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ABSTRACT
What if the trust in the output of a predictive model could
be acted upon in richer ways than a simple binary decision
of accept or reject? Designing assistive AI tools for medical
specialists entails supporting a complex but safety-critical de-
cision process. It is common that decisions in this domain can
be decomposed to a combination of many smaller decisions.
In this paper, we present Verification Staircase – a design
strategy that can be used for such scenarios. The verification
staircase is when multiple interactive assistive tools are com-
bined to allow for a nuanced amount of automation to aid
the user. This can support a wide range of prediction quality
scenarios, spanning from unproblematic minor mistakes to
misleading major failures. By presenting the information in
a hierarchical way, the user is able to learn how underlying
predictions are connected to overall case predictions, and
over time, calibrate their trust so that they can choose the
appropriate level of automatic support.
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1 INTRODUCTION
Machine learning (ML) techniques has potential impacts on
clinical decision making in the field of digital pathology, how-
ever, a barrier is adapting experimental results into everyday
clinical use. One issue is that while results in experimental
settings show impressive overall results, there is usually a rel-
evant subset of cases where the model performs significantly
worse than humans [6, 8]. Other issues such as dataset shift
[7] and bias [13] also motivate a model of interaction with
the predictive component positioned in the loop of human
decision making.

In this paper, based on our experiences from a dual industrial-
academic perspective, we outline a design strategy that we
believe can be useful to resolve some of the challenges with
designing human-ML collaborative systems.
The primary issues addressed by our proposed design

strategy is enabling the user to answer questions such as:

• When do I trust the prediction enough to use automatic
support, and when should I employ another diagnostic
method?

• How can I justify my decision if a colleague asks?
• How can I feel safe in my conclusion?

In our suggested design strategy, multiple characteristics
combine to enable answers to such questions, including in-
the-loop correction, decomposition to allow explanations
through causal inference and designing to afford use with
both high performing predictions as well as border-case
accuracies.
Our insights are from ongoing human-centered design

explorations. The presented perspective is rooted in our
experience as UX practitioners within the field of digital
pathology, with a strong emphasis on practical relevance.
Typically, the goal of our design effort is to make systems
where the resulting value is co-created between artifacts
and humans in the context of use [1]. Thus we approach
explainability pragmatically, starting from users’ goals and
needs. Our account is less concerned about taxonomy such
as distinguishing between explanations, justifications, inter-
pretability and transparency [5] and more on our goal of
creating systems that in a near future could aid clinicians to
create better patient outcomes.
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The layout of this paper is as follows; first we present
and motivate the strategy of verification staircase. Second,
we illustrate the concept by an explorative design case for
assisted quantification in digital pathology. Finally, we dis-
cuss our concept in the context of explainable intelligent
user interfaces and outline our proposed continuation of the
research.

2 FROM CLIFFS TO STAIRCASES
Consider a predictive model trained to assess whether a
patient is eligible to receive some cancer-inhibiting drug. In
the context of digital pathology, where tissues are viewed
at high magnification, the result might be visualized in the
context of the area of interest as depicted in Figure 1.

PD-L1 Positivity: 3%

Figure 1: A diagnostic recommendation by a predictive
model presented in the context of a digital pathology image

For such an interaction, the user is supposed to look at the
visualization and if everything looks fine, accept the overall
result. An appropriate strategy might be to trust and accept
the result if the underlying accuracy is good enough for this
particular case and reject it otherwise. If the user rejects
the result, they will need to resort to performing the task
manually. If the user interface affords no other means of
judging the underlying accuracy than the manual approach,
chances are that unless there exist very strong guarantees
that the model performs well on all possible cases, they will
always reject the result and be forced to perform theirmanual
method.
We call this kind of human-ML interaction a verification

cliff, as depicted in Figure 2
What if there instead were multiple levels at which human-

ML collaboration could be performed? Having modes of hu-
man operation corresponding to nuanced levels of control
have long been recognized as important factors for interac-
tion with automation [10, 11].

