CEUR-WS.org/Vol-2581/aviose2020paperl.pdf

Approach to Systematic Test Signal Definition for
Operation Scenarios of Aircraft Systems

1% Dennis Hillig
Institute of Aircraft Systems Engineering
Hamburg University of Technology (TUHH)
Hamburg, Germany
Dennis.Hillig@tuhh.de

Abstract—With rapidly increasing levels of automation, mod-
ern aircraft systems become increasingly complex. The designed
solutions typically achieve multiple functions by using a highly
integrated mix of hardware and software components. With
regard to automation, particularly the number of software
components increases.

For verification and validation activities, such as testing, this
intensifies the challenge to define all relevant scenarios to test a
system’s functionalities and particularly its robustness in the case
of unusual, but realistic situations. Hidden failure cases might be
missed. Additionally, it becomes infeasible to systematically define
the test vectors to study a systems behavior thoroughly due to the
immense test space. As a consequence, testing gets more work-
and time-intensive.

This paper presents a stepwise model-based method to define and
refine the stimulating part of the test scenarios in a systematic and
modular manner to approach this challenge. The aim is to work
out diverse and relevant operational scenarios to validate system
functions and to set up realistic test vectors for these scenarios.
The paper further focuses on the aim to facilitate automation and
re-usability of scenario and functional signal elements to enable
continuous testing at different stages of the development process.
Concepts of a developed prototype are outlined as well. Finally,
the current state of the method is discussed and an overview of
the way forward is given.

Index Terms—scenario testing, aircraft systems, test design

I. INTRODUCTION

In recent years new digital and smart embedded system
solutions emerged at a very rapid pace. Such solutions are
increasingly used to optimize novel aerospace systems, which
integrate mechanical, mechatronical and software components,
through automation. However, the more capabilities and func-
tions these integrated intelligent solutions implement, the more
apparent the need becomes for new verification and validation
(V&V) methods, that can handle the complexity. In particular
for safety-critical systems this is crucial. In that context,
classical approaches for the examination of system’s integrated
functions and safety, which rely significantly on manual testing
and expertise, are a limiting factor to new developments.
Testing in general is the mainly used V&V method. Scenario-
based testing more specifically is one technique to assess
the operational, functional behavior at system and overall
aircraft level. Scenario-like analyses of technical systems are
also commonly used for demonstrations of functionality in
an operational context. Yet, two main challenges can be

2™ Frank Thielecke
Institute of Aircraft Systems Engineering
Hamburg University of Technology (TUHH)
Hamburg, Germany
Frank.Thielecke @tuhh.de

identified, when the system complexity rises. Firstly, it be-
comes difficult to find the relevant scenarios or operational
conditions. Secondly, the implementation of the realistic test
vectors complicates significantly.

In order to approach this challenge for aircraft systems, a me-
thodical procedure for a structured and model-based scenario
definition was developed at the Institute of Aircraft Systems
Engineering of the Hamburg University of Technology. It
is intended to cope with the system’s complexity through
the main ideas of modularisation and hierarchical refinement.
The contribution is embedded into the activities to develop a
seamless avionics tool chain (s. [1]).

The aim of the developed method is clarified with an example
use case of an air conditioning system in the following. Figure
1 shows an overview of the system under test (SUT) and
some interfacing elements, such as the aircraft’s environment
conditions, cabin loads and cockpit commands from the over-
head panel. The system is modeled in an open-loop manner
w.r.t. the interfacing elements. The actions of these interfacing
elements should be explicitly integrated in the scenario def-
inition. Given that the physical system was designed with a
representation as a physical model, and the control and monitor
(C&M) functions (e.g. pressure control) were designed and
implemented, the scenario-based test has the following two
objectives: On one hand, the system hardware design should be
verified, e.g. in terms of sizing and functionality. On the other
hand, the software functions should be validated under realistic
operational scenario conditions. To achieve that, realistic input
signals or models of the interfacing elements are needed for a
given set of scenarios, which also have to be identified. This
task is not trivial, particularly as interfaces include numerous
continuous signals.

The presented definition process should further facilitate au-
tomation and reuse at different stages of the development.
With regard to the latter, system component models could
be replaced by real hardware, for example, and the scenarios
should still be applicable with minimal necessary adaptions.
A prototype editor for the presented mission scenario and
stimulating test signal definition was developed using Mat-
lab/Simulink. Applied concepts are integrated in the following
explanations. Specified information can also be captured as an
.xml exchange document.

