
Model-driven Development of Evolving Secure
Software Systems

Sven Peldszus
University of Koblenz-Landau

Koblenz, Germany
speldszus@uni-koblenz.de

Abstract—Software systems are continuously entering more
and more parts of our lives and have to deal with a higher
amount of sensitive data than ever before. At the same time, these
software systems get more complex and have to be maintained
over long periods. One approach to deal with the issues arising
from these trends is model-driven software development (MDD).
Much research has been done on automating MDD approaches
and integrating the different artifacts used. However, there are
still plenty of issues that have to be solved. In this work, we dis-
cuss the three main challenges we discovered at the development
of our MDD approach GRAViTY. GRaViTY supports developers
in the model-driven development and maintenance, and evolution
of long-living secure software systems. Thereby, GRaViTY itself
leverages multiple MDD approaches.

Index Terms—model-driven development, software engineer-
ing, evolution, maintenance, security

I. INTRODUCTION

Modern software systems tend to be used on a long-
term basis in environments prone to changes, are highly
interconnected, are continuously extended with new features,
and often process security-critical data [1], [2], [3]. These
trends complicate to keep up with the ever-changing security
precautions, attacks, and mitigations, which is vital for pre-
serving a system’s security. Model-driven development (MDD)
enables us to address security issues in the early phases of the
software design already, such as in UML models defined at
design time [1]. Unfortunately, the specification of a system’s
security assumptions and documentation is often inconsistent
with its implementation [4]. The continuous changes in the
security assumptions and the design of software systems – for
instance, due to structural decay [5] – have to be reflected in
both the system models (e.g., UML models) and the system’s
implementation (including program models used, e.g., for
static analysis or verification).

The tracing between the different artifacts available for
deciding which change is necessary at which location in the
system and on which of the many artifacts, has currently
to be performed manually by developers. The effort for the
creation of such mappings after the fact is still high even if
this process is guided by tool support, e.g., for the creation of
mappings between models and code [4]. For this reason, we
have to maintain mappings between different artifacts used
in the different phases of development from the very early
beginning and to automate them as much as possible.

To tackle these challenges, we started to develop the
GRaViTY framework [6]. This framework allows us to au-
tomatically create and maintain trace links between different
artifacts, such as UML models, Java source code, and program
models for analyses, created during the development of a sys-
tem. Starting from early design-time models until the creation
and maintenance of the code, this framework is intended

1) to maintain trace links between these artifacts,
2) keep all artifacts up to date if one artifact is changed,
3) to specify security requirements on the most suitable

representation of a system, and
4) to continuously check all system representations for se-

curity violations.
For solving this challenge, we mainly utilize bidirectional

graph transformation approaches. In this work, we are giving
an overview of our solutions and discuss the three main
challenges we faced:

1) Transformation between models with different granularity
2) Incremental updates of abstract syntax trees (AST)
3) Maintaining networks of transformations
In what follows, we introduce the relevant background on

our assumptions about MDD as well as on security checks in
Sec. II. Afterward, in Sec. III, we give a brief overview of the
GRaViTY framework. In Sec. IV we discuss challenges we
faced, and present our solutions and challenges that have to
be overcome. How others dealt with the same challenges, is
discussed in Sec. V. Finally, we conclude in Sec. VI.

II. BACKGROUND

In this work, we present an approach for supporting devel-
opers in the model-driven software development (MDD) of
secure software systems. For explaining our approach and the
challenges, that we identified during its implementation, in this
section, we introduce the underlying understanding of MDD
and which artifacts we use as well as the different security
checks which are combined by our approach for enforcing the
development of a secure system.

A. Model-driven Software Development

In this work, we are building upon the concept of model-
driven software development (MDD) [7]. MDD allows devel-
opers to specify the system and its properties on a higher
level of abstraction than the source code level [8]. Thereby,

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

UML UML UML Code

Domain
Model

Design
Model

Implementation
Model

Fig. 1: Artifacts used in Model-driven Software Development

Patient

 + allergies: String [*]

Doctor

Diagnosis

Examination

Person

 +/ name: FullName [1]
 + homeAddress: Address [1]

treats

 + doctors

 + patients *

 *

 + patient

 + examinations

 1
 *

 + patient

 + diagnosis

 1

 *

 + doctor
 + examinations

 1

 *

 + doctors

 + diagnoses

 *

 *

 + examination

 + diagnosis

 1

 1

<<crititcal>>
{secrecy={homeAddress : Address}}

 + specialities: String [*]

Fig. 2: Excerpt of a Hospital Domain Model based on [11]

developers should specify all additional properties, like se-
curity assumptions, only once on the most suitable level of
abstraction. While MDD can cover many kinds of models we
focus on UML models [9].

