
Test Case Co-Migration Method Patterns
Ivan Jovanovikj, Enes Yigitbas, Stefan Sauer, Gregor Engels

Software Innovation Lab
Paderborn University, Paderborn, Germany

Email: firstname.lastname@uni-paderborn.de

Abstract—Co-migration of test cases has a twofold benefit:
it reduces the cost of testing the migrated system and retains
valuable information about the expected functionality of the
original system and thus the desired functionality of the migrated
system. The migration of test cases is shaped by the co-evolution
of the test cases, as they can be affected by the changes in the
system migration. Furthermore, the situational context has to be
considered as it influences the quality and the effort regarding
the test case migration. To address these challenges, we propose
a solution that applies situational method engineering extended
with co-evolution analysis. The proposed framework enables
modular construction of test transformation methods which
consists of a method base and a method engineering process.
Method fragments are the atomic building blocks of a migration
method, whereas method patterns encode specific migration
strategies. Beside the basic test method patterns, we introduce
co-migration patterns, which encode the dependency between
the system migration and the test case migration. The method
engineering process provides the guidance on development and
enactment of migration methods. In this paper we give an
overview of the method base, in particular on the co-migration
method patterns, as well as a detailed discussion.

Index Terms—test case migration, co-migration, co-evolution,
method engineering, method-base, co-migration method pattern

I. INTRODUCTION

Reusing existing test cases is a frequently used validation
strategy in software migration [1]. It can reduce the cost of
testing the migrated system and can also help to retain valuable
information about the expected functionality of the original
system and thus the desired functionality of the migrated
system. Reusing test cases comes down to the problem of co-
migration, i.e., the test cases have to be migrated along with
the system to the dependency on the system migration. The co-
migration is practically defined by the co-evolution of the test
cases and the corresponding system. In general, co-evolution
refers to two or more objects evolving alongside each other,
such that there is a relationship between the two that must
be maintained [2]. In our case, this refers to the test cases
evolving alongside the migrating code, such that the test cases
remain correct for testing the migrated system. This implies
that the co-evolution analysis should be incorporated in the
test case migration.

When performing a test migration, a transformation method
is required which serves as a technical guideline and describes
the activities necessary to perform, tools to be used, and
roles to be involved in order to migrate given test cases. The

development of the transformation method is a very important
task as it influences the overall success of the migration project
in terms of effectiveness (e.g., non-functional properties) and
efficiency (e.g., the time required or the budget). To achieve
this, the situational context of the migration project should
be taken into consideration. The situational context comprises
different influence factors like characteristics of the original
system or target environment, the goals of the stakeholders
etc. Concerning test case migration, the situational context
gets even more complex as beside the influence factors of
the system migration, test-specific influence factors like char-
acteristics of the original test cases or test target environment
have to be considered as well. To develop a situation-specific
transformation method is an important and challenging task,
as the previously discussed co-evolution aspect should be
incorporated when identifying the situational context from
both system and test perspective.

In order to address the previously mentioned challenges,
based on the Method Engineering Framework for Situation-
Specific Software Transformation Methods (MEFiSTo) [3], we
provide a framework that combines techniques from Situa-
tional Method Engineering (SME) [4] and Software Evolu-
tion [2]. In general, a Method Base contains the building
blocks needed for assembling the migration method, namely
Method Fragments and Method Patterns. A Method Fragment
is an atomic building block of a migration method, whereas
a Method Pattern represents a strategy and indicates which
fragments are necessary and how to assemble them together.
As the test method patterns cannot express directly the de-
pendency between the system and the test case migration, we
propose a set of co-migration method patterns. Technically,
a co-migration method pattern is a combination of a system
method pattern and a test method pattern visually resembling
to a double horseshoe model. A co-migration pattern encode
the relation between the applied system migration pattern and
the selected test method pattern.

The structure of the rest of the paper is as follows: In Sec-
tion II, we introduce the test method fragments. Then, in Sec-
tion III, we introduce the test method patterns. In Section IV,
we present the test co-migration method patterns. In Section V,
we briefly discuss the related work and at the end, Section VI
concludes the work and gives an outlook on future work.

Copyright © 2020 for this paper by its authors.Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

II. METHOD FRAGMENTS

A method fragment is an atomic building block of a
migration method, i.e., an activity, artifact or tool. As we
follow the idea of model-driven software migration [5], our
method fragments belong to one of the following reengineering
processes: Reverse Engineering, Restructuring, and Forward
Engineering [6]. The activities as well as the artifacts are
represented in Figure 1 as an instance of the well-known
horseshoe model [7].

