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Abstract—Modeling software architecture for software inten-
sive systems like future automated driving vehicles becomes
increasingly complex, compared to Advanced Driver Assistance
Systems currently available on the market. The complexity and
novelty of the customer functions and the hardware and software
platforms demands for an agile development methodology. In
this paper, we introduce why and how we at BMW apply a Treat
Architecture like Code approach for the software development for
automated driving. We introduce the requirements which lead us
to this approach, the tools and artifact flows around the tools,
and how we embed this into our agile development. We show
examples from a real vehicle function.

Index Terms—Software architecture, Agile software develop-
ment, Service-oriented systems engineering

I. INTRODUCTION

In the automotive domain, innovations are to a huge extend
driven by software, particularly in the last 15 years [1] [2].
Innovative vehicle features, like Advanced Driver Assistance
Systems (ADAS) and future highly, or fully automated driving
features (SAE levels 3-5), are mainly based on software.
Therefore the amount of software in vehicles has been and
will continue to increase dramatically.

Additionally, especially in the context of automated driving,
the requirements for the engineering problems cannot be
completely predefined in the beginning and then afterwards
developed, like in classical development processes. This is
because many engineering problems are Volatile, Uncertain,
Complex and Ambiguous (often abbreviated with VUCA),
raising the demand for agile development models [3]. The
VUCA factors influence all stages of engineering, like re-
quirements engineering, software architecture design, software
implementation, testing at different integration levels, and also
the engineering and integration processes.

Because of the complexity of the development of automated
driving, agile software development is required in a large-
scale with many software development teams. Therefore BMW
adopted a large-scale scrum (LeSS) approach for the teams
involved in development of automated driving [4].

In this paper, we present our requirements and our approach
for a methodology for software architecture design in a large-
scale agile software development process of a Software-

Platform for automated driving. The Software-Platform is
based on Adaptive AUTOSAR [5]. 1 We also show how
Continuous Integration (CI) influences our methodology on
describing software architecture.

II. REQUIREMENTS AND GOALS FOR SOFTWARE
ARCHITECTURE DESIGN

A. Software System and Development Process Overview

The mixed safety-critical software platform for automated
driving, for which the architecture modeling approach pre-
sented in this paper is used, consists of different CPUs that
use Adaptive AUTOSAR as middleware. The communication
between the CPUs is enabled by the SOME/IP protocol [6],
an automotive standard for Ethernet communication, speci-
fied and used as part of AUTOSAR. During the software
engineering process, different teams from multiple internal
departments and external contracted partners and suppliers
contribute software entities into the Continuous Integration
(CI) infrastructure. The agile development process is based
on the LeSS framework, which enables agile methodologies
for big project setups [7].

B. Agile Working Model

A fundamental aspect of agile methodologies is the ability
to react fast towards changed requirements [8]. In classical
development processes like the waterfall approach, all product
development phases follow a well-defined sequence, which
starts with requirements engineering and ends with the product
release. Changes in this sequence are hard to deploy and
are often perceived like a failed project result. In contrast to
the waterfall approach, an agile software development process
always involves the full cycle to introduce a change, starting
from updated requirements, changed architecture, source code
and tests. The product development always iterates through
this cycle, resulting in small product increments which even-
tually sum up to the final product.

In an large scale agile software development project with
multiple distributed development teams, an essential success

1https://www.autosar.org/standards/adaptive-platform
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factor is to have a stable basis in a master repository, in which
always a certain level of functional quality is ensured. For
instance, it shall compile and automated tests on different
levels shall be ok. This high quality stable master (sometimes
also called green master, because all tests are always green)
can only be established by avoiding that people directly
commit their changes into the master without any quality
check. Hence, we setup a staged development process with
semi-automated quality gates. Developers create small, short
living, development branches, do their changes in the branches,
and then create a pull request (PR) to request a takeover of
their changes into the master. Once the PR has been triggered,
two stages of automated quality gates are triggered.

1) check
2) gate
To pass the check, at least one manual review has to be done

by another developer, which either declines with comments
requesting improvements or fixes, or approves the changes.
Only when the review and all automated tests done during
the check are ok, the gate is triggered and performs additional
deeper tests based on a virtual merge with the master (and
with all changes of the master that have been added after the
development branch has been created). If the automated tests
of the gate are also ok, the change will be merged into the
master, see Fig. 1.
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Fig. 1. CI Integration process with quality gates and automatic merging

But what does this staged continuous integration process
mean for the development of the software architecture?