In GRaViTY, the single models are iteratively refined until
we reach a concrete implementation of the system. Fig. 1
shows the refinement hierarchy of the model kinds currently
considered by us from the most abstract model at the left to
the final implementation at the right. All in all, we consider
UML models with three different levels of granularity.

a) Domain Model: The most abstract model is a domain
model, specifying general properties of the domain, that the
software to develop is placed in [10]. Domain models are
used in the earliest phases of software development to capture
general properties about a system’s domain. Often, domain
models are specified using UML class diagrams.

Fig. 2 shows an excerpt of a domain model for hospitals.
In hospitals, two kinds of people play a central role, patients
and doctors who treat the patients. Both have a name and
homeAddress. For patients, usually, a list of allergies
is stored and for doctors a list of their specialties. A
doctor can examine a patient in an Examination and create
Diagnose in such examinations.

When we implement a software system for a hospital, e.g.,
like iTrust [12] for online management of patient data, we
have to support the concepts captured in the domain model.

b) Design Model: After the specification of the domain
model, the domain elements realized in the software are
concretized in design models. Those design models specify the
design of the system and how the functionality is distributed
among the system. Thereby, the foundation of an easily main-
tainable system is set by the appropriate use of well-known
design patterns [13]. This is also the first point where we have
to start to continuously use design and security analyses to
ensure the system’s maintainability and security.

Fig. 3 shows an excerpt of a design model for iTrust, based
on a UML model reverse-engineered by Bürger at al. [3]. In
this model, different controls are specified for using the iTrust

LogInControl
 + data: User [1]

 + login()
 + resetPasswort()
 + chooseUser()

OfficeVisitControl

 + data: OfficeVisit [1]

 + openNotesDialog()
 + openHealthMetricDialog()
 + chooseHealthMetricRecord()
 + openPrescriptionDialog()
 + choosePrescriptios()
 + openLaboratoryProcedure()
 + chooseLaboratoryProcedure()
 + openPatientInstructionDialog()
 + choosePatientInstruction()
 + openDiagnoseDialog()
 + chooseProceduresDialog()
 + chooseImmunizationsDialog()
 + openReferralDialog()
 + home()
 + openHospitalDialog()
 + openAppointmentDialog()
 + billing()

Control

 + finishModification()

DiagnosisControl

 + data: Diagnosis [1]

data

Patient

«critical»
User

 + password: String [1]
 + firstName: String [1]
 + lastName: String [1]
 +/ name: FullName [1]
 + streetAddress1: String [1]
 + city: String [1]
 + state: String [1]
 + zip: String [1]
 +/ homeAddress: Address [1]

Fig. 3: Excerpt of a Design Model for iTrust based on [3]

platform, e.g., a login control, a control for documenting an
office visit or for entering a diagnosis, as well as a more
detailed data structure than in the domain model.

The different controls specify essential actions that can
be performed, e.g., the option to reset the password in the
login window. For a login of a user, the system needs the
user information to identify and legitimate the user. For this
purpose, the LogInControl accesses the data available in
the User-object given to it.

The data used by the system is detailed in this model. For
example, the classes User and Patient can be seen as
more concrete instances of the classes Person and Patient
from the domain model in Fig. 2. On the Person class,
for example, it is explicitly specified that the homeAddress
attribute, already known from the domain model, is derived
from other attributes.

While models with different abstractions are often created
separately, we encourage developers to model the information
of refinement explicitly by the use of inheritance relations
between elements. For example, there should be an explicit
inheritance relationship between the User in the design model
and the Person in the domain model.

c) Implementation Model: Precise functionality is speci-
fied in an implementation model. The implementation model is
usually the first platform-dependent model and contains infor-
mation about the deployment or languages used to implement
the system. The implementation model can directly be exe-
cuted, used for code generation, implemented manually, or a
combination of all. In our approach, we support a combination
of the code generation and manual implementation.