We argue that the performance characteristics of manyML
applications make them suitable for splitting collaboration
into several levels, in a similar manner to the hierarchies of

Verification cliff
Accept or reject
prediction

Fall back to 
manual review

"Good enough"-
threshold

Accuracy

Figure 2: In somehuman-ML interfaces the usermust decide
to either accept or reject the prediction based on their belief
about the underlying accuracy

ecological interface design [14]. We will next illustrate this
for our pathology scenario.
Many diagnostics tasks within pathology can be divided

into multiple sub tasks, e.g. an overall case-level score is
derived from a formula combining the detection and classifi-
cation of many individual cells. Consequently, it is possible
to measure the accuracy per diagnostic case. When predic-
tive algorithms are evaluated, it is common that an overall
accuracy across cases in the form of an AUC, F1-score or
Cohen’s kappa is presented. However, in a scenario with
case-level sub tasks, we can also characterize the distribu-
tion of per case accuracies over a large number of cases, see
Figure 3
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Figure 3: Common distribution of per case accuracies of a
predictive model. There is a peak close to the average accu-
racy for the test set and then a long tail of cases.

The shape that is seen in the figure is typical and has
been observed for many applications in our research. There
is usually a peak in the distribution corresponding to the
average accuracy and then a long tail of cases, with some
cases almost always completely failing.
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A better design strategy would be to think about how we
can help our users when predictions fall within different
intervals on the distribution. It can in many cases be possible
to divide the design into multiple interactions, such as:

(1) A good result visualization that can be used to quickly
verify predictions on the 0.9-1.0 span

(2) A correction tool for small modifications of predictions
that updates the overall result on the 0.7-0.9 span

(3) A semi-automatic aid not even based on the original
predictions on the 0.4-0.7 span etc.

This way we could attempt to create multiple user inter-
faces aimed at helping the user when predictions happen to
fall in different positions on the accuracy distribution.

The decision of whether to trust or not trust the prediction
would now be a question of degree - the placed trust could
guide the choice to an interactionwith an appropriate level of
automatic support. The question then becomes: How would
the user learn in which level to place their trust?
We suggest that requiring that levels are connected, cor-

rectable and composable together with visualizations that
make errors apparent, could be enough. In such a design,
users should be able to dynamically move between inter-
action levels and perform corrections. Actions at one level
should immediately be reflected in the others. We argue that
this combination of actionable and composable levels will en-
able users to calibrate their trust over time, through learning
to correlate top-level observations with the suitable amount
of drill-down behavior. We call this strategy a verification
staircase, as depicted in Figure 4.
In the following part of this paper we will describe an

ongoing case study where we have instantiated this design
strategy for a tool that aids quantification in digital pathol-
ogy.

3 DESIGNINGWITH THE STAIRCASE: ASSISTED
QUANTIFICATION

Method
We followed an iterative user-centered design (UCD)method-
ology combining sketching, high fidelity (hi-fi) prototyping,
data collection, model debugging, user observations and in-
terviews. Pathologists and clinical experts were consulted
throughout the process. Compared to traditional UCD, we
used hi-fi prototyping earlier and more frequently. This is
motivated by the difficulty of eliciting how the predictive
output will be experienced and behave through sketches
and other low fidelity methods. Our account of the design
process selectively highlights those insights we believe are
important for appropriation and adaptation of the concept
of verification staircase to other domains.
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Figure 4: In a verification staircase, multiple assistive inter-
actions are combined in a way such that the user can move
between them. While some levels mean more work and less
support, they give more control and a better understanding
of the predictions on lower-level phenomena. Corrections at
lower levels affect higher levels, and vice versa. Each level is
designed to allow the human-AI ensemble to be productive
within an interval of (imperfect) prediction accuracy.

Diagnostic task
The assisted quantification task targeted in our case study is
to determine the ratio of two types of cells. Some cancers hide
from the immune system by a kind-of cloaking mechanism
and can effectively be treated by disabling the cancerous
cells’ ability to do this. However, not all cancers hide by
this mechanism. In order to determine whether a patient
shall receive this expensive treatment, cells are stained such
that the cell membrane of cells having the cloaking ability
becomes brown. According to the diagnostic protocol, for
treatment to be effective more than 50% of the cancerous
cells in the tissue should have a stained membrane. If the
tissue has more than 1% stained cells, the treatment might
be effective. If stained cells are below 1%, the treatment will
likely not work, and the patient should not be offered the
treatment.
Thus, the diagnostic decision is based on estimating or

counting this ratio in a possibly large tissue area. This task
can be time-demanding and error-prone. Pathologists can use
two basic strategies; they can look at the overall impression
of the image and use their experience and tacit knowledge
to “intuitively” determine the percentage right away. This
is a very fast decision but can be error-prone. The second
strategy involves manually counting tumor cells both with
and without stained membrane, and then deriving the ratio
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of the two. All things being equal, this second method will
result in a more accurate decision but is orders of magnitude
more time-demanding. As a middle ground, pathologists
sometimes choose a much smaller area as a “representative
sample”, and only count within that area.
A machine learning-based predictive model has the po-

tential to always use the second strategy, classifying at the
cell level and reporting the exact ratio deriving from the two
counts.