Artifacts are constituting parts of each migration method and
are distinguished by the level of abstraction they are belonging
to. On the System Layer, textual artifacts representing test code
and models of the test code are placed. Regarding the textual
artifacts, this is either the Original Test Code or the Migrated
Test Code. Similarly, regarding the models of the code it is
either the Model of Original Test Code or the Model of the
Migrated Test Code represented in a form of in a form of
an Abstract Syntax Tree [8]. The Platform-Specific Layer is a
higher level of abstraction compared to the system layer. Here,
technology-specific concepts are used to represent the test
cases for both the source and the target environment in terms of
Model of Original/Target Executable Tests. On the Platform-
Independent Layer the models representing the test cases are
independent of any particular testing framework or testing
technology. Here, we distinguish between two types of models,
the Model of the Abstract Tests and the System Behavior
Model. On the highest level of abstraction, we foresee the Sys-
tem Behavior Model that represents a compact representation
of the expected behavior of the system. Behavioral diagrams
like the UML activity or sequence diagram, or state machines
can be used to represent the expected behavior of the system.

Activities in the test case reengineering horseshoe model
produce or consume appropriate artifacts. As can be seen
in Figure 1, these activities can be distinguished by the reengi-
neering process they belong to, namely Reverse Engineering,
Restructuring, or Forward Engineering.

Sy
st

em
 L

ay
er

Pl
at

fo
rm

-In
de

pe
nd

en
t

La
ye

r

Exogenous Model
Transformation

Text-to-Text
Transformation

Activity Specification

Migrated
Test

Code

Language
Transformation

Text-to-Model /
Model-to-Text

Transformation

Original
Test

Code

Model of the
Original

Test Code

Model of the
Original

Executable Tests

Model of
Abstract Tests

Pl
at

fo
rm

-S
ep

ci
fic

La
ye

r

System
Behavior

Model

Model of the
Migrated

Test Code

Model of the
Migrated

Executable Tests

Reimplementation

Framework
Transformation

Test Case
Understanding

Test
Concretiztaion

Test Code
Generation

Model
Discovery

Test
Abstraction

Test
Concretiztaion

System Behavior
Recovery

Abstract Test
Derivation

X

X
Removal

No Transformation

Endogenous Model
Transformation

Enrichment

Enrichment

Enrichment Restucturing

Restucturing

Model

Code

Artifact Specification

Direct
Test Code
Generation

Direct
Test Code

Understanding

Figure 1. Excerpt of Method Fragments stored in the Method Base.

Reverse Engineering, is the process of analyzing a test case
and creating another representation of them on a higher level
of abstraction, e.g., by using test models. In general, reverse
engineering can be seen as combination of Model Discovery
and Model Understanding [9]. The Model Discovery step
relies on syntactical analysis and by using a parser it allows
automatic text-to-model transformation to create a model of
the test case source code represented as an Abstract Syntax
Tree (AST) [8]. Model Understanding, in general, is a model-
to-model transformation activity, or a chain of such activi-
ties (Test Case Understanding, Test Abstraction, and System
Behavior Recovery), which takes the initial models, applies
semantic mappings and generates derived models on a higher
level of abstraction.

Restructuring, is defined as the transformation from one test
representation to another at the same relative abstraction level,
while preserving the functionality that is being checked by
the tests. This activity has been foreseen on both the System
Behavior Model and the Model of Abstract Test. The Restruc-
turing activity is of course influenced by the target testing
environment, testing tool, or by requirements on improving the
quality of the test cases (e.g., maintainability). Furthermore,
it could also be influenced by the changes that happen in the
system migration.

Forward Engineering, is the process of moving of high-
level test abstractions and logical implementation-independent
design to the physical implementation of the test cases. The
test models are used as input for a chain of model-to-model
transformations (Abstract Test Derivation and Test Concretiza-
tion), ending with a model-to-text transformation (Test Code
Generation), which provides the test code as output.

The Reimplementation is a text-to-text transformation which
is performed manually. The Language Transformation also
known as AST-based transformation [7], defines a direct
mapping between the Original Model of the Test Code and
the Migrated Model of the Test Code. The Test-Language
Transformation, on the other hand, defines a mapping directly
between two testing frameworks. The Enrichment activity is
applicable to various models, e.g., Original Model of Exe-
cutable Tests, Model of Abstract Tests, or System Behavior
Model. The Removal activity is used to specify which part of
the test case code should not be transformed.