Fig. 4 shows an excerpt of an implementation model show-
ing how the iTrust platform could be developed in a hospital.
The model is based on our experience in modeling the hospital
system of a partner in the VisiOn EU project together with
them but does not show a real system [14].

Inside of the hospital, two servers are operated, one running
iTrust and one running a database as well as an authentication
service. Doctors are accessing the iTrust system from the
hospital’s local network. Patients can get access to their data
from the outside but have to authenticate themselves at the
authentication service provided by the hospital.

Hospital

WebServer
iTrustServer

MobileDevice

«artifact»
Database

«artifact»
Doctor

«artifact»
Patient

«artifact»

«artifact»
iTrust

«deploy»

«deploy»

«deploy»

«Internet»

«deploy»

«deploy»

«call, secrecy, integrity»

«call, secrecy, integrity»

«call, secrecy, integrity»

«call, secrecy, integrity»

«LAN»

«encrypted»

AuthentificationService

«call, secrecy, integrity»

Fig. 4: Excerpt of an Implementation Model for iTrust based
on [14]

B. Security Checks

For the enforcement of security requirements, we can
make use of various kinds of security checks, supported by
GRaViTY. In what follows, we give a brief overview of
different kinds of security checks and in which stages of
model-driven software development they can be applied.

1) Model-based Checks: According to the principle of
security by design, the system to be developed should already
be checked early during its development for security issues.

The UMLsec [1] approach, integrated into GRaViTY, allows
the specification and check of essential security requirements
already at design time. In UMLsec, UML models are anno-
tated with security requirements like security levels of class
members. These security annotations are checked for their
compliance with different security policies.

In the given example, the class Person from the do-
main model in Fig. 2 is annotated with the UMLsec stereo-
type <<critical>>, which specifies that the attribute
homeAddress is on the security level secrecy, meaning
that only legitimate entities are allowed to read its value.
UMLsec allows, as part of the <<secure dependency>>
security policy, to check if this domain model or any model
refining the domain model contains insecure uses of attributes
or operations, that are annotated with a security requirement.

Here, we can utilize the use of refinement relations between
the different model kinds for detecting security violations at
no additional cost for considering multiple models. Also, if a
security requirement is changed in one representation we can
immediately see the impact on the other UML representations.

In the implementation model, we also annotated the calls
and communication paths with UMLsec stereotypes. E.g., all
data transferred from and to the doctors is sent over an internal
LAN connection and all data sent from and to the patients is
sent over an encrypted internet connection.

2) Static Code Analysis: Static code analysis is usually
used to detect security issues during software implementation.
Thereby, the analysis tools are often integrated within the
development environments or build processes.

UML

CARiSMA
Security Checks

Domain Model

Design Model

Implementation Model

Java

Program Model

Security Checks

UMLsec as
Java Annotations

UMLsec

Fig. 5: Concept of the Framework

a) Analysis of API calls: Many approaches locally ana-
lyze calls to critical APIs and whether the chosen parameters
have been selected securely. This covers, for example, calls to
crypto APIs [15] or SQL queries [16]. While those approaches
are important for the development of secure systems, in this
work we are focusing more on the question whether, e.g. the
use of a crypto API, has been implemented at a point specified
in the models.

b) Secure data flow analysis: A common approach to
detect leaks of secret data is a secure data flow analysis.
One of the main problems for a precise data flow analysis
is the classification of critical sources and sinks. Many tools
are based on shared libraries of well known critical sources
and sinks, created manually or by machine learning [17].
However, more precise information, especially about critical
sources, is available in design-time models, e.g., annotated
with UMLsec. For example, in Fig. 2 we declared the property
homeAddress to contain secret values, which has to be
considered during a secure data flow analysis.

While all these different security checks on the different
artifacts can help in the development of a secure system,
they are often limited to their area of focus. However, such
security checks are more powerful when they are combined.
For example, often information required by a security check
on a lower level has already been defined at design-time. This
information should be reused to avoid misunderstandings and
divergence in the security assumptions but also to improve
the effectiveness of the checks. Unfortunately, doing so is
challenging and should be assisted by tool support.