C. Treat Architecture like Code

A key enabler for an agile development process is the
ability to change all parts of the product in an agile way.
Source code repositories and scalable CI infrastructure enable
an agile development of source code. But other parts, like
architecture models or on-board network descriptions, which
are also crucial building blocks of the overall product, are often
still treated in a different way, preventing fast iteration cycles.
Reasons for this are legacy tools, or a development process
which emphasizes on big releases on fixed dates, instead of
fast and small incremental updates. To address this challenge,

the architecture description shall be kept as close to the code as
possible, to avoid architecture erosion by deviations between
architecture and code. This leads us to the requirement that
ideally, the architecture description is treated in the same
way like the source code, homogeneously in the same CI
infrastructure. A textual architecture description is best suited
for this, as automated merges can be done for the architecture
description in exactly the same way as for source code.

This is why we decided to choose a textual Domain Specific
Language (DSL) like Franca+ to describe those parts of the
architecture from which code is going to be generated (see
section V). The architecture model is stored in text files
within the same repository as the corresponding source code,
accompanied by a tool chain running in the CI infrastructure in
the cloud. Thereby we ensure that always, with each delivery,
the architecture models match the code and to the build system
configuration files. Hence, we integrate the development of
architectures with Franca+ and the development of software
code into the same CI process.

III. RELATED WORK

Agile methodologies and development workflows are widely
used within software engineering among different industries. A
key aspect of software development is the related architectural
design. In this section, we briefly describe related work in agile
software architecture development.

In [9], the author talks about the alignment of architecture
work with agile teams. Based on his experience as software
architect, there are often difficulties when software architects
and agile development teams work together, because their
priorities and scope may vary. For example architects tend to
work on a comprehensive design upfront, which shall cover all
aspects, whereas agile teams following the agile manifest work
continuously on their product and regularly deal with changed
requirements, which may impact their overall product.

To address these differences, the author derives a set of
architecture practices, which helps software architects and
agile teams to collaborate and benefit from each other. Among
others, he emphasizes that sharing information over simple
tools is key to bring both parties together. Additionally, he
describes that incremental deliveries and Deliver something
that runs are key to match with the development workflow
of the agile team. The author does not introduce concrete
technical solutions to enable these practices in a project setup,
though. In our project, these architecture practices have been
clearly identified as well and we address them with our DSL-
based approach for architecture modeling.

The work in [10] introduces research questions and study
results about the requirements to apply Service Oriented
Architectures (SOA) in safety-critical automotive software. For
the modeling of service architectures, they propose to use tech-
niques such as UML or SoaML. SoaML enables formal model-
ing of service interfaces on syntactic and semantic level. They
propose to develop service interfaces with service description
languages. Typically those service description languages are
also text-based, like WSDL. The presented study result was



that the vast majority of interviewed persons agreed that a
model based approach for SOA development is needed, and
that services should be designed independently from a target
hardware platform. The Franca+ approach which we apply
supports this. The textual modeling approach with Franca+ is
motivated by the Treat Architecture like Code idea to enable
the homogeneous handling of architecture and code in the
same CI process, to avoid deviations between architecture
and code. As service middleware, we use SOME/IP in our
project. Due to the usage of platform-independent models
and the platform-specific deployment models (see section IV),
different service middleware could be used, like for instance
also Data Distribution Service (DDS) [11], which can be
applied as alternative to SOME/IP in the AUTOSAR Adaptive
Platform. 2

IV. MODELING APPROACH

In section II-C, we described the philosophy of Treat
Architecture like Code and the expected benefits and improve-
ments for product development in our domain. To transfer
this overall approach into an automotive software project, we
developed a modeling approach which is based on latest tools
and processes for agile software development and fulfills all
requirements necessary for the development of safety critical
systems. The current status of our tool chain’s qualification
regarding these requirements is discussed in V-D.

In this section, we will first describe the key entities of our
model and their representation. Afterwards, we introduce the
language which is used to describe the entities.

A. Model Fundamentals

Our model consists of two horizontal layers.
• The model layer contains platform-independent definition

of interfaces, data types and components.
• The deployment layer maps the platform-independent

model to concrete technologies and instances on CPUs
available in the system. This layer also contains dedicated
properties and settings, which are required during code
generation or at runtime of the system.

A component defined on the model layer may include
provided and required communication ports, which are typed
by the used Interface. An Interface itself can contain an
arbitrary number of methods, events or fields, which are typed
by the data types.