III. METHOD PATTERNS

The method fragments like artifacts, activities or tools are
not sufficient as no guidance is provided how to assemble
them. A method pattern, represents construction guidelines for
migration methods that follows a certain strategy by defining
which method fragments should be customized and how to
put them together In the following, as shown in Figure 2,
we present an excerpt of the method patterns that preserve
functionality.

The Language-based Test Transformation pattern defines the
migration of the functionality of the test cases by defining
a mapping between the language constructs in both original
and target environment. The mapping is applied by a direct

Framework-based
Test Transformation

Language-based
Test Transformation

Reimplementation

Test Code Removal
X

Conceptual
Test Transformation

XNo ActivityTest
Code Model Manual

Activity
Automated

Activity

Figure 2. Excerpt of basic method patterns.

transformation between Model of the Original Test Code and
Model of the Migrated Test Code. Theoretically, this pattern
could be applied actually in any migration scenario, but its
suitability mainly depends on the complexity of the model
transformations between both models. From test perspective,
the transformation of the test concepts have to be done
implicitly.

By using the Test Language-based Test Transformation
pattern the functionality of the test cases is migrated by using
an intermediate test representation on platform-specific layer.
Model of Original Executable Tests represents explicitly the
testing constructs and the test data. Doing so, transformation
step is less complex compared to the Language-based Test
Transformation and it enables a direct, i.e., an explicit repre-
sentation and manipulation of test constructs.

The Conceptual Test Transformation pattern defines to mi-
grate the test functionality by using an intermediate repre-
sentation in terms of Model of Abstract Tests on a platform-
independent layer. This improves the dependent framework
transformation on the platform-specific layer by explicitly
representing some test concepts on a higher level of abstraction
as part of the Model of Abstract Tests. This pattern could be
considered suitable when some test concepts are realized com-
pletely different in both environments or when a restructuring
of the test architecture or test data is necessary. By using the
Reimplementation pattern the functionality of the test cases is
manually transformed by software developers and it is suitable
in cases when an automatic migration is too complex to be
implemented. Lastly, the Test Code Removal pattern defines
not to migrate certain part of the test code, e.g., when some
parts of the original system are now implicitly supported in
the new environment.

IV. CO-MIGRATION METHOD PATTERNS

As the test method patterns cannot express the relation
between the system and the test case migration, we propose
a set of co-migration method patterns. Technically, a co-
migration method pattern is a combination of a system method
pattern and a test method pattern, visually resembling to a
double horseshoe model. We define a co-migration method
pattern as follows:

A co-migration method pattern is a method pattern which
relates a test method pattern and a system method pattern by
explicitly establishing the relation between the corresponding
method fragments.

By explicitly establishing the relation between test and
system method patterns, we aim to ease the process of the
selection and configuration of a test method pattern. An
already configured system method pattern, with selected and
concertized method fragments, i.e., artifacts and activities,
suggests in what way the test method fragments should be
selected and configured. Consequently, it suggests in what way
the tools supporting the different method fragments should be
developed.

The co-migration patterns also facilitate reuse of existing
artifacts and activities from the system migration method.
As an explicit relation between the system and test method
patterns exists, it facilitates the reuse of the already existing
artifacts and activities defined for the system transformation
method. Furthermore, the developed and used tooling for the
system migration, e.g., a language parser or a language meta-
model, which correspond to an activity or an artifact, could
be reused.

In this work, as we already mentioned in Section III,
we focus on the functionality preserving test method pat-
terns. Our test method patterns were mainly inspired by the
method patterns presented in [3], where four different func-
tionality preserving method patterns were defined, namely:
Reimplementation, Language-based Transformation, Concep-
tual Transformation, and Code-Removal. As we already said
at the beginning of this section, a co-migration comprises
a test method pattern and a system method pattern. We
created the co-migration patterns by combining each of the
test method patterns with each of the system method patterns,
excluding the Code-Removal pattern. The Code-Removal was
not taken into consideration as it has no influence on reuse
of method fragments. In the following, we analyze each
co-migration method pattern regarding two aspects reusable
method fragments and impacted method fragments. Reusable
method fragments are those method fragments from the system
transformation method which could be directly reused in the
test transformation method. Impacted method fragments are
those test method fragments which are impacted from the
system method fragments.