III. GRAVITY FRAMEWORK

Our proposed framework, called GRaViTY [6], supports de-
velopers in applying the model-driven development approach,
as described in Sec. II-A, to the development and maintenance
of secure long-living systems. As shown in Fig. 5, design
models (e.g. specified in UML), source code (e.g. written
in Java), and a program model for performing sophisticated
analyses, e.g. the security checks from Sec. II-B, are con-
tinuously synchronized for covering the different phases of
software development.

The program model provides a high-level abstraction from
the pure Java source code [18], e.g., by reducing details
from the statement level to access edges between the single
members. In addition, easy to query structures are created,

Fig. 6: Excerpt from the iTrust Program Model

such as structuring methods and fields into a tree with
names, signatures, and definitions. For example, Fig. 6 shows
a program model with two different method signatures for
the method name updateInformation. For the signa-
ture with the parameter types EditOfficeVisitForm and
Boolean, a definition from the class EditOfficeVisit
is shown, which calls an other method definition. This allows
the easy specification of, e.g., refactorings [19], [18], anti-
pattern detection [2] and elimination [20], or compliance
checks with models [4].

Security-related specifications are introduced into the dif-
ferent artifacts as annotations. On UML models, we use
the UMLsec profile for security annotations proposed by
Jürjens [1]. Similar annotations are specified as Java anno-
tations on the source code level and are also contained in
the program model, like the TSecrecy annotation in Fig. 6
which relates to the secrecy value of the <<critical>>
annotation in Fig. 2. Here, GRaViTY mainly allows the reuse
of security requirements across the different artifacts. For
example, as discussed in Sec. II-B, the UMLsec security
annotations can be used to determine the sources and sinks
of a secure data flow analysis.

To keep the different artifacts consistent, we employ triple
graph grammars (TGG) [21] for a bidirectional synchroniza-
tion between the source code and the program model repre-
sentation of Java programs [18] as well as UML models. Our
implementation is based on the eMoflon graph transformation
engine [22]. Among others, eMoflon allows the specification
and execution of TGGs between models specified using the
Eclipse Modeling Framework (EMF). While the UML models
and the program model are specified using EMF, we have to
parse the Java source code to create an EMF model from it.
For this purpose, we are currently using MoDisco [23].

Fig. 7 shows two transformation rules from these TGGs,
which translate a method declared by a type to a method
definition in the program model or an operation in a UML class
diagram respectively. Inbetween the models a correspondence
model is built, that allows the synchronization of changes
made on one of the two sides of the rule.

The single UML models are directly connected by inheri-
tance relations, e.g., the User in the design model (Fig. 3) is
a subtype of the Patient in the domain model (Fig. 2). This
allows easy detection of changes that lead to inconsistencies,
as the inheritance relations can be used as trace links, as
demonstrated in Sec. II-B1. For this reason, the UMLsec tool is

(a) MoDisco Java Model � Program Model

(b) MoDisco Java Model � UML Class Diagram

Fig. 7: TGG Transformation Rules for Methods

integrated into GRaViTY. Unfortunately, unlike the mappings
using TGGs, there is currently no automation in updating the
different UML models.

Let us assume a change in the security knowledge and
look at how the developed hospital system can be adapted
to this change using the GRaViTY framework. Due to the
introduction of the European General Data Protection Regu-
lation (GDPR) [24], we got a stronger restriction in the ways
how we have to deal with personal data. Before the GDPR
became valid, it was legal to identify patients based on their
names. This information has to be treated with more sensitivity
now. This change in the security knowledge can, for exam-
ple, be reflected in annotating the Patient in the domain
model in Fig. 2 with the UMLsec stereotype <<critical>>
{secrecy={name:FullName}} expressing that the access
to this information is only allowed for legitimate cases. As this
security annotation is inherited by the more concrete subtypes,
the secure dependency check will fail after this change as
there are no corresponding changes on the other elements.
Accordingly, this gives a list of accesses to the developers,
which have to be checked for this purpose. To do so, the
developers have to look into the documentation and can follow
the trace links generated by GRaViTY. Furthermore, they can
use the TGGs to transfer the new security annotations into the
code and re-execute the security analyses to get more detailed
feedback about the compliance of the implementation.

