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Abstract

Recent fatal accidents with partially autonomous vehicles (AVs) show that
the responsible human in a vehicle (RHV) can become inattentive enough not
to be able to take over driving the vehicle when it gets into a situation that
its driving automation system is not able to handle. Studies show that as the
level of automation of an AV increases, the tendency for the RHV to become
inattentive grows. To counteract this tendency, an AV needs to monitor its
RHV for inattention and when inattention is detected, to somehow notify the
RHV to pay attention. Requirements engineering for the monitoring software
needs to trade off false positives (FPs) and false negatives (FNs) (or recall and
precision) in detecting inattention. An FN (low recall) is bad because it repre-
sents not detecting an inattentive RHV. An FP (low precision) is bad because
it leads to notifying the RHV too frequently, to the RHV’s ignoring notifica-
tions, and thus to degraded effectiveness of notification. The literature shows
that most researchers just assume that FPs and FNs (recall and precision) are
equally bad and weight them the same in any tradeoff. However, if, as for
aircraft pilots, notification techniques can be found whose effectiveness do
not degrade even with frequent repetition, then many FPs (low precision) can
be tolerated in an effort to reduce the FNs (increase the recall) in detecting
inattention, and thus, to improve safety.

1 Introduction
Safety-critical systems in nuclear power, medicine, and transportation rely on vigilant operators to guarantee low risk.
However, as automation replaces traditional human roles, operators are forced to adapt and develop new skills. Whether
or not this transformation will lead to greater system safety is not yet clearly established. A National Transportation
Safety Board (NTSB) report found that in 31 of the 37 serious accidents involving U.S. air carriers from 1978–1990,
inadequate attention played a major role [6]. Pilots or crew members neglected to govern instrumentation, verify inputs,
and communicate caught errors. During the period of review by the NTSB, the aviation industry was undergoing significant
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changes in automation levels. As the responsibility for flying shifted from the pilot to the software, pilots were lulled into
a false sense of confidence. Pilots felt bored and abdicated their duties.

Today, the automotive industry is experiencing a similar phenomenon, highlighted by two recent fatalities involving
cars with different degrees of autonomy.

(1) On a dark night in March 2018, an Uber Technologies vehicle, being tested operating fully autonomously, struck and
killed a street-crossing pedestrian. The backup driver, responsible for commandeering and then operating the vehicle in
times of emergency, was distracted moments before the incident [11]. Her hands were not on the steering wheel, her eyes
were directed downward just before impact, and she did not engage the emergency brakes. The report concludes that the
vehicle’s operating software had apparently recognized the pedestrian as something else.
(2) In March 2019, only ten seconds after a driver initiated the only partially autonomous driving mode, ironically called
“Autopilot”, in a commercially available Tesla Model 3, the Tesla struck the underside of a semi-trailer, killing the driver
instantly. No evasive maneuvers had been executed. The driver was apparently not paying attention [12]. His hands had
not been on the steering wheel, as is required by the use of Tesla’s Autopilot.

Each incident demonstrates the willingness or the tendency for a human to withdraw attention while he or she is supervising
or driving a more or less autonomous vehicle. The inattention problem, the same that had plagued the aviation industry
many years earlier, had returned.

Over the next few decades, the automotive industry will experience several challenges caused by the increasing auton-
omy in vehicles. This increasing autonomy is moving more and more of the vehicle’s operation into the vehicle’s software,
causing the requirements of the vehicle to change and shifting the driving responsibility from the driver to the software,
seemingly allowing and thus, encouraging the driver to focus his or her attention elsewhere. However, no vehicular soft-
ware is perfect, and until such time as it is close enough to being perfect, some human being, must be responsible for
continually paying attention to the AV and its surroundings to be able to take over for an AV that is about to get into
trouble. Therefore, many are considering equipping each AV with machine-learning (ML) based artificial intelligence (AI)
that monitors the attentiveness of the responsible human in a vehicle (RHV) that is supposed to be driving or supervising1

the AV. An RHV is supervising a vehicle when the RHV is watching over the vehicle enough to be able to take over driving
at any time, sometimes in an emergency, sometimes at the vehicle’s request.