Figure 3 depicts the co-migration patterns that combine
either a Test Reimplementation method pattern (CMP1 to
CPM3) or a Language-based Test Transformation method pat-
tern(CMP4 to CPM6) with the three possible system migration
patterns Reimplementation, Language-based Transformation,
and Conceptual Transformation.

The pattern CMP1 is a combination of two reimplemen-
tation method patterns and it is a very simple pattern which
suggests a manual migration of the test cases. The ease of
reimplementation of the tests cases depends on the documenta-
tion of the system transformation method, the more structured
the better. In the case of CMP2 and CMP3 patterns, where
Language-based Transformation and Conceptual Transforma-

TMP: Test Reimplementation
SMP: Language-based Transformation

TMP: Test Reimplementation
SMP: Reimplementation

TMP: Test Reimplementation
SMP: Conceptual Transformation

TMP: Language-based
 Test Transformation
SMP: Reimplementation

TMP: Language-based
 Test Transformation
SMP: Language-based Transformation

TMP: Language-based
 Test Transformation
SMP: Conceptual Transformation

Test
Code

Test
Model

Manual
Activity

Automated
ActivityCode Model

SMP System Method Pattern
TMP Test Method Pattern

CMP1 CMP2 CMP3

CMP4 CMP5 CMP6

CMP Co-Migration Method Pattern

Figure 3. Co-Migration Patterns: Part I

tion are applied respectively, the reimplementation of the test
cases should be easier as the transformation of the system is
specified explicitly in terms of transformation rules. Basically,
no system method fragments could be directly reused.

The pattern CMP4 is a combination of a Language-based
Test Transformation and a Reimplementation. This pattern is
suitable if the system reimplementation was well documented
so that some transformation rules can be derived in order
to automate the transformation of the test cases. However, it
suggests implementation of a parser for the source language
as well as a code generator for the target language. Similarly
to the previous co-migration patterns, no system method
fragments could be directly reused.

The pattern CMP5 is a combination of Language-based Test
Transformation and Language-based Transformation. This
pattern has a symmetric constellation, as two transformations
on the same abstraction level are combined. In such a constel-
lation, both the reverse engineering and forward engineering
fragments, Model Discovery and Test Code Generation respec-
tively, can be completely reused. Reuse of existing method
fragments is also possible in the scope of the transformation
step. However, the complexity of the transformation could
be higher if the source and the target frameworks differ-
entiate a lot, meaning that the transformation of the test
relevant concepts should be done implicitly. Regarding the
impacted test method fragments, the Language Transformation
activity is impacted by the corresponding method fragment
from the system transformation method. The pattern CMP6

is a combination of Language-based Test Transformation and
Conceptual Transformation. In such a constellation, both the
reverse engineering and forward engineering fragments, Model
Discovery and Test Code Generation respectively, can be
completely reused. Due to the difference in the abstraction
levels, reuse of existing method fragments in the scope of
the transformation step is only possible in an indirect way.
Namely, the transformation on the conceptual level, could be
used as an input when the language transformation of the test
cases is performed, i.e., the conceptual transformation param-
eterizes the language-based test transformation. Similarly as
with CMP5, the complexity of the transformation could be
higher if the source and the target frameworks differentiate a
lot due to the implicit transformation of the test concepts.

Figure 4, depicts the co-migration patterns that combine
either a Test Language-based Test Transformation method
pattern (CMP7 to CPM9) or a Conceptual Test Transformation
method pattern (CMP10 to CPM12) with the three possible
system migration patterns Reimplementation, Language-based
Transformation, and Conceptual Transformation.

The pattern CMP7 is a combination of a Test Language-
based Test Transformation and Reimplementation. This pattern
is suitable if the system reimplementation was well docu-
mented so that some transformation rules can be derived
in order to automate the transformation of the test cases.
However, it suggests implementation of a parser for the
source language as well as a code generator for the target
language. Furthermore, a test case understanding fragment and

TMP: Test Language-based
 Test Transformation
SMP: Reimplementation

TMP: Test Language based
 Test Transformation
SMP: Language-based Transformation

TMP: Test Language-based
 Test Transformation
SMP: Conceptual Transformation

TMP: Conceptual Test Transformation
SMP: Reimplementation

TMP: Conceptual Test Transformation
SMP: Reimplementation

TMP: Conceptual Test Transformation
SMP: Reimplementation

CMP7 CMP8 CMP9

CMP10 CMP11 CMP12

Test
Code

Test
Model

Manual
Activity

Automated
ActivityCode Model

SMP System Method Pattern
TMP Test Method Pattern
CMP Co-Migration Method Pattern

Figure 4. Co-Migration Patterns: Part II

test case concretiztaion fragment should be configured and
implemented in terms of model-to-model transformations.

