
Cross-domain Correspondences
for Explainable Recommendations

Aaron Stockdill

Daniel Raggi

Mateja Jamnik

aaron.stockdill@cl.cam.ac.uk

daniel.raggi@cl.cam.ac.uk

mateja.jamnik@cl.cam.ac.uk

University of Cambridge, UK

Grecia Garcia Garcia

Holly E. A. Sutherland

Peter C.-H. Cheng

g.garcia-garcia@sussex.ac.uk

h.sutherland@sussex.ac.uk

p.c.h.cheng@sussex.ac.uk

University of Sussex, UK

Advait Sarkar

advait@microsoft.com

Microsoft Research

Cambridge, UK

ABSTRACT

Humans use analogies to link seemingly unrelated domains. A

mathematician might discover an analogy that allows them to use

mathematical tools developed in one domain to prove a theorem

in another. Someone could recommend a book to a friend, based

on understanding their hobbies, and drawing an analogy between

them. Recommender systems typically rely on learning statistical

correlations to uncover these cross-domain correspondences, but it

is difficult to generate human-readable explanations for the corre-

spondences discovered.We formalise the notion of ‘correspondence’

between domains, illustrating this through the example of a simple

mathematics problem. We explain how we might discover such

correspondences, and how a correspondence-based recommender

system could provide more explainable recommendations.

KEYWORDS

representation, correspondence, analogy, concept mapping

ACM Reference Format:

Aaron Stockdill, Daniel Raggi, Mateja Jamnik, Grecia Garcia Garcia, Holly E.

A. Sutherland, Peter C.-H. Cheng, andAdvait Sarkar. 2020. Cross-domain Cor-

respondences for Explainable Recommendations. In Proceedings of IUI work-
shop on Explainable Smart Systems andAlgorithmic Transparency in Emerging
Technologies (ExSS-ATEC’20). Cagliari, Italy, 8 pages.

1 INTRODUCTION

When explaining a concept, people adapt their explanation for their

audience [12]. This switch can be motivated by the concept itself,

the audience’s knowledge, or the motivation behind sharing the

concept [11, 15]. Each factor must be balanced by the explainer

before choosing a representation for the explainee.

Consider the problem of finding a closed form solution to the

sum of integers between 1 and n. The ‘formal’ presentation might

be

n∑
i=1

i (1)

which is compact and unambiguous. But it presupposes an under-

standing of higher mathematical notation, while providing no clues

to the closed form solution. One might have to perform an induc-

tion, or identify an equivalent series and work algebraically with

ExSS-ATEC’20, March 2020, Cagliari, Italy
Copyright© 2020 for this paper by its authors. Use permitted under Creative Commons

License Attribution 4.0 International (CC BY 4.0).

Figure 1: The numbers 1 through to 5 as rows of dots.

n + 1

n

Figure 2: The general relationship for n dots from the case

n = 5; by counting the whole grid and halving the result, we

have n(n + 1)/2 black-edged dots.

them; both are advanced techniques to reach the solution n(n+1)/2.
This algebraic representational system (hereafter a representation)
is formally appropriate, but may not be cognitively appropriate.

We can re-represent Equation (1) as in Figure 1, but instantiated

to n = 5, where numbers are rows of dots. Modulo generalisation,

these representations show the same key information, but their

cognitive features are different: the dot diagram hints at the closed

form solutionwhereas in the symbolic representation this is missing.

Now, observing that we have a triangle, applying simple counting

and reflection rules yields the solution in Figure 2.

Symbolic algebra and grids of dots are not equivalent representa-

tions: the former can encode many concepts that the latter cannot.

Nor are the two forms of the problem equivalent: our remark ‘mod-

ulo generalisation’ exposes one difference. But the statements do

capture the same important properties [13]: integers, associativity,
commutativity, equality, etc.

A complication in preserving important properties across repre-

sentations is that the properties take different forms. The symbol 2

becomes ◦◦, while + becomes stacking. Similar to analogy or struc-

tural similarity, we define correspondences [13] as links between
properties which ‘fill the same role’ in their respective representa-

tions. Correspondences are thus both a heuristic for transformation



ExSS-ATEC’20, March 2020, Cagliari, Italy Stockdill et al.

between representations, and part of a justification for why a par-

ticular representation may be suitable for the given problem.

In this paper we explore precisely what correspondences are

and how we can discover them, with the aim of helping users to

discover and understand analogies. Our work is part of a pipeline to

automatically recommend alternative representations to help users

solve mathematics problems. We envisage a complete intelligent

tutoring system capable of understanding the individual student,

and adapting to their needs and preferences dynamically, for each

problem they are tasked to solve. This paper represents one step

towards this goal.

2 MOTIVATION

Analogical reasoning is a powerful tool [7]. Higher-order corre-

spondences describing relationships allow deeper understanding

of both the source and target statements by exploiting their struc-

ture [5]. From education to scientific discovery, insight occurs when

disparate ideas are brought together [2, 6, 8, 16].