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Annighoefer
Text-Box
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

~
External Sensors ‘ Flight Management b OVHD ‘
. (e.g. smoke) \’1 B

AJ/C Environment

. = /

Atmosphere sym"(‘s"l;‘%“ Test Control & Monitoring 'ECAM

gy <~ I Pack Ctr ”Press cm" Vent. Ctr “ Zone Ctrl]
\ - N —
\ ~.

AN ~ Air Conditioning System
AN (physical modell)

.\ | Cabin Loads !

o = ;
Pz]
- (l Galley Loads F—j i

AN
Landing Gear Ctrl

[‘ Interfacing System Elements

D Simulated System \ \

Fig. 1. Example usecase: Air conditioning system.

The paper firstly presents the fundamentals of scenario-based
testing and the applied mission-based scenario approach.
Subsequently the developed scenario definition process is
outlined. This includes an initial methodical overview as well
as the different fundamental steps being scenario specification,
system and environment definition and signal and component
implementation. Finally, a short conclusion is given and the
future work is described.

II. FUNDAMENTALS
A. Scenario Testing

The classical scenario test approach can be categorized
as a specification-based test design technique (s. [2]). As
equivalently called ”black-box testing” this means that require-
ments, specifications or (interface) models etc. are used to
derive test cases without knowledge of the internal structure
of the tested system [2]. In that respect scenario testing
focuses on sequences of interactions with interfacing systems
or components. In software testing literature, also user-centric
use cases are utilized equivalently to scenarios [3]. Other
specification-based testing methods contrarily mainly rely on
the systems input-output space for specification verification
e.g. by identifying possible input combinations or partitions
with equivalent behavior. Therefore, scenario testing is more
suitable to assess systems long-running (end-to-end) behavior
in a realistic operational situation. This story-like character
consequently attains motivational and meaningful context (s.
[4]) to discover hidden failures and their possible effects.
Models, e.g. formulated in formalisms like state charts or
sequence diagrams, are commonly used to describe the pos-
sible interaction sequences. The typical scenario definition
procedure from [2], towards which this work is oriented, can
be reduced to the following two steps:

1) Definition of one main scenario, that describes the

nominal sequence of actions

2) Derivation of alternative scenarios based on the given

main scenario.

The latter can be diverse, as it includes foreseen operational
options, exceptions and intended or unintended incorrect en-

tries. Therefore, these scenarios are often further classified e.g.
as positive or negative w.r.t. whether the goal of the interaction
is expected to be achieved or not. A trivial aircraft example:
If the aircraft is on ground, it should not be possible to retract
the landing gear.

As outlined here, scenario testing has the potential to assure
safer and more robust system-functions through the diversity
of realistic scenarios. Particularly automation functions could
be validated early. However, it is also clear that a systematic
test of the complete input-output space is not the goal. A
scenario targets one specific, but complex set of operations
and exploring all possible parameter variations would blow
up the number of test cases. Other approaches to black-box
testing probably perform better in this respect. Moreover, as
a black-box testing technique, coverage of all internal system
states is also not the primary intend where a structure-based
technique may be more suitable.

B. Mission-Based Scenario Approach

As aircraft systems are typically integrated subsystems of
the overall vehicle, the functional behavior is typically oriented
towards the flight mission. For that reason, an operational
scenario-based test approach was developed in [5], which
models the flight mission in a state-chart as a sequence of
fundamental phases, that are represented as atomic states
along a scenario path. The major aim is to support the
overall system integration tests to observe coupling effects
between involved components and software functions. The
current application focuses on the use for simulation-based
pre-design investigations but the principal transferability to
final integration testing is desired. Therefore, the approach
intends to complement requirements-based test activities by
exploring the operational overall system behavior to uncover
undesired effects, with a particular desire to find interactions
between ATA chapters.

The virtual test architecture from [5] foresees the partition of
stimulating “test cases’ though the scenario state-chart and the
evaluation, which is done by observing agent modules running
in parallel. These modules could check arbitrary functional
behavior or performance of the system. With this approach
it is possible to realistically set up operational tests, which
enable assessment the overall system’s functional behavior
during complete flight missions. As the integrated system
is investigated, multiple functional specification aspects and
operational sequences can be observed in an simultaneous
manner.