The pattern CMP8 is a combination of Test Language-based
Test Transformation and Language-based Transformation. In
such a constellation, both the reverse engineering and forward
engineering fragments, Model Discovery and Test Code Gen-
eration respectively, can be reused. Reuse of existing method
fragments is also possible in the scope of the transformation
step. But, a test case understanding fragment and test case
concretiztaion fragment should be still selected and imple-
mented in terms of model-to-model transformations. However,
the complexity of the transformation is lower compared to
CMP7, as the transformation activity from the system method
pattern could be reused to higher extent as it is specified
explicitly through a model-to-model transformation. On the
other side, the complexity of the transformation is lowered as
an explicit mapping between the testing languages is defined.

The pattern CMP9 is a combination of Test Language-
based Test Transformation and Conceptual Transformation.
In such a constellation, both the reverse engineering and
forward engineering fragments, Model Discovery and Test
Code Generation respectively, can be completely reused. Due
to the difference in the abstraction levels, reuse of existing
method fragments in the scope of the transformation step is

only possible in an indirect way. Namely, the transformation
on conceptual level could be used as an input when the Test
Language-based Test Transformation is configured performed,
i.e., the Conceputal Transformation parameterizes the Test
Language-based Test Transformation. Similarly to CMP8, the
complexity of the transformation is lowered as an implicit
mapping between the testing languages is defined.

The pattern CMP10 is a combination of Conceptual Test
Transformation and Reimplementation. The suitability of this
pattern depends on the system reimplementation, whether it
was well documented so that some transformation rules can
be derived in order to automate the transformation of the est
cases. However, it suggests implementation of a parser for
the source language as well as a code generator for the target
language. Furthermore, a test case understanding fragment and
test case concretiztaion fragment should be configured and
implemented in terms of model-to-model transformations.

The pattern CMP11 is a combination of Conceptual Test
Transformation and Language-based Transformation. In such
a constellation, both the reverse engineering and forward
engineering fragments, Model Discovery and Test Code Gen-
eration respectively, can be reused. Reuse of existing method
fragments is also possible in the scope of the transformation
step. But, a test case understanding fragment and test case

concretiztaion fragment should be still selected and imple-
mented in terms of model-to-model transformations. However,
the complexity of the transformation is lower compared to
CMP10, as the transformation activity from the system method
pattern could be reused to higher extent as it is specified
explicitly through a model-to-model transformation. On the
other side, the complexity of the transformation is lowered as
an explicit mapping between the testing languages is defined.

The pattern CMP12 is a combination of Conceptual Test
Transformation and Conceptual Transformation. In such a
constellation, both the reverse engineering and forward engi-
neering fragments, Model Discovery and Test Code Generation
respectively, can be completely reused. Due to the difference
in the abstraction levels, reuse of existing method fragments
in the scope of the transformation step is only possible in an
indirect way. Namely, the transformation on conceptual level
could be used used as an input when a Test Language-based
Test Transformation method pattern is configured, i.e., a Con-
ceputal Transformation pattern parameterizes the Conceptual
Test Transformation. Similarly to CMP11, the complexity of
the transformation is lowered as an implicit mapping between
the testing languages is defined.

V. RELATED WORK

Two main research areas are relevant for this work, namely
method engineering and test case evolution. Regarding method
engineering, different categories of method engineering ap-
proaches exist: fixed methods, a selection out of set of fixed
methods, configuration of a method, tailoring a method or
a modular construction of the method. The method tailoring
approaches enable tailoring of a provided method, which can
be changed arbitrarily ([10], [11]). However, they solely focus
on system transformation and thus no transformation of test
cases was considered. Consequently, they do not support co-
migration of test cases. The approaches that support modular
construction of transformation methods provide a higher level
of flexibility as they rely on a set of predefined building
blocks for methods. The method engineering approach, pre-
sented in [12], enables modular construction, but is specialized
for migration to service-oriented environments. This issue is
addressed by the MEFiSTO Framework [3] by providing a
general solution for modular construction of situation-specific
migration methods. However, similarly to the method tailoring
approaches, these two approaches do not address the migration
of test cases (except ARTIST [11] to some extent) as well. The
existing approaches in the test case evolution are predomi-
nantly focusing on the continuous co-evolution of test cases.
In [13], a semi-automatic approach is presented that supports
test suite evolution through test case adaptations. Existing test
cases are repaired and new test cases are generated to react
to incremental changes in the software system. In [14], a
method is proposed which should improve the model-based
test efficiency by co-evolving test models. As part of this
work, software model evolution patterns as well as their effects
on test models are studied in order to apply updates directly
to the tests. All in all, the existing approaches deal only