We previously introduced in [13] a rep2rep framework for auto-

matically analysing and suggesting to users a suitable alternative

representation for their current problem. The aim is for such intel-

ligent systems to tailor this suggested representation to the needs

of the person solving the problem. Our framework enables one to

describe problems, representations, and the correspondences be-

tween them in a way that can be input to an algorithm which then

produces the appropriate recommendation. The framework pro-

vides templates which analysts can fill with many kinds of values:

types, tokens, patterns, and other properties. Types describe the

grammatical roles in a representation, while tokens are what fills

these roles. Patterns are ‘conceptual groupings’ of properties which

form recognisable units for expert users. Analysts can associate

attributes to properties: this could be types, descriptions, counts, or

other information. Our framework is purposefully general: repre-

sentations are extremely diverse, and we want to encode as many

as possible.

Correspondences between representations are catalogued by

analysts. This passes the burden of discovering analogies to a hu-

man ahead of time; when our algorithm suggests an appropriate

representation, it selects relevant correspondences from this set.

This simplifies the recommendation task considerably, but it leaves

analysts with a formidable cataloguing challenge, so even partially

automating this step is a high priority. We shall explore our ap-

proach to this problem in Section 4.

The final recommendation from the rep2rep algorithm
1
is a list

of potential representations ordered high-to-low by their formal

score. We define the formal score vrq for representation r to encode

problem q as

vrq =
∑
c ∈C

sc · i
q
c ·match

r
q (c) (2)

where C is the set of correspondences, sc is the strength of corre-

spondence c , i
q
c is the importance of c for problem q, and match

r
q (c)

is an indicator function equal to 1 when c is satisfied by the proper-

ties of q and r , and 0 otherwise. Intuitively, we are counting reasons
why representation r is good, and weighting those reasons by both

1
The recommendation is presently based only on the formal properties; ongoing work

incorporates the user profile into the decision.

how important they are to the problem q, and how ‘good’ those

reasons are in general (the correspondence strength s).
Previous work around structure-mapping constructs correspon-

dences between two analogous concepts by matching their internal

associations [4]. This requires well-defined internal structure—in

our digitally catalogued world, such a requirement is increasingly

easily met. But structure-mapping assumes we already know that

two concepts are related, we just need to work out how they are

related. When we are searching for an analogy, we do not know this.

Thus, the purpose of our research is to discover related concepts

through analogy.

We have an implementation of the concepts discussed in this

paper; the code is available at https://github.com/rep2rep/robin.

3 CORRESPONDENCES

In this section, we formalise the idea of correspondence first intro-

duced in [13].

3.1 Transformations

A correspondence associates an encoding of content in one repre-

sentation to an encoding of the same content in another represen-

tation, along with a measure of how well that content is preserved

between them. When both source and target representations are

specified, the correspondences describe how they are analogous;

when only the source representation is specified, the correspon-

dences specify requirements. In the example from Section 1, dots

fulfil the requirements: they can encode integers and summation. A

representation like the lambda calculus would also fulfil the require-

ments, but a Venn diagram representation would not. If instead our

problem required encoding trigonometric functions, our dot repre-

sentation and Venn diagram representations would fail to satisfy

the requirements, and not be recommended.

Formally, we define a correspondence as a triple

⟨p1, p2, s ⟩ (3)

where p1 and p2 are formulae of properties and s is a real value

between 0 and 1 [13]. The property formulae use the connectives

and, or, and not with the expected interpretations. This allows

for sophisticated relationships between representation properties.

Value s denotes the strength of the correspondence: when s = 0,

there is no correspondence, the content is unrelated; when s = 1,

there is a perfect correspondence, the content is the same.

If we wanted to encode the correspondence ‘a

∑
is like stacking

either horizontally or vertically’, we first identify the properties

involved. Properties consist of a kind, a value, and attributes. In

this case, we have a ‘token’ kind of property from an algebraic

representation,

p1 = (token,
∑
,a1)

(with attributes abstracted to a1 for this example), while we have

two ‘pattern’ properties from the dots representation,

p2 = (pattern, stack-horizontal,a2)

and p3 = (pattern, stack-vertical,a3)

(where the attributes are similarly abstracted). The correspondence

would thus be

⟨p1, p2 or p3, 0.9 ⟩. (4)

https://github.com/rep2rep/robin


Cross-domain Correspondences for Explainable Recommendations ExSS-ATEC’20, March 2020, Cagliari, Italy

Note the keyword either in our specification: these target properties
are not independent, so we do not write two correspondences.

Instead, we use a disjunction connective to make the sufficiency of

one property or the other explicit. This is a strong correspondence,

and hence has a high strength of s = 0.9.

Our definition of correspondences makes them explainable. Be-
cause we can inspect which correspondences are activated, we can

describe the analogy. Beyond saying two things are alike, correspon-

dences encode precisely how the two things are alike; with strength,

we can justify how much they are alike. Thus, a description of how

and why an analogy was made could be explicated to the user: to

represent summation, consider stacking the dots horizontally or

vertically.

3.2 Property probabilities

If we consider words to be the atomic units of written English, we

can compute an occurrence probability derived from its frequency

in a particular corpus. Similarly for representations, the property is

the atomic unit; each has an occurrence probability derived from its

frequency in a particular corpus.
2
Under a Bayesian interpretation,

we can assign each property a prior probability. Thus each property

p in a representation is associated with a probability Pr(p).
While having a baseline probability for individual properties is

useful, context gives us further clues. For two analogous problems

in different representations, knowing which properties are present

in one will update our knowledge of the properties present in other.

Returning to our example of adding integers, observing the

∑
oper-

ator in Equation (1) primes us to expect stacking—whether horizon-

tal or vertical—in Figure 1. The conditional probability Pr(p2 | p1)
expresses our knowledge about p2 after observing that p1 is present.