The scenario concept presented in [5] and [6] uses multi-
signal segments in time-series format from a segment library to
create continuous signal profiles for each phase. Test signals
set up for each phase separately are thereby composed to a
complete test vector representing the flight mission scenario.
To cover multiple scenarios, the concept allows branching of
the scenario paths. The time-continuous signal profiles defined
within the phase are complemented by parallel events that are
triggered at discrete test points during a phase. The events
could for example represent cockpit commands and can trigger

alternative phase transitions of the scenario path. This enables
the modeling of events such as an emergency during cruise and
resulting alternative flight phases, such as emergency landing
and evacuation.

In [5] and [6] the outlined concept was successfully demon-
strated at a multi-functional fuel-cell system, which included
control and automation functions. However, the complex sce-
nario state-chart has to be created manually and is hardly
reusable. The presented method in this paper also applies the
same mission-based scenario approach. With the foundations
from [5], the method tries to offer a more structured, modular
and reusable process for the definition of the stimulating
scenario state-chart, that can be automated further.

C. Related Work

1) Testing using Scenario-Based System Specifications:
Several works in the recent past adressed the model-based
specification of system behavior in the form of scenarios and
the test activities on the basis of this specification. To clarify
the distinction in the light of scenario-based testing, some
works in that field are discussed in the following.

For the specification of reactive system behavior, message
sequence diagrams are often used in literature on software
engineering to visually define wanted and unwanted system
scenarios. This particularly applies in the context of testing.
One example is the standardized test specification language
TTCN-3 [17] with primary applications for communication
systems, which allows the formulation of test cases in the
form of sequence diagrams. It is pointed out in [9], that
the formalism has the advantage to focus on inter-object
communication scenarios without having to specify the objects
internal behaviors. Moreover, extensions such as live sequence
charts (LSC) [12] exist, which allow the precise definition
of system specifications with different modalities, e.g. what
must and what may happen. Such sequence charts are also
extended in research to describe time constraints (s. [11]) or
generally visualize temporal properties such as linear temporal
logic (LTL) formulas (s. [13]).

The work in [10] further demonstrates a way how automatic
test generation can be achieved with modal scenario speci-
fications. The approach allows the specification of multiple
sequence charts for the system functions that can be active
in parallel, if an initial sequence of the respective scenario
occurs. Due to the granularity of scenario definitions, the
method seems quite scalable. Moreover, a coverage criterium
was developed to minimize redundant scenario combinations
and thus the amount of test cases.

However, the scenario approach of this work is principally
different. As mentioned in the previous section it should
complement the test activities on the basis of specified require-
ments. Instead of using a specification model of the system
the presented approach models the stimulating environment
in an operational context on aircraft level. Expectations on
system’s behavior are not modeled in the current scenario
state-chart and must be evaluated in parallel observation
modules or manually in post processing. Reactive behavior

(and timeouts) may be used to model environment reactions
on system outputs. The presented approach is understood to
be more explorative and investigative in the sense to move
away from the scenarios that are explicitly defined through the
specification. It should be emphasized that running scenario-
based specification models in parallel to observe required
functional behavior is possible and intended but exceeds the
scope of this paper.

2) Automotive Street Scenarios: In the context of the vali-
dation of highly automated driving functions in the automotive
sector, the works in the context of the PEGASUS research
project [15] follow a similar operational scenario philosophy
as presented in this paper. Street scenarios, defined in a stan-
dardized and structured format [14], include static content of
the street situation and dynamic elements such as moving cars
or pedestrians. The concept allows to execute the scenarios
at simulation as well as real world level. Scenarios can also
be to remodeled from real operation for further investigation.
Nevertheless, a difference for the application in the aircraft
domain is the diversity and number of systems in comparison
to the variety of traffic situation in the automotive sector.

3) Signal Segments in Testing: In [16] a segment-based
approach is presented to generate complex signal inputs with
a low number of parameters for each segment. This principle
is similar to the definition of signal functions in the context of
this work. However, the work in [16] conducts a structural test
of automotive Simulink models using a search-based algorithm
and does not predefine operational scenarios.

ITII. SCENARIO DEFINITION PROCESS

The developed definition process pursues three basic incen-

tives following the modularization and hierarchy principles:

1) Easy set up and management of complex scenario tests
makes them less error prone and more complete for
increasingly complex systems.

2) Give context and improve automated analysis and doc-
umentation by association of signal segments with spe-
cific scenario story elements or actions of the SUT and
its interfacing environment elements.