For every entity on the model layer, a deployment is added
on the deployment layer, which adds properties towards the
technical realization on the concrete platform. For example
an technological independent interface defined on the model
layer can be extended with properties required for SOME/IP
deployment on the deployment layer, so that the interface can
be used for SOME/IP communication in the vehicle network.
With this layered approach, the same software component
and interface description on model layer can be mapped to
different platforms by using different deployment models.

2https://www.autosar.org/standards/adaptive-platform

Besides the layered view described, a different view of the
model starts from the individual component and introduces
a vertical column spanning from model layer on top to the
deployment layer at the bottom. This view expresses the
technological-independent model of a component, its inter-
faces and data types together with a technology-dependent
deployment on a concrete CPU. At the same time, the vertical
column reduces dependencies to the shared usage of interfaces
and data types, which is a crucial prerequisite for the design
of a performant tool chain, as we will see in section (V-A).

To express all entities and to store them in text files within
a repository, the Franca IDL, which is part of the Franca
framework [12], is used. In the following section, the Franca
IDL and the extensions introduced in our project are described.

B. Franca

Franca is a framework for defining and transforming soft-
ware interfaces. The core of it is the Franca IDL (Interface
Definition Language), which is a textual language for speci-
fication of APIs [12]. Franca is a domain-specific language
based on the Eclipse Xtext framework [13]. Due to its Xtext
nature, Franca already provides an editing tool with built-in
basic validations and a software development kit (SDK) to
work with Franca files in other tools, at almost no cost. Within
our project, we use the Franca IDL for defining entities on the
model layer and an extension of it called Franca+, which we
use to define software components and their deployment on
the deployment layer.

1) Franca IDL: Franca IDL is an interface definition
language which allows defining interfaces, and corresponding
data types. It is part of the Franca framework, which is
published in [12] and described in detail in [14]. As we
use most of Franca IDL without any changes, except its
concept of service instances as service deployments, we won’t
describe the language features in detail here and refer to the
sources available. Instead we emphasize on the extensions
we introduced towards the definition of software components,
ECUs and their deployment in the next section.

2) Franca+: Franca+ was developed at BMW to enable
a language-based modeling approach for AUTOSAR environ-
ments, where software architecture is described in terms of
software components and communication via ports. As an
extension of Franca IDL, Franca+ reuses Franca’s definitions
of interfaces and datatypes. A software component’s port is
an instantiation of such an interface. The above mentioned
model is split into two layers and is also applied to Franca+,
which consists of two domain specific languages, the Franca
Component Description Language (FCDL) and the Franca
Component Deployment Language (CDEPL). The Component
Description Language allows defining software components
with ports that provide or require services. The service’s
content is described in terms of Franca interfaces. Furthermore
in Franca+, model elements called devices can be used to
model CPUs and their network interfaces. In case that the
communication relations between software components shall



be stated in the model view already, connectors can be used
to connect the corresponding component ports.

Within the Component Deployment Language it is defined
which of these new model elements act as deployment targets
and how these deployments have to be specified. The actual
deployment properties that can be applied for each type are
defined in so called deployment specification files, a mech-
anism reused from Franca. Using this approach deployment
properties can be edited later on by simply adding them to the
specifications without the need of changing the actual tool. To
enable our tool chain we introduced deployment specifications
to describe SOME/IP and IPC communication, as well as
runtime parameters of Adaptive AUTOSAR applications and
diagnostic communication. In Franca+, service instances are
defined as the deployment of service components, with all
corresponding deployment information, e.g. for their commu-
nication ports.

In this section, we first introduced the fundamentals of our
modeling approach, which supports modeling of platform-
independent and platform-dependent entities on different lay-
ers. Additionally, we described the domain-specific language
that is used as modeling language and the extensions for
component description developed at BMW.

In the next section, we describe the tool chain used to
translate the model towards the platform and to connect the
software architecture model to other tools applied in our
software and systems engineering.

V. TOOL CHAIN

To embed the described architecture model into the software
development process and fulfill the requirements regarding
working mode as stated in section II, a comprehensive tool
chain is required.

The tool chain consists of two major parts influencing the
actual target code generation and one additional part, which
is used for documentation purposes.

1) First, the model stored in the repository has to be
translated into executable code, which is eventually
running on the target hardware in the vehicle. Besides
translation into different languages, this part of the chain
also contains validation steps, to ensure that errors in the
model are discovered as early as possible.