We define Pr(p2 | p1) as per the usual definition, adapted to our

domain and corpus. For a representation A, we can write problems

ai . Each problem can potentially be transformed into suitable prob-

lemsTB (ai ) in representation B. Note thatTB (ai ) is a set; more than

one transformation might be appropriate. Using the count operator

#, and sat(p,q) as a predicate on whether the property formula p is

satisfied by the properties in question q, we have

Pr(p2 | p1) =

∑
i #

{
bj ∈ TB (ai ) | sat(p1,ai ) ∧ sat(p2,bj )

}∑
i #

{
bj ∈ TB (ai ) | sat(p1,ai )

} . (5)

Transformations can be imperfect; we consider the transformation

appropriate if a human expert would be able to reach the same

solution as under the original problem statement.

3.3 Strength

Correspondence strength must reflect the analogical similarity of

the constituent property formulae. Naively, this is the conditional

probability, but conditional probabilities are not directly compara-

ble: Is there a big difference to the prior probability? How much

could the probabilities be different?

2
For now we assign prior probabilities based on expert knowledge. In future work

we will compute such occurrence probabilities from large corpora of problems and

representations.

To address these concerns, we define the strength of the corre-

spondence ⟨p1, p2, s ⟩ to be

s =
Pr(p2 | p1) − Pr(p2)

1 − Pr(p2)
. (6)

When Pr(p2 | p1) < Pr(p2), we redefine the correspondence to be

between p1 and notp2:

Pr(notp2 | p1) − Pr(notp2)

1 − Pr(notp2)
=

Pr(p2) − Pr(p2 | p1)

Pr(p2)
. (7)

Both are undefinedwhen Pr(p1) or Pr(p2) are 0 or 1.We consider this

an acceptable compromise, as this indicates either an ‘impossible’

property, or a ‘guaranteed’ property. Neither case is useful in our

framework.

Informally, Equation (6) states the increase in probability of ob-

serving p2 relative to the maximum potential increase of observing

p2. The numerator is the difference between the informed and un-

informed probability of p2, while the denominator is the difference

between perfect knowledge of p2 and the uninformed probability

of p2. This balances the need to measure the difference in proba-

bility against the confounding effect of p2 already having a high

probability. Similarly, Equation (7) informally states the decrease in
probability of p2 relative to the potential decrease of p2.

Correspondence strength is related to two existing concepts:

mutual information [3], and Kullback-Leibler (KL) divergence [9].

Mutual information is a symmetric measure of how much infor-

mation is shared between two distributions. This symmetry makes

it inappropriate for our use-case: correspondences are not neces-

sarily symmetric, one ‘direction’ can be stronger than the other.

KL divergence is asymmetric, but not bound to the interval [0, 1].

Because properties behave as Bernoulli random variables, we can

normalise the KL divergence to the interval [0, 1] with information

content: KL(Pr(p1 | p2) ∥ Pr(p1))/I(p1). But KL divergence forms

a leaky abstraction. As we will see in Section 4, strength as de-

fined in Equation (6) encapsulates relationships between property

formulae only in terms of prior probabilities and strength; KL di-

vergence requires calculations on posterior probabilities that are

not necessarily available.

4 EXPLANATIONS

Correspondences are central to our representation recommendation

process, so we need to understand how they are discovered and how

they can be interpreted as explanations for the recommendation.

4.1 Discovering correspondences

Consider the correspondence between numbers and dots, specifi-

cally, between 2 and ◦◦: these fill the same role in their respective

representations. Hence,

⟨ (token, 2, {hasType = number}),
(token, ◦◦, {hasType = dot-arrangement}), 1.0 ⟩

Where does this come from? For a human this is ‘obvious’, but

it must be deduced from somewhere. We propose five rules to

automatically discover correspondences split into three groups:

identity, correspondence-based, and representation-based. What

follows is a high-level summary; further technical details are in

Appendix A. Figure 3 shows a diagrammatic interpretation of four

of the rules.



ExSS-ATEC’20, March 2020, Cagliari, Italy Stockdill et al.

a1

a2

b1

b2

c1

c2

Figure 3: A diagram of three representations, each with two

properties. Some properties are related through an attribute,

the dashed arrow. Correspondences are solid arrows. Some

example discoveries are: a1b1 and b1c1 generate a1c1 with

[cmp]; a1b1 generates a2b2 with rule [val]; a2b2 generates a1b1
with rule [atr]; and a2b2 generates b2a2 with rule [rev].

The rule of identity states that two properties with the same

kind and same value are perfectly corresponding:

p1 ≡ p2
⟨p1, p2, 1.0 ⟩

[idy] (8)

where the relation ≡ is the string match on kinds and values. This

rule implies that correspondences are reflexive with strength 1, and

allows naturally overlapping representations (e.g., algebra and a

tabular representation may reuse numbers) to map cleanly into one

another.

Correspondence-based rules build new correspondences from

existing ones. The first is the rule of reversal,

⟨p1, p2, s ⟩

⟨p2, p1, s ′ ⟩
[rev] (9)

where

s ′ = s ·
Pr(p1)

1 − Pr(p1)
·
1 − Pr(p2)

Pr(p2)
. (10)

This allows us to ‘walk backwards’ along a correspondence. The

second is the rule of composition,

⟨p1, p2, s ⟩ ⟨p2, p3, s
′ ⟩

⟨p1, p3, s · s ′ ⟩
[cmp] (11)

allowing us to chain together correspondences. Note that due to

independence assumptions, the correspondence between p1 and p3
might be stronger than calculated; the product s ·s ′ is a conservative
suggestion.