3) Maximize the reuse of scenario tests and its elements to
reduce effort and make tests more comparable.

The concrete concepts are discussed in the following.

A. Methodical Process Overview

The developed procedure is structured into 5 fundamental
steps. An overview of these methodical steps for the scenario
definition is depicted in Fig. 2. The steps can be grouped into
three types of activities: Scenario specification, system and
environment definition as well as signal assignment.

The first abstracts from the concrete system interface or signals
and tries to identify all relevant mission scenarios and their
logical sequence of phases and events. At the end of this
activity, the structural definition of the state chart is complete
and specified up to its basic phase elements and a graphical
representation can be produced (e.g. in Matlab/Simulink State-
flow). Furthermore, different scenario test cases can now be

~

Name

Scenario specification
Type

Normal Flight

Nominal

Scenario registration

Loiter in approach

Alternative

WIN | =

Emergency Desc.

Alternative

/Normal Flight

¢

VD AN

Stepwise definition of
the scenario statechart

e AN

—>|Taxi outH»ITakeoffl—»l Climb HCruiseH Descent

(Mission Phase Path) .
I

(Parallel Events)

Landing}t
==

L Emergency Descent H Emergency Landing H Evacuation}b

I)Emergency Event

7 System & environment definition
Definition of system] >
under test & interface — SUT .
—
\, J —| I
I X
(N Cabin Loads
Definition of interface . SUT (Default)
components Flight Deck :
\ J
5 Normal Cruise Phase Signa/ assignment
\/ Set Mean Demand | !
Basic Functions '\ Function: Set :
Library ,‘# Params: Value=24 | -
Assi t of ! ¥ | of
ssignment o | | Set Minimum Demand |! A==z
. . |*| Function: Set : ‘ 2
SIQnaI functions "'\ Params: Value=18 : 3
High-Level Functions !) 2 R
Library \IP Set Maximum Demand |! Time v
I | Function: Set :
| | Params: Value=30)
Temperature Demand Sweep o -————g3——————

Fig. 2. Methodical steps in the scenario definition process.

derived on the basis of the transition paths through the state-
chart. However, as the basic phase states are still empty and
no interface signals are defined yet, the test cases cannot be
applied.

The second activity defines the concrete SUT interface and its
environment elements. When finished, all interface signals for
the system under test are registered and grouped according
to potential environmental elements. These elements can be
represented as parallel states within a compound phase state.
The scenario test cases defined at this stage could be executed,
but do not exercise the scenarios correctly, as no signal profiles
are defined yet.

The third and final activity assigns concrete signal profiles
to the defined signals. For each phase and each environment
element, sequences of signal segment models can be assigned.
For re-usability, these models could be linked from a library as
parameterized elements. In such way generic signal segments,
such as a ramp or set functions can be applied, as well as very
specific profiles such as the pressure sensor signal including
noise during an depressurization event.

Following the signal assignment the scenario definition pro-

cess is completed. Enough information is gathered to create
executable scenario test cases. Due to the generic setup, an
export to arbitrary test languages is principally possible. The
implemented prototype realizes executable test cases as state
charts in Matlab/Simulink Stateflow and the use with Simulink
Test is foreseen. Furthermore the export to the state machine
notation SCXML [7] was tested, which is currently further
extended as a generic exchangeable test language in a research
project.

A more detailed description for the concepts in each step is
presented in the following.

B. Scenario Specification Layer

The scenario specification layer has the intention to identify
and structure all relevant operational scenario conditions by
performing the two steps Scenario registration and Definition
of the scenario statechart.

1) Scenario Registration (AC/System-level):

In this initial step, the scenarios are registered by a tex-
tual definition and classified. The primary classification is to
whether a scenario represents a nominal sequence of events
or an alternative one. Further classification of the latter e.g. as

positive, exception, negative and misuse with context to system
and aircraft functions still need to be worked out. Optionally
a classification for expected frequency of occurrence or links
to requirement elements can be inserted. Such additional
information should later be used for test case prioritisation
and filtering.

For the mission-based scenario approach, two different cate-
gories of scenarios were identified:

o Aircraft mission scenarios
« System operational scenarios

The first includes scenarios such as nominal and alternative
flight phases (e.g. loiter in approach) or emergency descent.
The latter focuses on the system functions and exploits differ-
ent system operations or configurations and internal or external
failures.