In general, a vehicle, which can be a car, van, SUV, or truck, is autonomous to some degree, and it requires human
attention to some degree. The Society of Automotive Engineers (SAE) has defined in its J3016 standard, six autonomy
levels with which to classify the degree of autonomy of a vehicle according to (1) the degree of human attention required
and (2) the degree of automation of the vehicle [14]. This paper focuses on two particular levels of autonomy:

Level 2 in which there is an RHV tasked with driving the vehicle even though some of the functions of the vehicle are
automated; that is, the RHV must keep his or her hands on the vehicle’s steering wheel at all times and is responsible for
operating the vehicle at all times even when the vehicle is doing a function that has been automated; and
Level 3 in which there is an RHV tasked with supervising the vehicle even as the partially autonomous vehicle is doing
many functions; that is, while the RHV does not have to keep his or her hands on the vehicle’s steering wheel at all times,
he or she must be attentive enough about the vehicle’s current condition to be able to take over driving the vehicle at any
time, sometimes in an emergency, and sometimes at the vehicle’s request.

Thus, the RHV is (1) a driver or (2) a supervisor, and what an RHV does, piloting, is (1) driving or (2) supervising.

1.1 RHV Monitor and Notifier Because an RHV’s attention may lapse while he or she is piloting an AV, among the
vehicle’s software must be a RHV Monitor and Notifier (RMN). The RMN consists of two communicating parts:

(1) the Monitor, an AI that somehow monitors the RHV for signs of inattention, and at any time that the Monitor detects
that the RHV is inattentive2, it informs the Notifier to do its job, and
(2) the Notifier, when informed by the Monitor, somehow notifies the AV3, the RHV, or both, that signs of inattention have

1Unfortunately, the literature uses the word “monitoring” to describe both (1) the act of watching over an AV to detect when the AV is not able to
handle the current situation and (2) the act of watching over a person to detect when the person has become inattentive while watching over an AV. This
paper uses “supervising” for the former and “monitoring” for the latter, even when describing work that uses other terminology.

2An inattentive RHV is not necessarily a distracted RHV. He or she could be asleep, or so focused on one part of the driving that he or she does not
notice something critical happening to the side. So, “inattentive” is used as the most general term for what an RHV should not become, and “distracted”
is not a synonym for “inattentive”.

3“Informing” is the simple act of the Monitor’s telling the Notifier that the RHV appears to have become inattentive, while “notification” is the
complex act of the Notifier’s somehow telling the RHV that he or she needs to be more attentive. Notification is any of a spectrum of acts, ranging from
just gently telling the RHV to be more attentive to causing the vehicle to do something that the RHV will surely notice, all with the goal of reengaging
the driver to be attentive.



been detected in the RHV.

Even a Monitor is never perfect, both failing to detect an inattentive RHV, in a false negative (FN), and incorrectly detecting
inattention in an attentive RHV, in a false positive (FP). Generally, the developers of the Monitor have to trade FNs off
with FPs, not being able to eliminate both. An FN is bad because an RHV who has, e.g., fallen asleep is not detected and
notified. An FP is bad because the resulting notification contributes to the RHV’s perceiving the RMN as crying “wolf!”
and then to the RHV’s ignoring the RMN. As shown in Section 3.3, the assumption in the literature seems to be that FPs
and FNs are equally bad and that recall and precision should be weighted equally. However, this assumption may not be
true in some circumstances. The contribution of this paper is to identify the circumstances in AV operation under which
each of FPs and FNs are to be avoided and are to be tolerated. This contribution informs requirements engineering (RE)
for the RMN, telling the requirements analyst what data need to be gathered in making the correct tradeoff.

In the rest of this paper, Section 2 examines the concept of human-centered automation from the aviation industry. The
aviation industry successfully dealt with a similar automation shift; so perhaps, similar principles could be applied to AVs
as well. Section 3 discusses possible sets of requirements for an RMN and their implications on the tradeoff between FNs
and FPs, i.e., between recall and precision, in Monitors. Finally, Section 4 summarizes the paper and describes future
work. Due to page limitations, some material that can be found in a full paper [8] was left out. This material includes (1) a
discussion of some causes of failure in AVs, (2) an examination of studies involving driving and flying simulations to see
how a poorly conceived RMN can have negative effects on RHVs, and (3) a deeper discussion of some related work in the
literature.