Finally, representation-based rules exploit the internal structure

of each representation to suggest new ‘parallel’ correspondences,

as illustrated in Figure 3 by a1b1 and a2b2. The two rules are dual:

the rule of attributes

⟨p1, p2, s ⟩ attr(p1, l, e1) attr(p2, l, e2)

⟨ e1, e2, s ⟩
[atr] (12)

and the rule of values

⟨ e1, e2, s ⟩ attr(p1, l, e1) attr(p2, l, e2)

⟨p1, p2, s ⟩
[val] (13)

where attr(p, l, e) is a predicate asserting that property p has an

attribute with label l and entry e . These rules allow us to use an

‘internal relationship’ (encoded with attributes) such as type infor-

mation to build inter-representational correspondences.

Let us explore these rules in action using our examples of al-

gebra and dots. Table 1 lists a subset of the properties from each

representation.
3

3
Taking this table as the universe of properties, there are eight potential correspon-

dences, four of which are meaningful. Here we provide one, derive two, and leave the

Table 1: Some properties of the algebraic and dot represen-

tations. We will use these to build correspondences.

Repr. Properties

Algebraic (type, number,�)

(token, 1, {hasType = number})

Dot (type, dot-arrangement,�)

(token, ◦, {hasType = dot-arrangement})

Because these two representations are disjoint—no properties

are equivalent, sharing a kind and value—the rule of identity [idy]

cannot be used. We must provide an initial seed correspondence,

something the analyst might notice quickly. For this, we use

⟨ (token, 1, {hasType = number}),
(token, ◦, {hasType = dot-arrangement}), 1.0 ⟩

That is, 1 corresponds perfectly to ◦. From this seed we can apply

rules to generate new correspondences. First, we apply the rule of

reversal to associate ◦ with 1:

⟨ (token, 1, {hasType = number}),
(token, ◦, {hasType = dot-arrangement}), 1.0 ⟩

⟨ (token, ◦, {hasType = dot-arrangement}),
(token, 1, {hasType = number}), 0.9 ⟩

[rev]

Notice the strength reduced slightly: this is because in the catalogue

a 1 occurs more often than a ◦. (In this case, ◦◦ is not two ◦s, they

are different dot arrangements.)

Using the correspondence between ◦ and 1, we can discover

correspondences between their attributes. Applying the rule of

attributes, we have a correspondence between numbers and dot

arrangements. The derivation is shown in Equation (14) on the

following page, where we abuse the attribute notation to state the

attributes share a label.

We can continue applying rules in this way to discover new

possible correspondences. A richer set of properties would allow

for more rule applications and more discoveries.

4.2 Correspondences as explanations

Understanding both the definition and source of correspondences,

we can interpret their function in making a recommendation. Cor-

respondences provide two modes of explanation: descriptive expla-

nation, and constructive explanation.

A descriptive explanation is useful when two structures are con-

sidered the same; for example, our statements about summing num-

bers in Equation (1) and arranging dots in Figure 1 are analogous.

How they are analogous might be unclear, but the correspondences

that link them form an explanation. Consider our correspondence

⟨ (token, 1,a1), (token, ◦,a2), 1.0 ⟩

linking 1 and ◦. Or consider the more sophisticated correspondence

from Equation (4) linking the

∑
operator with stacking. By inform-

ing the user that these are the strongest correspondences which

are satisfied by both the source and target statements, we explain

how they are analogous.

final as an exercise for the reader; there are at least two different derivations of the

final correspondence.



Cross-domain Correspondences for Explainable Recommendations ExSS-ATEC’20, March 2020, Cagliari, Italy

⟨ (token, ◦, {hasType = dot-arrangement}), (token, 1, {hasType = number}), 1.0 ⟩ hasType = hasType

⟨ (type, number,�), (type, dot-arrangement,�), 1.0 ⟩
[atr] (14)

Conversely we can consider constructive explanations. If a target

structure is not known, we can use correspondences to describe

what properties the analogous statement should have. Consider

again Equation (1), our algebraic problem statement, but this time

without knowing the equivalent statement in dots. Using the same

correspondences from our descriptive explanation, we can suggest

to a student that this problem might be solved by representing 1

as ◦, and to use either vertical or horizontal stacking to convey

the

∑
. Such hints can support progress through the problem, and

potentially reveal to the student deep insights into numbers and

summation.

Contrast our correspondences with alternative approaches: log-

ical or statistical recommendations [1]. Logical approaches are

restrictive, requiring strong guarantees about the domains while

failing to capture the inherently fuzzy nature of connections people

make between domains. In particular, analogies which are merely

‘good enough’—in the sense that they have the shape of similarity

without being rigorously correct—cannot be reasoned with formally.

Statistical approaches solve the problems associated with logical

approaches, but obscure the underlying reasoning. Without any

internal structure, the suggestions are opaque to the user: there is

no justification or support on why this is analogous, and thus a

good recommendation. Correspondences aim to allow a degree of

uncertainty through strength while retaining sufficient formality

through properties to provide valuable explanations.