To conclude, our TGGs provide an automated mechanism to
preserve consistency between the three different program rep-
resentations for managing evolving Java programs. As a result,
we obtain a model-based framework for arbitrarily interleaving
program evolution and maintenance steps. Furthermore, we
can use this approach to also translate and synchronize security
requirements of model elements between different system
representations to execute sophisticated security checks on
them as discussed in section II-B.

IV. CHALLENGES TO OVERCOME

During our work, we faced various challenges of which
some have been solved by us, some have been circumvented
by us, for some we have ideas on how to deal with them,
and some are still open challenges. In this section, we are
discussing the three most important challenges we faced.

transformation

Fig. 8: Challenge A: Transformations between Models with
Different Granularity

A. Transformation between Models with Different Granularity

Changes between synchronized UML models and code can
easily be propagated, when they are on the same level of
granularity, e.g., using the TGG-based approach presented
in Sec. III. Models that are modeled by developers in early
phases, e.g., the iTrust design model in Fig. 3, have a different
granularity. Nevertheless, we have to be able to apply our syn-
chronization approach also to those manually defined models.
Accordingly, the first challenge is how to deal with such a
different granularity, as shown in Fig. 8. At the development
of GRaViTY, we faced this issue in three different variations.

a) Program Model: Our TGGs have been proven to
be good in handling different granularity by not translating
elements, e.g., all details from the method bodies available
in the MoDisco model but not in the program model. Un-
fortunately, they cannot be used for creating structures that
differ completely on the two sides. For this reason, we had to
implement multiple preprocessing steps extending the different
models with such structural information.

One example is the method representation as name, sig-
nature, and definition, shown in Fig. 6. While it is pos-
sible to create this structure using TGG rules by creat-
ing the whole structure when a method name is translated
the first time and inserting afterward, this produces issues
in the synchronization of changes. Let us assume that the
TMethodName node in Fig. 6 has been created when the
method in the class EditOfficeVisit has been translated
and the other signature has been added afterward reusing this
TMethodName node. In a refactoring, e.g., a pull-up method
refactoring [19], we now delete the TMethodDefinition
defined by EditOfficeVisit and are going to synchronize
this change into the source code. To do this we have to
undo all rule applications that lead to the creation of deleted
nodes or edges. As the creation of the TMethodName node
took place in the same rule application as the creation of
the deleted TMethodDefintion node, it will be like this
TMethodName node has never been created. This also makes
the creation of the other TMethodSignature node invalid
as its context does not exist anymore, leading to a situation
in which no recovery is possible. To deal with this issue we
defined a preprocessing which already creates the required
structure on the side of the MoDisco model.

Unfortunately, the handling of such issues by preprocessing
brings an additional level of complexity to the implementation
and makes the synchronization more difficult as most prepro-
cessings also need a postprocessing undoing them.

b) UML Models: To overcome the different granularity
between the manually maintained UML models and the source

1. discover

3. discover

2. change

Source Code MoDisco Model Program ModelCorrespondences

Fig. 9: Challenge B: Incremental Updates of ASTs

code, we generate a UML class diagram on the granularity of
the implementation, that is kept in sync with the implementa-
tion, into the implementation model. This generated model is
initialized based on elements available in the implementation,
architectural, and design model. Afterward, code stubs, as well
as trace links, can be generated from this generated model.
If one of the inheritances is lost, e.g., due to a deletion it
has to be manually recreated by a developer. Additions in
the implementation are automatically synchronized into the
generated part of the implementation model.

c) Security Requirements: The same as discussed before
holds also for the different security requirements specified
on every of these three system representations. While those
security requirements should express the same assumption on
every representation, this assumption should be expressed in an
appropriate granularity on each representation: a more detailed
specification is required on the source code level than in the
domain or architectural model.

B. Incremental Updates of Abstract Syntax Trees (ASTs)

One of the biggest issues we faced is the loss of information,
that was added manually or automatically to the created model,
when the source code has to be parsed again. The same issue
has been faced by representatives from industry, we talked to.
This problem mainly covers the loss of generated or manually
added annotations , such as the TSecrecy annotation in
Fig. 6, and trace links to other artifacts, e.g., as part of the
correspondence model built by the TGGs, as shown at the top
of Fig. 9. Usually, the discovery of a model after changes on
the code is executed from scratch resulting in an entirely new
model. As the added annotations and trace links reside in the
old model (as shown in Fig. 9) this results in the loss of all
added information that has not been written into the source
code. This means we would not be aware of the TSecrecy
annotation on the method definition in Fig. 6 anymore and
have no correspondences to the new model, as shown on the
bottom of Fig. 9.

