajectory. When speaking about TSCs, this
means that we search for a trajectory π ∈ T (WM) where the
history occurs, directly followed by the future. Formally

∃b,m, e ∈ R≥0 : π, {bH 7→ b, eH 7→ m, bF 7→ m, eF 7→ e}
|= 0 < b < m < e ∧ ϕH ∧ ϕF (1)

where H and F are history and future of the TSC. The
inequality 0 < b in that formula allows us to prefix the
sequence of H and F with an empty snapshot and to encode

it as a single chart HF = H F . Because of the empty
snapshot, we can fix the start of HF to 0, while the sub-chart
H still starts at a time point bH > 0. Because a snapshot by
definition has a non-zero duration, bH = 0 is excluded. As a
result we can rewrite (1) as

∃e ∈ R≥0 : π, {bHF 7→ 0, eHF 7→ e} |= ϕHF (2)

As a consistency argument, we would like to see that it is
at least possible to satisfy the consequence C of the TSC in
parallel to the future. This brings us to our first consistency
notion for TSCs that we call existential consistency for TSCs.

Definition 4 (Existential Consistency). A TSC with history
H , future F , and consequence C is existential consistent wrt.
the world model WM if there exists a trajectory π ∈ T (WM)
such that

∃e ∈ R≥0 : π, {bHFC 7→ 0, eHFC 7→ e} |= ϕHFC (3)

with the snapshot chart

HFC = H
F

C
.

Fact 1. Assume some TSC TSC with history H , future F
and consequence C that is interpreted over some world model
WM. A trajectory π ∈ T (WM) that satisfies both π |= TSC
and equation (2), also satisfies equation (3).



This fact follows with some basic algebra from Definitions 1
to 3. The consequence of the fact is that existential consistency
does not produce false warnings, in the sense that if a
TSC is existentially inconsistent, then it is indeed impossible
within the world model to find a trajectory that both satisfies
the TSC and where history and future occur. Note that the
opposite is not true. A trajectory that satisfies equation (3) does
not necessarily satisfy the TSC. However, using this under-
approximation of a satisfying trajectory we get rid of the all-
quantifier in the formal definition of satisfaction of a trajectory
by a TSC. Also, we can restrict ourselves to search for a prefix
of a trajectory, instead of a complete trajectory, which would
require some kind of unbounded model checking techniques
in a consistency analysis.

C. From Existential to Partial Consistency

Existential consistency as defined in the last section does
not give meaningful results for sets of TSCs in most cases. If
we build the conjunction of equation (3) over multiple TSCs,
e.g. searching for a trajectory π ∈ T (WM) that satisfies

∃ve∈R≥0:π, {b7→0, e7→ve}|=
n∧
i=1

ϕHFCi [bHFCi\b, eHFCi\e]

with

HFCi = Hi

Fi

Ci
,

we end up in most cases with a trajectory where the futures of
the different TSCs do not overlap. The result is not different
than checking existential consistency of each TSC separately.
In practice, the future of a TSC usually speaks about some
behavior of the environment that is not under control of the ego
vehicle. At least it is not the intended strategy for a controller
to satisfy its specification by forcing a violation of history
or future of the TSCs in the specification. As a consequence,
a consistency analysis is needed that considers the possible
overlappings between history and/or future of different TSCs.
Therefor we develop a second consistency notion that is called
partial consistency for TSCs. It is inspired by the partial
consistency for pattern-based requirements defined in [7]. The
basic ideas are the following:

1) Consider pairs of TSCs.
2) For every pair, determine the possible ways how the

futures of the two TSCs can overlap. We consider cases
where the future of the second TSC starts during the
consequence of the first one.

3) For every possible overlapping, check if it is possible to
satisfy both consequences.

Obviously, not all inconsistencies within a set of TSCs can
be reduced to conflicts between pairs, therefor a possible
generalization is briefly sketched at the end of this section.

Definition 5 (Partial Consistency). A pair TSC1,TSC2 of
TSCs is partially consistent wrt. some world model WM if

the following implication holds for every snapshot sn in the
consequence C1 of the first TSC:

(∃π1∈T (WM), e1∈R≥0:π1, {bSC1 7→0, eSC1 7→e1}|=ϕSC1)

⇒(∃π2∈T (WM), e2∈R≥0:π2, {bSC2 7→0, eSC2 7→e2}|=ϕSC2)

with the snapshot charts

SCsn1 =
H1

F1

Csn1

H2 F2

SCsn2 =

H1

F1

Csn1

H2

F2

C2

where Hi, Fi and Ci are history, future and consequence of
TSCi (i ∈ {1, 2}). The snapshot chart Csn1 is derived from
C1 by removing all branches of choice operations that bypass
sn.1 In both SCsn1 and SCsn2 , the start of F2 is synchronized
with the start of sn in Csn1 . Removing some choices from C1

is necessary because it is neither allowed in TSCs nor makes
sense to synchronize sub-charts if one of them is part of a
choice.