5 DISCUSSION

Correspondences are one part of our representation recommenda-

tion pipeline. Previous work has shown the recommendations in

general are meaningful [13]. But it is worth analytically examining

the quality of correspondences in isolation. In this section we con-

sider correspondences and the discovery rules with respect to their

theoretical motivation and their generality. A discussion about the

theoretical limitations of correspondences is in Appendix B.

5.1 Cognitive grounding

Human reasoning takes many forms, but broadly we can describe

reasoning as deductive, inductive, or abductive [10]. The simplest

to automate—captured by the identity, reversal, and transitivity

rules—is deductive reasoning. Through operations on existing cor-

respondences we can deduce new correspondences. Thus, corre-

spondences form a sort of logic.

While the rules of identity, reversal and transitivity are moti-

vated by deductive reasoning, attribute- and value-correspondence

rules are motivated by inductive reasoning. Specifically, we assume

a meaningful structure must be preserved, and this structure is

exposed through relationships. By observing and following these

relationships, we can infer new correspondences.

Foundational work by Gentner explored how analogical power is

proportional to the relations preserved, compared to the superficial

(type, title,�) (type, character,�) (type, actor,�)

(token, Blade Runner, {isThe = title})

(token,Harrison Ford, {isThe = actor})

(token, Rick Deckard, {isThe = character,
playedBy = Harrison Ford})

Figure 4: Example properties for a Films category.

(type, title,�) (type, character,�) (type,writer,�)

(token,The Caves of Steel, {isThe = title})

(token, Isaac Asimov, {isThe = writer})

(token, Elijah Baley, {isThe = character})

Figure 5: Example properties for a Books category.

attributes
4
preserved [5]. Indeed, Gentner defines an analogy to

be ‘a comparison in which relational predicates, but few or no

object attributes, can be mapped from base to target’ [5]. Our rules

address this with the ‘hasType’ attribute: through the types of

patterns or relation-tokens, we can extract these relation mappings.

The extended type system accommodates higher-order relations.

Our property framework can be extended beyond typing rela-

tions with other attributes, which act as meta-relations; these are

automatically used by the existing discovery rules.

5.2 Generality

Correspondences, and the rules to discover them, were developed

within our rep2rep representation recommendation framework. But

the underlying idea—that analogical similarities across domains are

discoverable—abstracts to a more general setting. We now define

the necessary components to apply correspondences, and gener-

alise the discovery rules on these components (full details are in

Appendix C).

First, we can observe that the rules [rev] and [cmp] are context-

independent, so we can leave them alone. Second, we observe that

‘properties’ can be made opaque; instead we assume only a set of

atoms. The [val] and [atr] rules relied on attributes from prop-

erties, so must be replaced. Instead, we define a single rule [rel],

which is the same except for replacing attr(p, l, e) with R(p, e) for
some relation R on atoms p and e . Finally, we keep the equivalence

relation ≡ from the [idy] rule; for each setting define it as a special

equivalence relation on the atoms. In this way we leave behind

the context of representation selection, and instead have a general

correspondence framework for any domain.

4Attribute here is used in the manner of Gentner [5]; these are not what we define

as attributes. All other uses of attribute outside direct quotes are according to our

definition of attribute.



ExSS-ATEC’20, March 2020, Cagliari, Italy Stockdill et al.

To demonstrate this generalisation, we can encode the problem of

recommending a product to a customer, rather than a representation

to a student. Our sets of atoms are no longer representations, but

product categories: books and films, for example.We use the rep2rep
property structure to help us manage the encoding, so our atoms

remain (kind, value, attributes). Our kinds are limited to types and

tokens, but the values are diverse, ranging over names, places and

dates. We keep our relations as attributes, but use new labels such as

‘isThe’, or ‘playedBy’. The equivalence relation ≡ is string equality

on kinds and values. We give some sample properties in Figures 4

and 5.

In our simple example, we can apply the rule of identity to

title, and also to character, because these two categories overlap.

From this we can apply the rule of value using the ‘isThe’ attribute

and character correspondence, thus deducing that Rick Deckard
corresponds to Elijah Baley. The derivation is:

Let p1 = (token, Rick Deckard, {isThe = character,

playedBy = Harrison Ford})

and p2 = (token, Elijah Baley, {isThe = character}) in

⟨ (type, character,�), (type, character,�), 1.0 ⟩

attr(p1, isThe, character) attr(p2, isThe, character)

⟨p1, p2, 1.0 ⟩
[val]

Over such constrained property sets this is trivial, but exemplifies

the application of our framework to a new domain.

6 SUMMARY AND CONCLUSIONS

We introduced and motivated a theory of correspondences: relation-
ships between property formulae which ‘fill the same role’ across

representations. Our theory of correspondences is grounded in

propositional logic and probability, with rules for extending the

set of correspondences in an interactive loop with human analysts.

Our analysis demonstrates the cognitive basis of these discovery

rules, and the generality of correspondences.

We described correspondences’ use in building analogies for

problem solving through a simple counting problem, and sketched

how the same frameworks could be adapted to a domain such as

product recommendation. Further applications include automated

and interactive theorem proving, business visualisation tools, di-

agnostic and reporting systems, and many other domains where

clear communication with justification is paramount.