As there can be much information annotated to the models,
if all this information would be written into the source code
it could become unreadable. Also, this information is already
stored at a different location and should not be duplicated.

In our case, the MoDisco framework builds an entirely new
model each time, leading to the problem that the trace links
of the TGG still point to the old model. The representatives

Transformation

Transform
ation change

Tester

?

?

Fig. 10: Challenge C: Maintaining Networks of Transforma-
tions

from industry had the same problem with embedded C code.
To deal with this issue, we generate and apply model patches to
follow the source code changes. For this purpose we calculate
the differences between the old and changed model using EMF
Compare facing the following issues:

a) Scalability: At first EMF Compare behaved very well
when we applied it to small artificial changes but did not scale
on real changes. In our previous works, we built a test set
of open-source projects with different sizes (between 5,800
and 200,000 lines of code) [2]. The creation of the program
model takes between some seconds to some minutes dependent
on the size of the program. For each program, we tried to
calculate the differences between different versions of each
program. While it took e.g. 7s to build a program model for
JUnit version 3.8.1 (32,300 nodes in the MoDisco model) it
took EMF Compare already 37s to calculate the differences
between JUnit version 3.8.1 and 3.8.2. For our next bigger
program GanttProject (146,000 nodes) the TGG is executed
in 6s but EMF Compare did not even finish the comparison
after 30 minutes.

b) Pseudo Differences: An additional issue we discov-
ered is regarding the quality of the differences calculated by
EMF Compare. We got many differences containing multiple
changes that reverted themselves.

Helpful tool support going in the same direction, that
could be utilized for this, might be a TGG based consistency
check [25]. In this case, we have to specify a TGG transfor-
mation from the MoDisco meta-model to MoDisco that can be
used to detect the differences between two MoDisco models.

However, the best would be an incremental parser for Java,
that updates an initially created model each time it is executed
on the same code again. Unfortunately, there are only a few
works on this and none supports EMF.

C. Maintaining Networks of Transformations

The last challenge is regarding the maintenance of networks
of transformations. According to Fig. 10, we have a network
of transformations and are going to change one of the trans-
formations. The open question is how to systematically derive
the required changes on the other transformations and how a
tester for detecting divergences has to look like.

While Fig. 5 shows three transformations between the
different artifacts, by now we only implemented two of them.
To be more precise, these are the MoDisco Java Model �
UML Class Diagram and the MoDisco Java Model � Program

Model transformations. Whenever we need a transformation
between the UML Class Diagram and the Program Model we
have to execute these two transformations in a row.

To speed up this process, we tried to generate a UML
Class Diagram � Program Model transformation from the
two specifications we already had. As the two transformations
are translating the same elements from the MoDisco model, it
should be straightforward to specify such a transformation.
For example, as the two rules, in Fig. 7 both translate a
MethodDeclaration, we can derive that we have to
translate an Operation to a TMethodDefiniton. Un-
fortunately, while doing this, we had to learn that we have to
resolve many inconsistencies first. Due to a very detailed test
suite for the two transformations, this was surprising for us.

In this test suite, we created minimal examples for most Java
language features to test the translation of these features. These
features range from a simple class definition to exotic features
such as the definition of an inner class inside of an anonymous
class. All in all, our test suite contains 77 input models that can
be given into the two transformations as well as the expected
outcomes. All in all, we have 231 test cases in this test suite,
77 for the preprocessing common to the two transformations as
well as 77 test cases for each of the transformations. Besides,
we regularly execute the transformation on our test set of open-
source projects, introduced in Sec. IV-B.

While testing the transformations we also had to deal with
the model comparison problem discussed in Sec IV-B. Due to
the high complexity of the models, it was also not possible to
compare the generated model directly with an expected model
without getting pseudo differences. Our solution to this was to
specify essential expected patterns in Henshin rules [26] and
to check whether the rules match as expected.

We had to learn that already a network with only two
interacting transformations is hard to maintain. Thereby, we
are in line with the observations of Stevens for bidirectional
transformations [27].