Design process
We interviewed and observed theworking processes of pathol-
ogists performing the task manually. We also reviewed the
available diagnostic protocols, where available. We collected
and manually annotated cases and then trained a convolu-
tional deep neural network to perform the predictions.

In one possible interaction, the user can delineate an area
and receive the final result of the model as a percentage, as
was depicted in Figure 1. The type of this interaction is the
verification cliff – the user has two options; either they accept
the result blindly or they reject it and perform their usual
manual procedure. Based on the notions of a verification
staircase, we sought another interaction where, if the user
does not accept the top-most level of automation, they could
step down to a lower level of automatic support, that is still
easier and faster than manual work.

We designed our first intermediate level for the case when
most cells have received the correct classification, but a few
need to be corrected for a satisfactory overall result. In the de-
vised interface, the user can explore the top-level prediction
by viewing and verifying a systematic subset of decisions of
the underlying model, as depicted in Figure 5.

At this level, the user is presented with a gallery of patches,
sampled in a systematic spatial grid, where the patches
are visually grouped according to whether they are con-
sidered to represent stained cells or not. For verification,
the user can click a patch to review it in full magnification.
The user can reclassify a patch by buttons in the magnified
view or by drag-and-drop in the gallery. As soon as the user
changes a patch, the final (top-level) ratio is updated (e.g.
31.4% [CI 30.0 - 32.8]).

We considered showing the decision of the model for each
and every pixel point (a “heatmap”), but this does not fulfill
our criteria for the composability of levels. Verifying and
correcting every pixel-level decision would be unfeasible for
most humans. In order to not create a barrier to the higher
level of the summative cell ratio, we thus limit the output of
the model to grid-sampled patches. The percentage is always
reported with a calculated confidence interval, reflecting the
uncertainty derived from only making decisions on a subset
of the tissue’s cells.

Systematic spatial grid

Click to zoom in

Drag-and-drop to reclassify

Reclassify by 
pressing the buttons

There are one group per label

Figure 5: The UI for the first intermediate level focused on
individual classifications. The predictions are patches sam-
pled in a grid (top right) and can be interacted with either
in a gallery of patches (left) or in the context of the tissue
(right). The user is able to correct false classifications by
clicking and dragging in the gallery, or by clicking a patch
in the magnified main view (bottom, right).

To support cases where the ratio is very close to a decision
cut-off, the user can increase the certainty of their decisions
by adding patches, making the sampling grid denser.

In evaluation with pathologists, we found that while this
design was useful for a large subset of clinical cases where
the diagnosis was far from a decision cut-off, there existed
cases where the needed precision created a grid so dense
that the amount of verification overwhelmed the user, and
again they had to resort to the manual approach. Usually,
not being able to reach the needed certainty for the case was
only realized after extensive verification of many cell-level
decisions.

We sought to remedy this by finding another intermediary
level, that had more automatic support than the one above,
but less than only getting a final percentage. To find oppor-
tunities for automatic support we analyzed the bias-based
error in our underlying model. We found that most errors are
somewhat systematic; visually similar patches might all be
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assigned the “wrong” classification. For instance, the thresh-
old for brown staining intensity to be considered positive
may differ between cases.
Based on this, we added an algorithm for unsupervised

visual similarity clustering to our system and sought to de-
sign the interaction such that the user could work by only
making decisions on a cluster level. The user interface for
this mode of interaction is depicted in 6.

Figure 6: Patches with the same predicted label are grouped
by clusters in the left-most panel. In this example, the clus-
ter with four patches should be reclassified as non-tumor.
An experienced pathologist is able to do this just by looking
at the group of patches.