In future work we will explore generalisations of rules to work

over formulae, automatic description generation from correspon-

dences, and exploring the philosophical position of correspondences

in knowledge representation.

ACKNOWLEDGMENTS

Aaron Stockdill is supported by the Hamilton Cambridge Interna-

tional PhD Scholarship. This work was supported by the EPSRC

Grants EP/R030650/1 and EP/R030642/1. We wish to thank the four

anonymous reviewers, whose comments helped to improve the

presentation of this paper.

REFERENCES

[1] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. 2013. Recommender

systems survey. Knowledge-Based Systems 46 (2013), 109–132.
[2] Joan Condell, John Wade, Leo Galway, Michael McBride, Padhraig Gormley,

Joseph Brennan, and Thiyagesan Somasundram. 2010. Problem solving tech-

niques in cognitive science. Artificial Intelligence Review 34, 3 (Oct 2010), 221–234.

[3] Thomas M. Cover and Joy A. Thomas. 2005. Elements of Information Theory. John
Wiley & Sons, Ltd, Hoboken, NJ, USA.

[4] Brian Falkenhainer, Kenneth D. Forbus, and Dedre Gentner. 1989. The structure-

mapping engine: Algorithm and examples. Artificial Intelligence 41, 1 (1989),

1–63.

[5] Dedre Gentner. 1983. Structure-mapping: A theoretical framework for analogy.

Cognitive Science 7, 2 (1983), 155–170.
[6] Dedre Gentner. 2002. Analogy in Scientific Discovery: The Case of Johannes Kepler.

Springer US, Boston, MA, USA, 21–39.

[7] Naomi Goldblum and Shifra Glick. 2001. The Brain-Shaped Mind: What the Brain
Can Tell Us About the Mind. Cambridge University Press, Cambridge, UK.

[8] Tom Hope, Joel Chan, Aniket Kittur, and Dafna Shahaf. 2017. Accelerating

Innovation Through Analogy Mining. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD ’17).
ACM, New York, NY, USA, 235–243.

[9] S. Kullback and R. A. Leibler. 1951. On Information and Sufficiency. The Annals
of Mathematical Statistics 22, 1 (1951), 79–86.

[10] Gerhard Minnameier. 2010. The logicality of abduction, deduction, and induction.

In Ideas in action: Proceedings of the applying Peirce conference. Nordic Pragmatism

Network Helsinki, 239–251.

[11] Daniel Moody. 2009. The “Physics” of Notations: Toward a Scientific Basis for

Constructing Visual Notations in Software Engineering. IEEE Transactions on
Software Engineering 35, 6 (2009), 756–779.

[12] Johanna D Moore. 1993. What Makes Human Explanations Effective?. In Pro-
ceedings of the 15th Annual Conference of the Cognitive Science Society. Lawrence
Elbaum Associates, Hillsdale, NJ, USA, 131–136.

[13] Daniel Raggi, Aaron Stockdill, Mateja Jamnik, Grecia Garcia Garcia, Holly E. A.

Sutherland, and Peter C.-H. Cheng. 2019. Inspection and Selection of Representa-

tions. In Intelligent Computer Mathematics, Cezary Kaliszyk, Edwin Brady, Andrea
Kohlhase, and Claudio Sacerdoti Coen (Eds.). Springer International Publishing,

Cham, 227–242.

[14] JA Robinson. 1971. Computational logic: the unification algorithm. Machine
Intelligence 6 (1971), 63–72.

[15] Iris Vessey. 1991. Cognitive Fit: A Theory-Based Analysis of the Graphs Versus

Tables Literature. Decision Sciences 22, 2 (1991), 219–240.
[16] Rina Zazkis and Peter Liljedahl. 2004. Understanding Primes: The Role of Repre-

sentation. Journal for Research in Mathematics Education 35, 3 (2004), 164–186.

A DISCOVERY RULES

In this paper we introduced five rules to discover new correspon-

dences. Here we build on that brief overview.

A.1 Attribute and value

Attributes are used to suggest new correspondences based on ex-

isting correspondences. Looking again at our example, we might

state that a 2 from our algebraic representation is like a ◦◦ from

our dots representation. That is, we have the correspondence

⟨ (token, 2, {hasType = number}),
(token, ◦◦, {hasType = dot-arrangement}), 1.0 ⟩

The two corresponding properties both have entries for the ‘hasType’

attribute; perhaps those entries themselves correspond? This is the

first rule for correspondence discovery:

⟨p1, p2, s ⟩ attr(p1, l, e1) attr(p2, l, e2)

⟨ e1, e2, s ⟩
[atr] (15)

where attr(p, l, e) is a predicate asserting that property p has an

attribute with label l and entry e . Similarly we can define the dis-

covery rule over matching attributes:

⟨ e1, e2, s ⟩ attr(p1, l, e1) attr(p2, l, e2)

⟨p1, p2, s ⟩
[val] (16)



Cross-domain Correspondences for Explainable Recommendations ExSS-ATEC’20, March 2020, Cagliari, Italy

which is identical, but with the property (p) and entry (e) corre-
spondences swapped.

By way of example, using our 2/◦◦ correspondence and the [atr]

rule, we can derive a correspondence between number and dot

arrangements. The original properties are in correspondence, they

both have an attribute with a common label, and so we conclude

that the values of those labels also correspond.