2 Human-Centered Automation
The actions of aircraft pilots today demonstrate how a vigilant, well-trained human supervisor can provide safety and
security in safety-critical domains, but it wasn’t always this way. Similar to what is happening today with AVs, aircraft
underwent an automation shift starting in the mid 1970s. Functions such as flight path, power control, landing gear, and
other subsystems had transformed into fully automated processes. Airplanes were described as completely autonomous by
1991: “current aircraft automation is able to perform nearly all of the continuous control tasks and most of the discrete
tasks required to accomplish a mission” [5].

However, as early as 1977, the U.S. House Committee on Science and Technology had said that automation was a
major safety concern for the coming decade [15]. The committee’s prediction proved to be spot on. A 1990 NTSB
report identified 31 of the aviation accidents involving flight crew from 1978-1990 were caused by what the report calls
“monitoring failures”, i.e., aircraft pilots who had become inattentive while they were supposed to be supervising almost
completely autonomous aircraft [6]. As a result, NASA suggested that NASA and the FAA adopt a set of human-centered
automation (HCA) principles to be used to design the automation on an aircraft [5]. These principles suggest strategies for
developing automated systems that help human operators accomplish their responsibilities.

In HCA, automation technology is called on to focus on helping aircraft pilots, not replace them. HCA started being
applied to aircraft development in the mid 1990s. It kept pilots at the center of responsibility and control. Data from
ACRO [1] demonstrate the significant reduction in air incidents in the years after HCA was introduced. Even with HCA,
pilots still get bored, leading to lapses in attention. To cope with boredom, pilots engage in secondary tasks such as doing
puzzles, talking to colleagues, paying mental games, fidgeting, looking around, and reading training manuals. Despite not
tending to the primary task of flying, studies with simulations have shown that pilots who relieved boredom through these
activities were less likely than those who did nothing to abdicate responsibility to the automation or to fail to supervise the
automation properly [4].

Admittedly, these activities that pilots are allowed and encouraged to do are not realistic in vehicles. A pilot is required
to fly with at least one other pilot in the cockpit; a driver does not always have a co-driver to talk to. Also, reading
and playing games aren’t good options either: a driver requires a faster reaction time in order to avoid hazards, such as
pedestrians, cars, objects, etc., which are more abundant on the ground than those in the air. It is unlikely that the deceased
in either the Uber or the Tesla incident would not have been killed if the RHV in the incident had been playing games
instead of paying attention. Therefore, to successfully apply HCA to AVs, it will be necessary to discover and invent ways
to keep RHVs engaged in ways that allow and encourage very fast response to unexpected events.

3 Requirements for the RMN
Based on the functionality of an RMN, described in Section 1.1, this section identifies the requirements for the Monitor
and the Notifier and explores related work to learn what is feasible for each and what might be traded off between them.



What is learned informs requirements specification for an RMN that is as effective as possible4.
The subsections of this section describe (1) suggestions for implementations of a Monitor and how to evaluate its

effectiveness, (2) suggestions for implementations of a Notifier and how to evaluate its effectiveness, and (3) the tradeoffs
that can be made in an effort to achieve the most effective overall RMN, consisting of a Monitor and Notifier working
together.

3.1 The Monitor and its Evaluation Existing algorithms for monitoring an AV’s RHV use data gathered by various
devices that continually observe the RHV and compute predictions about whether the RHV is engaged. For example,
Braunagel et al. conducted an eye- and head-tracking study of 73 participants using a driving simulator while doing a
number of activities, both driving and not driving [7]. Eye-tracking cameras were particularly important to the study:
quick eye-movements may indicate that the driver is aware of his or her surroundings, while long gazes too far to the left or
right may indicate that the driver is distracted. Other data captured from the cameras include eye-blink frequency and the
head’s angle and position. Using a multi-class support vector machine algorithm, each participant was predicted as either
reading, composing e-mail, watching a movie, or paying attention to driving. One variation of the algorithm predicted with
70% precision, 76% recall, and 77% accuracy. To decide which algorithm, or variation thereof, is better, Braunagel et al.
say to use accuracy, which weights FNs and FPs equally, as the arbiter.