2) Stepwise Definition of the Scenario State-Chart:

As a second step, each scenario is setup in one integrated
state chart structure. Scenarios are implemented by sequences
of phase states or event triggers, that could occur during
selected phases or phase groups (e.g. in flight) at defined test
points, or combinations. Firstly one flight-mission phase path
is defined for the main nominal scenario. This scenario should
equivalently represent the nominal system operation. Subse-
quently the alternative scenarios can be defined by branching
the nominal scenario at a selected phase and proceeding with
alternative mission phases and by defining parallel trigger
events that mark the start of the scenario. Phase end conditions
could be defined textually for the transition between the
phase states, which then have to be refined by state chart
variables later. Scenarios can partially share a scenario phase
path and end by final phases or explicitly branching into
other scenario paths (e.g. alternative flight mission with the
same landing procedure). An implemented example for the
developed prototype is depicted in Figure 3 - 5. As shown in
Figure 4, a scenario path, such as the nominal flight mission
in the given example, can be constructed with regard to the
taken transition path. Alternatively, as depicted in 5 for the
emergency case, a tabular view of the state path could be
used. The second figure shows, how the alternative scenario
is constructed by branching out of the nominal one. This
structure-based editing can be further complemented by a
hierarchical tree view for all existing states, given on the
left side of the figures. In addition to this structural edition
of scenarios, the illustrated conceptual prototype realizes a
graphical state machine view in Matlab/Simulink Stateflow.
As both perspectives are transferable, a graphical state chart as
depicted in Figure 3 can be set up easily by this hybrid editing
that combines graphical and structural information. Parallel
events can implement

« initial trigger for scenario paths, e.g. emergency,

« trigger for usual phase-internal operations without effect
on transitions (e.g. different cabin loads),

o trigger for failures (e.g. cabin smoke / fan failure) or

o combinations.

Mission
[time(50,sec,1)]
7 [time(1,sec, 1)]
[time(50,sec,1)]
[time(900,sec, 1)]
Ground \ I)
(Profile {Par_Event >
Fr—
Pushback [time(300,sec,1)] !
Initial_Ground
[time(180,sec,1)]
Taxiin_B
Taxiout
[time(540,sec, 1)]
MES
— J Y,
T /
[time(120,sec,1)] \[ume(xuu.secn)] [time(100,sec, 1)]
Flight \
{Profile \ BBt 3
(NormalFiight 2
Takeoff
EmergefcyFlight nitial_Flight
4 [time(108,sec,1)]
—
[time(108,sec,2)]
Climb
[event(1)]
[time(2P0,sec, 1)]
mg(ﬁtl&secj [time(1000,sec, 1)
Cruise Emergency
entry: send(Emergency);
Tiime(2079,sec, 1)L S TOMe(5000,sec, 1) [=)
Descent Descent_B FastDescent
[Emergency
T ltime(1128,sec,1)]_Jtime(1000,se0/4)]
~—
N J
S /)

Fig. 3. Exemplary scenario state chart (in orientation to [5]).

They occur at discrete test points during the phases. In the
current concept and in orientation to [5], test points apply
for phases that have a fixed minimum execution time defined
(e.g. cruise time). By defining an integer sampling number for
each phase, the given time frame is partitioned in as many
parts, where each partitions beginning marks a test point. The
defined sampling number therefore has a significant effect on
the resulting count of test cases.

Several parallel events could occur in sequence for one sce-
nario when suitable transition conditions are defined (e.g.
failure followed by a corrective cockpit action after a defined
time). However, it needs to be taken care that transitions to
other phases in between these events do not happen.

A method still needs to be worked out how to consistently
define different scenarios, that are triggered subsequently.
Based on the defined scenario state chart, scenario test cases
can by identified by traversing along the path and taking
into account the parallel events. An algorithm for automatic
path identification and subsequent test case generation was
presented in [6] for scenario state charts in the format that
was adopted from [5]. The test cases end at final phase states