2) Second, there is a part of the tool chain which pro-
duces Franca+ model artifacts mainly from existing data
sources like on-board network or diagnosis description.

Figure 2 shows an overview of the parts of the tool chain,
contributing to and starting from the Franca+ model respec-
tively. In addition there is another part that generates Unified
Modeling Language (UML) elements for graphical modeling
tools. In the following sections, the parts of the tool chain are
described in more detail.

A. Code Generation towards the platform

The component model is described with Franca+ and stored
in text files within a git repository. Whenever a developer
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Fig. 2. Franca Toolchain consisting of two parts: Converting existing data
sources into the Franca+ model on the left side and translation towards
AUTOSAR Models and source code on the right side.

introduces a change request as a pull request, the tool chain is
started and tries to compile the change together with the rest
of the model.

The first part of the tool chain is a python-based compiler,
which reads the Franca+ model affected by the pull request
and translates it into an Adaptive AUTOSAR compatible XML
representation. In subsequent steps, the Adaptive AUTOSAR
model is further translated into C++ source code and binaries,
which are then executed on the hardware. Whenever an error
occurs during execution of these steps, no matter if it is related
to validation, quality assurance or regression in test cases, the
pull request is rejected, resulting in a negative feedback to the
developer. To integrate the change, the developer has to first
resolve the problems discovered.

In section IV-A, the importance of dependencies between
parts of the model has been discussed already. To design a
performant tool chain that scales to huge projects, it is very
important that a run triggered by a pull request only translates
these parts of the model that are directly affected by the
change. It shall not be required to consider the whole model
to check a partial change.

In a first development iteration of our tool chain, a pull
request affecting a single component always caused a rebuilt
of the whole CPU to which the corresponding instance was
allocated to. With growing number of developers contributing
to the model, build times increased significantly, resulting in
long waiting times and overall decrease of productivity. Only
considering changed model entities in the check of a pull
request eliminated these problems.

B. Incorporating legacy systems

Some data required to generate a complete system de-
scription is located into other data sources. For example,
at BMW, the ethernet-based vehicle network description is
managed in a separate database system, which is involved
in a variety of processes and projects. The tool does not
allow agile workflows, therefore we decided to import its
data into our model on a regular basis. Whenever a release
takes place for the ethernet-based vehicle network, we convert
the artifacts into a Franca+ model description and add them
to our repository. With this approach, we decouple the code
generation as described in V-A from the legacy system, so
that its contents can be changed with our workflow. We did



not implement a round trip within our tools, though. In this
example, changes introduced in the Franca+ model have to
be aligned with the other system by following their change
processes on a regular basis.

The same approach applies for diagnosis description for
Unified Diagnostic Services (UDS, ISO 14229). The origin
of the data is a database system with a separate change
process. We extended our tool chain to read an export of
the diagnosis database on a regular basis and to convert it
into the Franca+ model. This was necessary because at many
interfaces diagnostic data and requests have to be handled.

C. Tracing to other tools

Since graphical representations may help to understand the
software architecture better and allow advanced documenta-
tion, we introduced another tool for the generation of Uni-
fied Modeling Language (UML) elements from our Franca+
model.

We generate UML elements (data-types, components and
interfaces) from the Franca+ models and import them into
an UML tool, in which other aspects of the software and
system architecture are described. By this, we enable seamless
tracing and referencing from other system aspects with are not
defined in Franca+, towards the entities defined in Franca+.
At the same time, this enables tracing from our Requirements
Engineering tool to the entities defined in Franca+.

As the exchange format with these graphical UML tools we
use Eclipse UML2, which is part of the Eclipse Model De-
velopment Tools (MDT) [15] framework. The Franca+ meta-
model can be mapped straight-forward to UML2, because most
elements are defined in both representations.

D. Tool qualification

As we use the introduced architecture modeling approach
for the development of mixed safety critical systems, an
additional factor to consider is the tool qualification according
to functional safety standards, particularly the ISO 26262
[16] for the automotive domain. The necessary actions, like
determination of the tool confidence level (TCL) and software
tool qualification, are currently ongoing.

In this section, we described the tool chain used to embed the
Franca+ model into the Continuous Integration (CI) infras-
tructure, to enable agile workflows and change processes. We
described the translation from the model all the way to the
binary running on the hardware. Additionally, we introduced
tools used to incorporate legacy systems and generate UML
model elements.