These rules, and in particular the [val] rule, expose the limi-

tations of this system:
5
such a rule will generate many nonsense

results. All numbers have the type ‘number’, and all dot arrange-

ments have the type ‘dot-arrangement’, but we do not want the

Cartesian product of numbers and dot arrangements as correspon-

dences! While unfortunate, this rule redeems itself when consider-

ing more complex types. Consider the binary operator +, a token

in the symbolic algebra representation; it has type

number × number → number.

Consider also stacking dots, a pattern in the dots representation; it

has type

dot-arrangement × dot-arrangement → dot-arrangement.

Given the correspondence between numbers and dot arrangements,

automatically associating these is a valuable contribution to the

correspondence set.
6

Extending these rules to work on correspondences which contain

property formulae is conceptually subtle, but in practice simple.

Rather than requiring the antecedent correspondence to be ex-

actly between the properties or attributes under consideration, it

is sufficient that there be an implication relationship between the

property formulae in the correspondence, and the properties or

attributes in the representation: from property to correspondence

on the left, and from correspondence to property on the right. For

example, we might use correspondences that contain the or and

and connectives in the [atr] rule:

⟨p1 or pX , p2 and pY , s ⟩ attr(p1, l, e1) attr(p2, l, e2)

⟨ e1, e2, s ⟩

More generally, if we have a property pa , and a correspondence

containing the left property formula p′a , we can still use the [atr]

and [val] rules if and only if pa → p′a . Conversely, if we have a
property pb , and a correspondence containing the right property

formula p′b , we need p
′
b → pb .

A.2 Reversal and composition

Representation tables are not the only source of information that

we can use to suggest correspondences. The set of correspondences

itself can be used to discover correspondences through two rules:

reversal, and composition.

A reversed correspondence is exactly as expected: if we know

p1 corresponds to p2, then we can be infer that p2 corresponds to
p1 as well.

⟨p1, p2, s ⟩

⟨p2, p1, s ′ ⟩
[rev] (17)

5
We will explore this further in Appendix B.

6
We have extended the rules in (15) and (16) to use unification [14] (treating all types

as unique type variables) for the Hindley-Milner–style types.

Importantly, s does not necessarily equal s ′: in one direction, the

correspondence might be strong, while the reversed direction might

be weaker. This is analogous to Bayes’ Theorem: if it is raining, I

can be very confident the grass is wet; if the grass is wet, I might

suspect it is raining but cannot be sure.

To determine the reversed strength s ′, we return to the definition
of correspondence strength, Equation (6). We can show that

s ′ = s ·
Pr(p1)

1 − Pr(p1)
·
1 − Pr(p2)

Pr(p2)
. (18)

That is, the reversed correspondence strength s ′ is the original

correspondence strength s modulated by the ratio between the

probability of each property formula being satisfied or not. Our

assumption that Pr(p2 | p1) ≥ Pr(p2) guarantees s
′
will be between

0 and 1.

Similarly to reversing correspondences, we can compose cor-

respondences. If we have that p1 corresponds to p2, and p2 corre-
sponds top3, then we can conclude thatp1 in someway corresponds

to p3.
⟨p1, p2, s ⟩ ⟨p2, p3, s

′ ⟩

⟨p1, p3, s · s ′ ⟩
[cmp] (19)

Consequently the strength of composed correspondences is

monotonically decreasing; longer chains result in weaker corre-

spondences. This is a conservative estimate which results from

the independence assumption: p1 and p3 might be more strongly

corresponding, but this is expert knowledge which the analyst must

provide.

While the reversal rule generalises to formulae trivially, the

composition rule is more subtle. Specifically, we can move from re-

quiring exact equality on property p2 to requiring only implication.

That is, we can rewrite the composition rule as

⟨p1, p2, s ⟩ p2 → p′
2

⟨p′
2
, p3, s

′ ⟩

⟨p1, p3, s · s ′ ⟩
.

Knowing more about the properties and the representations these

formulae are acting over would allow even greater control: we

could move any unsatisfied properties from p′
2
to p1, for example.

But without careful representation checks this would build repre-

sentation formulae which are heterogeneous—they could only be

satisfied by a blended representation. This is beyond the scope of

the project.

A.3 Identity

The final correspondence discovery rule is identity:
p1 ≡ p2

⟨p1, p2, 1.0 ⟩
[idy] (20)

where p ≡ p′ is true if and only if p and p have identical kinds and

values. This rule of identity links representations that overlap; we

know that this is a correspondence between the two representations.

This can help bootstrap the other discovery rules: if properties have

the same kind and value, but their attributes are different, then we

can apply the attribute rule, [atr], for example.

A.4 Order and strength

These rules are applied repeatedly until either the analyst is satisfied,

or there are no more suggestions. But the rules have no inherent



ExSS-ATEC’20, March 2020, Cagliari, Italy Stockdill et al.

order, nor are correspondence derivations unique; the same cor-

respondence can be discovered multiple times, and with different

strengths. We leave it to the analyst to decide which strength is

appropriate, but if they do decide to update the strength we have a

problem: any correspondence previously derived from the updated

correspondence will in turn need its strength updated. This need

propagates, carrying updated strengths through the correspondence

set.

To address this, we maintain a dependency graph of derived

correspondences to track which correspondences to update. We

also use this graph to avoid cycles—ensuring a correspondence is

not used to derive itself.