Phase Hierarchy Scenario Filter | Nominal Flight

Add Category Add Subgroup Table View Transitionpath v
| Delete Category || Delete Subgroup Branch out Branch in Path step
~ Mission Order Source Destination Tyvpe Condition
Off 1 (Initial) off BranchOut -
Startup 2 off Startup ScenarioPath time(1.sec)
Gate A 3 Startup Gate_A ScenarioPath time(50.sec)
- Ground 4 Gate_A Pushback ScenarioPath time(900,5ec)
5 Pushback Taxiout ScenarioPath time(180,5ec)
Pushback 6 Taxiout MES ScenarioPath time(540 sec)
Taxiout 7 MES Takeaff ScenarioPath time{120,sec)
Taxiin 8 Takeoff Climb ScenarioPath time{108,sec)
Taxiin_B 9 Climb Cruise ScenarioPath time(1308 sec)
MES 10 Cruise Descent ScenarioPath time(2079,sec)
- Flight 11 Descent Landing ScenarioPath time(1128,sec)
12 Landing Taxiin ScenarioPath time(300,5ec)
™ NormalFlight 13 Taxin Gate_B ScenarioPath time(300,sec)
Takeoff 14 Gate_B Shutdown ScenarioPath time(600,sec)
Climb 15 Shutdown off Branchin time(50,sec)
Cruise
Descent
Landing
» EmergencyFlight
Gate_B
Evacuation
Shutdown
Fig. 4. Exemplary tabular transition path for a nominal flight scenario.
Phase Hierarchy Scenario Filter | Emergency Flight v
Add Category Add Subgroup Table View Statepath v
Delete Category | | Delete Subgroup Branch out Branch in Path step
~ Mission Order Name Type Jasescenario Parent
off 1 MormalFlight BranchOut MNominal Flight Flight
Startup 2 FastDescent ScenarioPath This EmergencyFlight
Gate A 3 Descent_C ScenarioPath This EmergencyFlight
+ Ground 4 Landing_C ScenarioPath This EmergencyFlight
5 Taxiin_B ScenarioPath This Ground
FUsuback & Evacuation ScenarioPath This Mission
Taxiout 7 Shutdown Branchin MNominal Flight Mission
Taxiin
Taxin_B
MES
~ Flight

+ NormalFlight
~ EmergencyFlight
FastDescent
Landing_C
Descent_C
Gate_B
Evacuation
Shutdown

Fig. 5. Exemplary tabular state path

or when the path loops. They are executable either by suitable
control mechanisms to enable specific paths for the holistic
state chart or by extracting unbranched scenario paths. The
first option was demonstrated in [5].

C. System and Environment Definition Layer

The activities described in the section aim to define struc-
tured objects in the environment of the system under test. This
should enable a more straight forward and reusable definition

for an emergency flight scenario.

of the signal profiles that are applied to the SUT interfaces for
each scenario phase.

1) System Under Test (SUT) Interface Definition:
Before defining the environmental elements, the actual inter-
face of the system under test has to be defined, which should
be used for the scenario test. This predominantly includes
the declaration of the SUTs’ input and output signals by
defining signal name, data-type, initial value for inputs and
units. Moreover, special inputs, such as fault trigger for system
model components, can be defined that may be needed to reach

certain scenarios. To be able to reuse the test scenarios at
different designed stages, all signals are symbolic variables
and abstract from real transmission mechanisms. If more
realistic transmission are needed, e.g. for hardware in the loop
(HITL) integration, specific drivers need to be set up outside
of the test definition process or manually integrated into the
SUT model. These drivers could be defined on a target test
system, such as dSPACE Scalexio, TechSAT ADS2 or Vector
test hardware, which provides the hardware interface e.g. to
send signals as CAN messages to real control modules in a
HITL test.
The interface information could be loaded from an interface
document file, that may be available from a model-based
development process.

2) Environment Component Definition:
As a second step, the definition and categorization of environ-
mental elements is carried out. Each previously defined SUT
interface signal can subsequently be assigned to one interface
element. Furthermore, it is intended to allow the definition of
signal groups within environmental elements, if it is desired to
define a single maneuver or action in the environment that acts
on several signals. One example could be the use of two re-
dundant sensors or protocol-based signal groups. Based on the
given signal classification, parallel compound state processes
for every environmental element are inserted into each of the
scenario phases of the state chart structure. Similarly, single
signals or signal groups form parallel processes within these
compound states. In that way, sequences of actions or signal
profiles could be assigned completely separate for each signal
or signal group of each environmental element within each
flight phase. An example is visualized on the left side of Figure
6, which includes the environmental elements Cabin_Loads,
Environment, Flight_Management and OVHD, that contains
the signal Temp_Demand.
In the case that it is desired to include single mathematical
calculation models that apply continuously during the com-
plete mission irrespective of any scenario, a parallel process
to the scenario state chart is foreseen. For instance this could
be models that calculate the atmospheric pressure based on
a height profile that results from the scenario path. It should
be mentioned that in principal, these models could also be
set up outside of the state chart. The parallel calculation
model process can be structured with the same environment
component definition as for the phases. However, assigned
signals and signal groups are then excluded from the phases.
The modular setup as described prepares a structured and
realistic signal assignment and facilitate re-usability through
component libraries. Moreover, it creates context for reporting
and analysis.