As the test suite, which contains common input models
to both transformations and expected outputs to the two
transformations, was not enough to avoid an unnoticed diver-
gence, we are currently thinking about other ways to test the
transformation. One of the ideas we are currently thinking of is
to specify the third missing transformation and to test by using
a round-trip execution. To sum up, additional tool support for
the maintenance of transformations is strongly required.

V. RELATED WORK

In this section, we discuss how others dealt with the same
challenges we faced in comparable approaches.

In the single underlying model approach (SUM), Atkinson
et al. define a single model, that is able to express all
information about the system [28]. Suitable views according
to the current task are extracted from this model. The SUM
is comparable to the different connected UML models of our
approach, in which we integrate all design-time information.
SUM supports an automated extraction of views that could be
helpful in GRaViTY for manual edits of the generated parts of

the implementation model. While we support well known plain
UML, SUM made many modifications to the UML to support
all those kinds of different abstractions. Also, SUM does not
provide an integration with the concrete implementation.

With VITRUVIUS Kramer et al. developed a SUM ap-
proach that also integrates Java source code [29]. Unlike
our approach, the trace links to the model are written into
the source code as annotations and might lead to unreadable
source code, as discussed in Sec. IV-A.

On a very similar technical basis as our framework is the
Codeling tool of Konersmann [30]. The idea of Codeling is the
integration of architecture model information into the program
code. Like our approach, Konersmann uses TGGs for model
to model transformations at architecture extraction. In contrast
to us, he is not continuously keeping the extracted models up
to date but always writes all changes, made on an extracted
model, back to the code. Every time an architectural view
on the system is needed Codeling extracts it again. By doing
so Konersmann is circumventing the challenge of incremental
updates discussed in Sec. IV-B at the cost of massively
increasing the code base with additional information.

Commercial tools like Enterprise Architect (EA) also pro-
vide round-trip engineering for UML models and Code [31].
The main limitation of these tools is the restriction to UML
models very close to the code which eases the synchronization.
While EA allows a translation from UML stereotypes to Java
annotations, which could be used for transferring UMLsec
annotations into the code, they do not support more complex
information transfers.

While all approaches are dealing with the same challenges
as us in similar ways, none of them provides the support
to maintain security requirements on different artifacts in a
sophisticated way and to check those security requirements in
between the different artifacts.

VI. CONCLUSION

In this work, we presented the GRaViTY approach for
model-driven development and maintenance of secure long-
living systems. Based on GRaViTY, we elaborated on chal-
lenges we had to overcome for further automation in the de-
velopment and verification of long-living systems using MDD.

The main challenges are in dealing with all the different
levels of abstraction appearing in the development of systems
and the synchronization of the single artifacts appearing. While
we have been able to utilize recent developments from the
model transformation domain for improving the synchroniza-
tion between the different artifacts, we faced also challenges
in maintaining those transformations ourselves.

To sum up, GRaViTY supports the model-driven develop-
ment and maintenance of secure software systems by providing
support to synchronize the different artifacts appearing during
MDD as well as in the specification and reuse of security
requirements in the execution of security checks for ensuring
the security of the developed system.

REFERENCES

[1] J. Jürjens, Secure Systems Development with UML. Springer, 2005,
chinese translation: Tsinghua University Press, Beijing 2009.

[2] S. Peldszus, G. Kulcsár, M. Lochau, and S. Schulze, “Continuous
Detection of Design Flaws in Evolving Object-Oriented Programs using
Incremental Multi-pattern Matching,” in ASE, 2016.

[3] J. Bürger, D. Strüber, S. Gärtner, T. Ruhroth, J. Jürjens, and K. Schnei-
der, “A framework for semi-automated co-evolution of security knowl-
edge and system models,” JSS, vol. 139, 2018.

[4] S. Peldszus, K. Tuma, D. Strüber, J. Jürjens, and R. Scandariato, “Secure
Data-Flow Compliance Checks between Models and Code based on
Automated Mappings,” in MODELS, 2019.

[5] D. L. Parnas, “Software Aging,” in ICSE, 1994.
[6] “GRaViTY.” [Online]. Available: http://gravity-tool.org
[7] T. Stahl, M. Voelter, and K. Czarnecki, Model-driven Software Devel-

opment: Technology, Engineering, Management. Wiley, 2006.
[8] B. Hailpern and P. Tarr, “Model-driven Development: The Good, the

Bad, and the Ugly,” IBM Syst. J., vol. 45, no. 3, 2006.
[9] OMG, “UML Superstructure Specification,” 2011.