with incremental changes and not coarse grained changes, i.e.,
conceptual changes that often happen in software migration.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a framework that enables a
modular construction of context-specific, model-driven mi-
gration methods for test cases. The framework consists of a
method base and a method engineering process. The method
base contains method fragments, as atomic building blocks
of a migration method, and method patterns which encode
specific migration strategies. In order to adequately address
the co-evolution in test case co-migration, we propose a set of
co-migration methods that encode the information about the
dependency between the system and test case migration. In
future work, we intend to conduct a quality analysis of the
constructed test migration methods regarding quality criteria
like completeness or correctness.

REFERENCES

[1] J. Bisbal, D. Lawless, B. Bing Wu, and J. Grimson, “Legacy information
systems: issues and directions,” IEEE Software, 1999.

[2] T. Mens and S. Demeyer, Software Evolution, 1st ed. Springer
Publishing Company, Incorporated, 2008.

[3] M. Grieger, M. Fazal-Baqaie, G. Engels, and M. Klenke, “Concept-based
engineering of situation-specific migration methods,” in Proceedings of
the 15th International Conference on Software Reuse: Bridging with
Social-Awareness, 2016.

[4] B. Henderson-Sellers, J. Ralyté, P. J. Ågerfalk, and M. Rossi, “Situa-
tional method engineering,” in Springer Berlin Heidelberg, 2014.

[5] A. Fuhr, A. Winter, U. Erdmenger, T. Horn, U. Kaiser, V. Riediger, and
W. Teppe, “Model-Driven Software Migration - Process Model, Tool
Support and Application,” in Migrating Legacy Applications: Challenges
in Service Oriented Architecture and Cloud Computing Environments.
IGI Global, 2012.

[6] E. J. Chikofsky and J. H. Cross, “Reverse Engineering and Design
Recovery: A Taxonomy,” IEEE Software, 1990.

[7] R. Kazman, S. Woods, and S. Carriere, “Requirements for integrating
software architecture and reengineering models: CORUM II,” in Pro-
ceedings Fifth Working Conference on Reverse Engineering. IEEE
Comput. Soc, 1998.

[8] OMG, Architecture-driven Modernization: Abstract Syntax Tree Meta-
model (ASTM)- Version 1.0. Object Management Group, 2011.

[9] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot, “MoDisco,” in
Proceedings of the IEEE/ACM international conference on Automated
software engineering - ASE ’10. ACM Press, 2010.

[10] C. Zillmann, A. Winter, A. Herget, W. Teppe, M. Theurer, A. Fuhr,
T. Horn, V. Riediger, U. Erdmenger, U. Kaiser, D. Uhlig, and Y. Zim-
mermann, “The SOAMIG Process Model in Industrial Applications,”
in 2011 15th European Conference on Software Maintenance and
Reengineering. IEEE, 2011.

[11] A. Menychtas and E. Al., “Software modernization and cloudification
using the ARTIST migration methodology and framework,” Scalable
Computing: Practice and Experience, 2014.

[12] R. Khadka, G. Reijnders, A. Saeidi, S. Jansen, and J. Hage, “A method
engineering based legacy to soa migration method,” in 27th IEEE
International Conference on Software Maintenance (ICSM), 2011.

[13] M. Mirzaaghaei, F. Pastore, and M. Pezze, “Supporting test suite
evolution through test case adaptation,” in 2012 IEEE Fifth International
Conference on Software Testing, Verification and Validation, 2012, pp.
231–240.

[14] E. J. Rapos, “Co-evolution of model-based tests for industrial automotive
software,” in 2015 IEEE 8th International Conference on Software
Testing, Verification and Validation (ICST), 2015, pp. 1–2.

	Introduction
	Method Fragments
	Method Patterns
	Co-Migration Method Patterns
	Related Work
	Conclusion and Future Work
	References