D. Signal and Component Implementation Layer

Having defined the hierarchical structure of scenario phases
and groups of signals as environmental elements in the pre-
vious steps, the concrete signal profiles are set up in this last
step. For each phase state, the information gathered before
includes the phase name, scenarios that include the phase,

applicable parallel events and it’s trigger for each scenario
and the environmental component structure.

Based on this, sequences of signal functions and segments are
now assigned to the signal variables as defined in the previous
step. Following the objective of re-usability, a library concept
for parameterizable signal functions is used. Two fundamental
function types are foreseen:

o (Atomic) basic functions, that have a representation for
the test system the scenario is intended to run on.

o Higher level functions, that are state chart compounds
containing basic functions, states and transitions.

The atomic function library should be fixed while higher
level functions for component models can be defined indi-
vidually as needed. The library concept makes it easier to
set up realistic scenarios by having (signal-based) interface
component models with parameters such as sensors including
noise, different atmosphere models etc. When assigning the
library elements to the scenario the function symbols have
to be mapped to the scenario signals. The sequence of library
elements for each signal is defined by an unbranched transition
path where a transition is taken after predefined times or
arbitrary expressions. The use of common atomic functions
at lowest level enables the translation of the test scenarios to
other test scripting languages (e.g. SCXML [7] in its extended
form or proprietary solutions). The assignment of parallel
calculation models is done in the same fashion as for the
phase signals. An example for the definition of sequential
linked basic functions is depicted in Figure 6 for a temperature
demand signal set from the flight deck during cruise phase.
The functional elements, which are all set functions in the
example, are defined and parameterized in a tabular form. The
depicted sequence of linked states, which creates the signal
shown on the right side, can then be automatically generated.
To complete the signal assignment, phase end conditions need
to be defined to trigger the transition to the next phase.
These could be already specified textually during the scenario
definition steps e.g. cruise time and emergency trigger event or
can be individually defined according to the assigned profile
(e.g. speed<0). For continuous signals care has to be taken,
that the steadiness is fulfilled when transitioning between the
phases. Useful mechanisms will still need to be worked out.

IV. CONCLUSION AND FUTURE WORK

In this paper, a structured procedure was presented to
collectively define flight mission-based scenarios in a state-
chart formalism and refine them to create realistic signals for
test stimulation. The aim is the verification and validation of
integrated aircraft systems in an operational context. Due to the
mostly generic and modular approach, the complex scenario
definition can partitioned into small manageable parts. Hence,
the method would speed up the process and be reusable at
different stages of the system design. The definition of system
scenarios in the first step is as far as possible abstracted from
the concrete system implementations and can be set up inde-
pendently, early in the process. The approach of hierarchical
objects for signal groupings in the further modeling achieves a

(Cruise

{CabinLoads {Environment {OVHD

(Feight

|
L Tink
CruiseOninitialHeigh|

1 after(300,sec)

[Link StepClimb1]

after(50,sec)

Link
CruiseOnHeight1

] after(300,sec)

Link StepClimb2

after(50,sec)

Link Link
[Cru\seOnHe\gh(Z] Restorelnitial

after(300,sec) after(100,sec)
Tink_StepClimb3

| after(100,sec)

Link
MediumDemand

Tafter(100 s0c)

[MaximumDemand

after(100,sec)

Atomic Final

e—
R

| after(50.~ec)
, (bl

:"FlighLManagemem

Time Series Plot: Temperature Demand \

28 1

0 50 100 150 200 250 300
Time (seconds)

350 400 450 5ou

Fig. 6. Component-embedded sequence of basic functions (left) and resulting signal (right).

highly reusable structure, which could be adapted easily with
regard to design changes. Finally, with the concept of basic
atomic signal functions as library elements, independence from
test automation systems can be reached, given that suitable
conversion mechanisms exist. However, the concept is yet to
be applied in a complete system test campaign.

In future works, it still needs to be investigated, if the
scenario definition based on paths and parallel events is
mature enough to handle very large and complex systems or
if further mechanisms need to be developed. The procedure
was implemented as a prototype in Matlab/Simulink using
mixed hybrid graphical and structured editing, which was also
presented in this paper.