Example 2. Consider the TSCs from Figure 1 and Figure 5.
The latter says, that the ego vehicle must stay on the right lane
and must not accelerate, as long as there is another vehicle
on the left lane, near ego. They are partially inconsistent.
Intuitively, the conflict arises when the ego vehicle approaches
another car while a third vehicle is on the left lane. The
first TSC says ego shall overtake, while the second says ego
must keep right. The partial consistency check for these two
TSCs consists of five cases (four cases where the future of the
second TSC is synchronized with one of the snapshots (3)–(6)
from the first TSC’s consequence, and one where the future
of the first TSC is synchronized with the consequence of the
second). The case where the future of the TSC in Figure 5
is synchronized with snapshot (4) from the TSC in Figure 1
reveals the inconsistency. The consequence SC4

2 of that case is
shown in Figure 6. The premise SC4

1 for that case is identical
to SC4

2, except that the snapshot (7) is omitted. The premise
SC4

1 is satisfiable, which means it is possible to satisfy all parts
of the first TSC (Figure 1) while the future of the second TSC
(snapshot (7) in Figure 5) starts together with snapshot (4)
from the first TSC. An example of a satisfying trajectory is
depicted in Figure 7 as a sequence of snapshots. However,
the consequence SC4

2 is not satisfiable, which means it is
not possible to find such a trajectory that also satisfies the
consequence of the second TSC. In SC4

2, snapshots (4) and
(8) must be fulfilled concurrently, but are clearly conflicting:
In (4), ego is on the left lane, while in (8) it is on the right
lane.

The case construction for partial consistency of two TSCs
can be generalized to three TSCs by combining SCsn1 and SCsn2

1For example, if C1 =
a

b
c then Ca

1 = a c and Cb
1 =

b c and Cc
1 = C1.



left_lane

right_lane

ego

<= 50m

(7)

ego.a <= 0

(8)

Fig. 5: A TSC that prohibits lane changes and accelleration
while there is another vehicle around ego. Note the overlapping
somewhere-boxes.

with a chart H3

F3

C3

derived from a third TSC, and

synchronizing the start of F1 in SCsn1 (resp. SCsn2 ) with one
snapshot from C3, or synchronizing F3 with a snapshot from
Csn1 . This way, the consistency cases for a group of n TSCs
can inductively be derived from the cases for n− 1 TSCs.

D. Prototypical Implementation

We evaluated the above consistency notions in a prototypical
implementation that has been partially already described in
Section III-A. The consistency analysis uses the Z3 SMT
solver [31] in version 4.6.0. For the existential and partial
consistency analysis, a translation from snapshot charts to
SMT is used that is based on a combination of results from
[21], [22]. The layered architecture described in Section III-A
made it easy to implement both consistency notions and a
few similar ones using a common analysis code base. The
prototype needs less than 12 seconds to analyze the partial
consistency from Example 2 running on a Windows 7 desktop
PC with an Intel Core i5-2400 CPU @ 3.1 GHz and 4GB
RAM2. The translation procedure derived from [21], [22]
cannot handle differential equations currently, and does not
distinguish between continuous and discrete variables.

IV. CONCLUSION & FUTURE WORK

In this paper, two formal consistency notions for TSCs
have been presented. Beneath TSCs, a bunch of other scenario
specification languages exist [32]–[34], the most popular one is
probably the standardized exchange format OpenSCENARIO
[5]. In contrast to other approaches, TSCs are both a graphical
language and have a well-defined formal semantics. A TSCs
define scenarios in an abstract way, i.e. one TSC captures
infinitely many concrete scenarios. Therefor, TSCs are suitable
as a requirement specification language for HAV. By providing
formal consistency notions for TSCs, this work is a first step
towards tool supported formal methods for requirements engi-
neering with TSCs. In [19] a somewhat simpler form of TSCs
are used to generate concrete scenarios for testing. The authors
of [19] observe that solving constraint systems for abstract sce-
narios in a hybrid world model is a challenging task, even for
simple scenarios. In contrast to test case generation, where the
concrete scenarios need to be as close to real world behavior

2The SMT scripts for the example are provided for download under https:
//vhome.offis.de/jbecker/ase2020.zip

as possible, consistency of TSCs can be checked on different
abstraction levels. The consistency notions defined here are
independent from a concrete world model. The examples
presented in this paper show that an analysis implementation
that abstracts from any differential equations in a hybrid world
model already gives meaningful consistency results and finds
conflicts in a specification. Performing consistency analysis on
an abstract world model is not only caused by the limitations
of current model checkers, but also driven by the fact that
detailed world models may not be present in early development
phases, where a consistency analysis is typically performed.
Nonetheless our first experiments with the consistency analysis
showed that a consistency analysis on an abstract level cannot
find all the conflicts in a specification. In the running example
(see Figure 1), it might be impossible for the ego vehicle to
accelerate and to be at least 20km/h faster before passing the
other vehicle. This conflict is not found because it depends
both on the vehicle speeds at the beginning of the scenario and
the possible vehicle dynamics in the world model. Therefore
future research directions are to (1) find more sophisticated
consistency notions that find more conflicts even on a high
abstract level (2) investigate into analysis methods for hybrid
systems and how they can be used for consistency analysis of
TSCs.
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[9] W. Damm, S. Kemper, E. Möhlmann, T. Peikenkamp, and A. Rakow,
“Traffic sequence charts: A visual language for capturing traffic sce-
narios,” in Embedded Real Time Software and Systems - ERTS2018,
February 2018.
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