B INCOMPLETENESS AND UNSOUNDNESS

Viewed as an analyst-support tool, our implementation of corre-

spondence discovery is ‘complete’, or more accurately saturating.

If there exists a correspondence which can be discovered by these

rules, then our utility will suggest it to the analyst. The tool uses

an unpruned graph search over states of the correspondence set,

with edges defined by applying the rules to the correspondence set.

When considering the completeness and soundness of the rules,

we consider the broader space of valid correspondences. No condi-

tions are both necessary and sufficient for a valid correspondence—

such conditions would constitute general knowledge—so our rules

will violate one or both of completeness and soundness. Although

both are violated, we have erred towards avoiding generating a lot

of unsound correspondences. This trade-off avoids overwhelming

the analyst with many meaningless correspondences, at the cost of

potentially missing rare-but-insightful correspondences.

Which correspondences get discovered (completeness) depends

on the starting set of correspondences. Assuming an empty set

with totally disjoint representations—that is, there are no prop-

erties with identical kinds and values—the search is immediately

terminated. Even beyond this degenerate case, correspondences

which are ‘isolated’ are still unreachable.

Reaching these unreachable correspondences in a principled

way is difficult. Assuming our descriptions of representations are

complete, we can generate the countably infinite stream of corre-

spondences; then all such isolated correspondences are reachable.

But the correspondences generated will be mostly meaningless,

leaving the analyst in no better position than when they started.

Thus we will not attempt completeness until stricter correspon-

dence validity conditions are discovered.

Conversely, we are unable to eliminate incorrect (unsound) cor-

respondences from our suggestions. This is primarily an issue of

meaning: the tokens and types in a representation are given sym-

bols that are meaningful to an analyst. When two symbols occur

in the same relations, they are effectively indistinguishable from

synonyms. Using types for discovery presents an obvious example:

both 2 and 76 have the same type, number, so when presented with

◦◦—of type dot arrangement, known to correspond to number—do

we create a correspondence with 2, 76, both, or neither? For such

simple examples, domain-specific knowledge can act as a heuristic,

but more generally we hit the ‘general knowledge’ problem: how

do we know, a priori, which correspondence is more meaningful?

C GENERALISED RULES

In Section 5, we briefly discussed how the correspondence frame-

work generalises to domains outside problem solving.

Thus the overall structure required for correspondences is (S, Pr(· |

·),≡,∼). Set S consists of triples S = (AS ,RS , PrS ). Let AS be a set

of atoms, RS a set of relations onA2

S , . . . ,A
k
S , and PrS : AS → [0, 1]

be a probability function. Further, define a function Pr(· | ·) :

AS × AT → [0, 1], where the subscripts S and T refer to tuples

in S. Similarly we define an equivalence relation ≡ : AS × AT .
We also require an equivalence relation ∼: RS × RT between the

relations of each triple.

With this generalised structure, we can update our discovery

rules for correspondences.
7
Reversal and transitivity remain un-

changed, as they are independent of the structure. Identity is simple:

a ≡ b

⟨a, b, 1.0 ⟩
[idy] (21)

So long as a and b are equivalent, then we can put them in cor-

respondence automatically. The equivalence relation should be

simple; a typical implementation would be equality.

The two remaining discovery rules—for attributes, and for values—

collapse down to a single rule. We define the rule on relations as

r ∼ r ′ r (a1, . . . ,an ) r ′(b1, . . . ,bn )

⟨a1, b1, s1 ⟩ · · · ⟨ak , bk , sk ⟩

⟨ak+1, bk+1, s
′ ⟩ · · · ⟨an, bn, s ′ ⟩

[rel] (22)

where we compute s ′ by

s ′ =
1

n − 1

k∑
i=1

si . (23)

This rule states that if the equivalent predicate is satisfied by some

number of corresponding atoms, then the remaining atoms may

also correspond. We only consider the case where k ≥ 1.

Note in s ′ the difference between the sum limit k and the fraction

denominator n − 1. This reflects the proportion of the predicate

already satisfied: if the predicate is almost complete, the strength

should be closer to that of the antecedent correspondences; if the

predicate is mostly inferred, the strength should be appropriately

weaker. The normalising term n − 1 occurs because we fix k ≥ 1,

leaving at most n − 1 degrees of freedom. In the binary case, this is

a copy of the antecedent correspondence strength, s ′ = s .
Much like in the special case of attributes and values, we do not

need a literal equality between the atoms in the relation and the

atoms in the correspondences. We need only that for atom ai in the

relation r and property formula a′i in the left of the correspondence

that ai → a′i , and for the atom bi in the relation r ′ and property

formula b ′i in the right of the correspondence that b ′i → bi .

7
In the following rules, we abstract away the matching on S ,T ∈ S, etc. We assume

that a ∈ AS , b ∈ AT , r ∈ RS , and r ′ ∈ RT .


	Abstract
	1 Introduction
	2 Motivation
	3 Correspondences
	3.1 Transformations
	3.2 Property probabilities
	3.3 Strength

	4 Explanations
	4.1 Discovering correspondences
	4.2 Correspondences as explanations

	5 Discussion
	5.1 Cognitive grounding
	5.2 Generality

	6 Summary and conclusions
	Acknowledgments
	References
	A Discovery rules
	A.1 Attribute and value
	A.2 Reversal and composition
	A.3 Identity
	A.4 Order and strength

	B Incompleteness and unsoundness
	C Generalised rules