Another open topic is the automatic evaluation of test runs. As
pointed out in the presentation of the mission-based scenario
approach, the defined scenario state-chart represents only the
stimulation part for the test execution. Therefore the definition
of parallel observer logics for evaluation is a major point to
be addressed. The evaluations could include specified system
functional or performance requirements.

Moreover, open parameter definitions shall enable the system-
atic exploration of specific scenarios. The transfer of resulting
system states over repetitive scenario runs is also considered
in that context, e.g. to assess wear effects. In that context, the
remodeling of realistic scenarios from operational data and
investigation of parameter variations is could be addressed.
The integration of operational recordings of signals from real
operations will also be worked out for this purpose. This
should expand the segment-based approach that was already
demonstrated in [8].

Finally, due to intend for automatic test execution the export
to common test automation engines should be investigated.

ACKNOWLEDGMENT

I would like to thank Martin Halle, Hauke Hober and the
anonymous reviewers of the AvioSE’20 for valuable comments
on the draft version. The presented results are part of the work

in the research project AGILE-VT (contract code: 20X1730J),
which is supported by the Federal Ministry of Economic
Affairs and Energy in the national LuFo V-3 program.

REFERENCES

[1] M.Halle and F.Thielecke, “Tool Chain for Avionics Design, Develop-

ment, Integration and Test”, 1st Workshop on Avionics Systems and

Software Engineering (AVIOSE’19), Stuttgart, Germany.

ISO/IEC/IEEE International Standard 29119-4:2015 - Software and

systems engineering — Software testing — Part 4: Test techniques.

[3] Everett, Gerald D.; McLeod, Raymond: ”Software testing. Testing across
the entire software development life cycle.” Hoboken, New Jersey: IEEE
Press Wiley-Interscience a John Wiley & Sons Inc. Publication, 2007.

[2

—

[4] Cem Kaner (2003): ”An Introduction to Scenario Testing.” In: Software
Testing & Quality Engineering (STQE).
[5] Dipl.-Ing. J.Grymlas (2017): ’Systemautomatisierung fiir den multifunk-

tionalen Betrieb von Brennstoffzellen in Verkehrsflugzeugen”, PHDThe-
sis, Hamburg University of Technology, Shaker Verlag, 2017.

[6] J. Grymlas, and F. Thielecke, “Virtual Integration and Testing of
Multifunctional Fuel Cell Systems in Commercial Aircraft,” SAE Int. J.
Aerosp. 6(2):2013, doi:10.4271/2013-01-2281.

[71 World Wide Web Consortium (W3C). (2015) State chart XML
(SCXML): State machine notation for control abstraction. [Online].
Available: https://www.w3.org/TR/scxml/.

[8] J. Grymlas, et al., ”Scenario-based testing of multifunctional fuel cell
systems using the virtual integration platform VIPER”, in International
Conference on Fundamentals and Developement of Fuel Cells (FDFC),
Toulouse, 2015.

[9] Harel, D. et al. (2012): "Multi-modal scenarios revisited: A net-based
representation.” In: Theoretical Computer Science 429, S. 118-127.

[10] La Panzica Manna, Valerio et al. (2015): ”Synthesizing tests for com-
binatorial coverage of modal scenario specifications.”, MODELS 2015.

[11] Harel, D. and Marelly, R. (2003): “Playing with time: on the specifica-
tion and execution of time-enriched LSCs.”, MASCOTS 2002.

[12] Damm, W. and Harel, D. (2001): "LSCs: Breathing Life into Message
Sequence Charts.”, In: Formal Methods in System Design 19 (1), S.
45-80.

[13] Autili, M. et al. (2007): “Graphical scenarios for specifying temporal
properties: an automated approach.”, In: Autom Softw Eng 14 (3), S.
293-340.

[14] ASAM e. V. (2020): ASAM OpenSCENARIO.

Online: https://www.asam.net/standards/detail/openscenario/

[15] German Aerospace Center, DLR (2020): Pegasus Research Project.
Online: https://www.pegasusprojekt.de/en/home

[16] Windisch, Andreas (2011): ”Suchbasierter Strukturtest fiir Simulink
Modelle”, PHDThesis, Berlin Institute of Technology, 2011.

[17] ETSI (2020): Testing and Test Control Notation Version 3 (TTCN-3).
Online: http://www.ttcn-3.org/