[10] G. Wagner, Information Management - An Introduction to Information
Modeling and Databases, 2019.

[11] UML-Diagrams, “Hospital management.” [Online]. Available: https:
//www.uml-diagrams.org/examples/hospital-domain-diagram.html

[12] A. Meneely, B. Smith, and L. Williams, “iTrust Electronic Health Care
System Case Study.” [Online]. Available: http://agile.csc.ncsu.edu/iTrust

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Pearson, 1994.

[14] I. Christantoni, C. Biffi, D. Bonutto, and A. C. Sanz, “Vision pilots
report,” VisiOn Privacy Platform, Tech. Rep., 2017.

[15] S. Krüger, S. Nadi, M. Reif, K. Ali, M. Mezini, E. Bodden, F. Göpfert,
F. Günther, C. Weinert, D. Demmler, and R. Kamath, “CogniCrypt:
Supporting Developers in using Cryptography,” in ASE, 2017.

[16] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao, “A Static
Analysis Framework For Detecting SQL Injection Vulnerabilities,” in
COMPSAC, 2007.

[17] S. Rasthofer, S. Arzt, and E. Bodden, “A Machine-learning Approach
for Classifying and Categorizing Android Sources and Sinks,” in NDSS,
2014.

[18] S. Peldszus, G. Kulcsár, M. Lochau, and S. Schulze, “Incremental Co-
evolution of Java Programs Based on Bidirectional Graph Transforma-
tion,” in PPPJ, 2015.

[19] S. Peldszus, G. Kulcsár, and M. Lochau, “A Solution to the Java
Refactoring Case Study using eMoflon,” in TTC, 2015.

[20] S. Ruland, G. Kulcsár, E. Leblebici, S. Peldszus, and M. Lochau,
“Controlling the Attack Surface of Object-Oriented Refactorings,” in
FASE, 2018.

[21] A. Schürr, “Specification of Graph Translators with Triple Graph Gram-
mars,” in WG, 1995.

[22] E. Leblebici, A. Anjorin, and A. Schürr, “Developing eMoflon with
eMoflon,” in ICMT, 2014.

[23] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot, “MoDisco: A Generic
and Extensible Framework for Model Driven Reverse Engineering,” in
ASE, 2010.

[24] European Parliament and Council of the European Uninon, “Regulation
(EU) 2016/679 – General Data Protection Regulation (GDPR),” in
Official Journal of the European Union, 2016.

[25] E. Leblebici, “Inter-Model Consistency Checking and Restoration with
Triple Graph Grammars,” Ph.D. dissertation, 2018.

[26] T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer, “Henshin:
Advanced Concepts and Tools for In-place Emf Model Transformations,”
in MODELS, 2010.

[27] P. Stevens, “Bidirectional Transformations in the Large,” in MODELS,
2017.

[28] C. Atkinson, D. Stoll, and P. Bostan, “Orthographic Software Mod-
eling: A Practical Approach to View-based Development,” in ENASE.
Springer, 2009, pp. 206–219.

[29] M. E. Kramer, E. Burger, and M. Langhammer, “View-centric Engineer-
ing with Synchronized Heterogeneous Models,” in VAO, 2013.

[30] M. Konersmann, “Explicitly integrated architecture-an approach for
integrating software architecture model information with program code,”
Ph.D. dissertation, 2018.

[31] “Enterprise Architect.” [Online]. Available: www.sparxsystems.de

http://gravity-tool.org
https://www.uml-diagrams.org/examples/hospital-domain-diagram.html
https://www.uml-diagrams.org/examples/hospital-domain-diagram.html
http://agile.csc.ncsu.edu/iTrust
www.sparxsystems.de

	Introduction
	Background
	Model-driven Software Development
	Security Checks
	Model-based Checks
	Static Code Analysis

	GRaViTY Framework
	Challenges to overcome
	Transformation between Models with Different Granularity
	Incremental Updates of Abstract Syntax Trees (ASTs)
	Maintaining Networks of Transformations

	Related Work
	Conclusion
	References