In the next section, we will introduce a concrete example,
which illustrates our architecture development approach in
daily practice.

VI. DEVELOPMENT EXAMPLE

In the previous sections, we described modeling with
Franca+ and how agile teams and workflows can benefit from
this approach. In this section, we take a dedicated piece of

software which is part of the Software-Platform for Automated
Driving and explain how it is developed with the tools and
processes described.

A. Regulatory software identification numbers

To comply with statutory specifications and type approval
regulations, the software platform shall provide regulatory
software identification numbers (short: RxSWINs) [17] [18].
These numbers are used to identify the software version used
during approval of the product and to establish a process to
handle software updates and their impact on existing type-
approved systems or functions. To comply with these require-
ments, a software shall be developed as part of the Software-
Platform for Automated Driving, which handles RxSWINs and
the relevant communication needs.

For the sake of simplicity in this illustration, our exemplary
model below focuses on a single requirement derived out of the
type approval regulations: The software shall offer an interface
to query the RxSWIN of the whole platform.

B. Architecture Model of RxSwinApp

To fulfill the requirements derived for the software identi-
fication number feature of the platform, a service component
called RxSwinApp is modeled, which offers a single interface
containing a method. If the method is called, the RxSWIN of
the platform is returned.

Thus, the Franca+ model for this software contains a ser-
vice component definition, including a provided port which of-
fers interface RxSwinData. The interface contains one method
definition with one out parameter. If the method is called by
the client, the out parameter contains the RxSWIN. Listing 1
shows the model in Franca+ language.

1 i n t e r f a c e RxSwinData
2 {
3 method getRxSwin
4 {
5 o u t {
6 UInt32 rx sw in
7 }
8 }
9 }

10

11 s e r v i c e component RxSwinApp {
12 p r o v i d e s RxSwinData as RxSwinDataPPort
13 }

Listing 1. Definition of interface and service component in Franca+

To deploy RxSwinApp on a CPU and the interface RxSwin-
Data towards a communication protocol, e.g. SOME/IP, ad-
ditional parts of the model define the deployment of the
entities defined in listing 1. For example the deployment on a
CPU may include additional parameters which are required
to configure the Adaptive AUTOSAR middleware for this
application, e.g. regarding startup parameters or dependencies
towards other applications.



C. Tool chain and software development for RxSwinApp

The Franca+ model of RxSwinApp is stored in the overall
project git repository. We use Bazel [19] as build system and
to define a set of rules to compile the model into ARXML
and C++ as described in section V. The corresponding C++
source code, which implements method getRxSwin, is stored
in the same git repository, as well as all unit and component
tests to ensure quality of the software.

Due to co-location of architecture model and source code
and embedding everything into the Bazel build system and
continuous integration, the agile workflows as described in
section II-B can now be pursued whenever requirements
are changing. Imagine for example a new requirement that
requests returning the RxSWIN as character string, to be
compatible with legacy testing environment. A feature team
breaking down the new requirement may come up with the
solution that introducing a second method returning a byte
array instead of UInt32 is the most feasible solution for this
use case. Due to model and code located in the same git
repository and following the same change process, they can
adapt the Franca+ model, extend C++ implementation and
add corresponding tests, all in a single pull request to be
validated by the continuous integration system.

In this section, we have seen how Franca+ based architec-
ture modeling is pursued on a real-life example within our
project. Describing the software architecture with Franca+
enables feature teams to change the model in the same way
as the corresponding source code, which is a key prerequisite
to apply agile processes, workflows and tools.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented the requirements and a solution
for a software architecture description approach in an agile de-
velopment project. The solution included a Treat Architecture
like Code philosophy and our architecture tool chain, based on
an extended version of the publicly available Franca modeling
framework.

Our Treat Architecture like Code approach facilitates feature
teams to perform their end-to-end responsibility, from writing
requirements, architecture descriptions, code, tests and even-
tually bring the changes into the master of the repository, such
that the changes can be delivered. The approach enables a lean
and efficient way to model modular independent parts of the
architecture, by independent feature teams.

As success story, we can see already in the repository
that our Franca+ based modeling approach has been directly
adopted in the development. More than 200 developers from
4 companies contributed to the Franca+ models in quite a
short time after releasing this approach. This is already a big
improvement compared to traditional centralized UML based
architecture modeling tools, where only some experts can edit
the models (due to impediments in knowledge, rights or tool-
licenses), and a simple change request sometimes takes weeks
to introduce.
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