In this prototype, the user can choose to look at the re-
sulting percentage (e.g. 72.6% [69-76] N=3601), or to view
the first few patches of each cluster, or to expand clusters
and inspect their constituent patches. Additionally, clusters
are ordered by uncertainty, and patches within the cluster
are also ordered by uncertainty. The intent is that the user
hopefully can detect errors in only the first few clusters and
then accept the rest.

A typical, multi-level workflow when using this would be
as follows:
(1) Open the case and initiate the use of the tool
(2) (top level) Review the overall assigned percentage. Is

it reasonable given the overall look of the tissue? If
the confidence interval is far from a treatment cut-off,
accept the result. Otherwise continue.

(3) (individual corrections) Is the grid dense? If not, start
reviewing and correcting the patches of the top-most
clusters. Observe the updated percentage and the con-
fidence. Stop when you’re making fewer corrections
per cluster.

(4) (batch correction) If the grid is dense, and there are
over 500 patches, start reviewing the top-most clus-
ters; based on its first patch, does it have the correct
classification? If not, correct the classification for the

entire cluster. Observe the updated percentage and the
confidence.

(5) (individual correction) Check the patches in the cluster;
does any patch “stand out” as not belonging to the
cluster? Correct the patches by dragging them to the
correct category, they will automatically be assigned
another cluster of that type.

(6) (batch correction) Proceed through a few clusters, once
no or few errors are detected, the rest is probably cor-
rect.

Evaluation
We presented this multi-level version of the tool to three
pathologists that had not been part of the design process
in a small qualitative assessment. The three pathologists
were presented the tool for the first time. We wanted to
know whether the prototype could be clinically useful and
more specifically, whether it seemed the pathologists could
learn multi-level strategies that allowed them to balance
detailed control, spent time and diagnostic quality. Our goal
was primarily to assess the concept’s viability for further
empirical efforts.
We found a recurring theme of initially wanting to drill-

down to cell level. Pathologists reported that they would
need some “alone time” to learn what kind of systematic
errors the prediction was making, and correlate this to the
overall appearance of the case. When asked whether they
thought they would be able to learn when to work at which
level of detail, they were tentatively positive, but stating that
time would tell for certain.

To us, it seemed the design had potential in allowing them
to work with sometimes inaccurate models, but also, by mov-
ing between levels. Through drill-down we hope that they
might learn to calibrate their trust towards working at the
right level as appropriate. It could be that a more global,
model-level understanding can be achieved by interacting
with local justifications like ours, over time. By contrast, user
interfaces where human-ML collaboration becomes a veri-
fication cliff does not as readily afford this, as the manual
approach and the assisted are completely disjunct.

While the results from such a small user study are mostly
anecdotal at this point, we are planning to evaluate this
aspect more extensively in future research.

4 DISCUSSION
While our concept of verification staircases is early work,
we believe it has connections to many of the same issues
that research on explainable and transparent intelligent tools
seek to address.

For instance, many of the principles outlined for Explana-
tory Debugging [3] are imbued in our concept. Such as: being
iterative, being sound & complete, not overwhelming and
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being actionable. The major difference is that our proposed
explanations do not correlate predictions to the inner work-
ings of the model, but instead to the underlying phenomena
viewed at different fidelities.

The need for enabling user feedback for explanations [12]
is facilitated by excluding references to inner workings of
the model, letting the images of the domain problem always
act as the shared language to create common ground for
communication. It is noteworthy that this interaction affords
continuous learning of the machine learning component by
enabling the corrections to become training data for future
iterations [4].
Enabling global model understanding through repeated

exposure with local justifications is similar to the strategy
employed by the LIME technique [9].

Our current design aids the user in detecting errors, e.g., by
sorting patches and clusters on confidence. We then rely on
that the user will be able to learn which end of the model’s
accuracy distribution they are in, or at least, the suitable
amount of validation effort to spend. There exist other ap-
proaches to facilitating error detection and determining the
accuracy of classifiers [2] that could be interesting to incor-
porate in future versions.
A limitation of our current prototype is that a user’s cor-

rection of single patches or clusters affect only the directly
involved patches, clusters and the overall ratio. We have
experimented with versions where the model is fine-tuned
using this input and the predictive output is updated, in an
interactive machine learning manner. However, this kind of
global updates creates a lack of control for which we are
yet to find good interaction design solutions that suit our
safety-critical domain. We believe this is an interesting area
of future research.
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