Thus, the general plan for an RMN is that at regular, frequent intervals of time, its Monitor is examining its input to
make a decision about whether the RHV is inattentive. If the Monitor determines that the RHV is inattentive, the Monitor
informs the RMN’s Notifier. Because a notification happens in response to a decision of inattentiveness, and a decision of
inattentiveness is expected to be rarer than a decision of attentiveness, inattentiveness is considered the positive decision
and attentiveness is considered the negative decision in the discussion below.

The most common measures used to evaluate the decision-making effectiveness of an AI that functions as a Monitor

are the traditional recall (R), precision (P ), accuracy (A), the F -measure, and its weighted variation [16, 3], Fβ = (1 +

β2)× P×R
(β2×P )+R . In this formula, β is the ratio by which it is desired to weight R more than P , a ratio whose numerator

is the cost of an FN and whose denominator is the cost of an FP.

3.2 The Notifier and its Evaluation In the typical current AV that has an RMN, when the Monitor has decided that the
RHV is inattentive, the Monitor informs the Notifier to do its job. The typical Notifier then directly notifies the RHV that he
or she is inattentive, perhaps activating a speaker to say “Please pay attention!”. It is hoped that after such a notification, the
RHV begins to pay attention to the driving task. If not, then the Monitor will soon notice that the RHV is still inattentive,
and will again ask the Notifier to notify the RHV.

The problem with this simple design for the Notifier is that the effectiveness of a notification that is repeated too often
probably begins to deteriorate. The effect of AVs on RHVs described in Sections 3.1 and 3.3 of the full paper [8] suggests
that over time, an RHV will begin to treat the notification as background noise and to ignore it.

Therefore, it will be necessary to invent notification techniques whose effectiveness does not deteriorate when notifi-
cations are repeated. When automated aircraft designers faced the same effectiveness deterioration problem, with HCA,
they found ways to adjust the level of automation in the aircraft itself so that the aircraft’s pilots were required to do more
in order to fly the aircraft. A pilot who is busy flying the aircraft is naturally engaged and is therefore attentive. Essen-
tially, HCA needs to be applied to the design of an AV and of its RMN and to find ways the gracefully reduce the level of
automation of an AV, in order to reengage the RHV.

The design of a graceful reduction in the level of automation of an AV is not easy. Suppose that we have a Level 2 AV,
such as the Tesla Model 3 with Autopilot. The difficulty is finding a reduction in automation that is indeed graceful. Just
stopping steering or throttling without telling the driver could confuse the driver. Just quietly stopping the lane-centering
function could be quite dangerous. Probably, it will be necessary for the vehicle (1) to inform the driver about a specific
upcoming reduction in automation and (2) to require some form of acknowledgement from the driver, before it actually
does the reduction. One possibility is for the vehicle to announce both in sound and in text, “I am shutting off cruise
control. You will need to control the throttle. Please confirm by touching the touch screen that you are ready to do so.”
A number of researchers have proposed and explored ways for an AV to pass control of the AV to the RHV in ways that
are not causing the RHV to be momentarily disoriented and at risk for a crash [2, 13, 17, 18, 10]. Of course, it will be
necessary to experimentally verify that a proposed notification technique is both graceful enough and that its effectiveness
does not degrade with repetition.

Thus, the evaluation of a particular Notifier should consist of conducting an experiment to measure the deterioration
of the effectiveness of Notifier’s notification technique as a function of the frequency with which the Notifier delivers

4Effectiveness of an RMN is defined in Section 3.3, when more of the requirements are understood. Until then, a vernacular understanding suffices.



notifications.

3.3 Tradeoffs in an RMN A Monitor and a Notifier cooperate to build an RMN. Thus, requirements for an RMN,
particularly those affecting the RMN’s effectiveness, have implications on the requirements for its Monitor and for its
Notifier. When satisfaction of a requirement is dependent on a tradeoff, it’s useful to have metrics to guide the trading.

An RMN is most effective when (1) its Monitor has 100% recall, and is thus detecting all instances of RHV inattention,
and (2) the effectiveness of its Notifier’s notifications do not degrade when they are repeated. The danger of too many FNs,
i.e., low recall, in the Monitor is that the RHV could, e.g., be asleep but is not notified. The danger of too many FPs, i.e.,
low precision, in the Monitor is that there will be spurious notifications bothering an attentive RHV, and the RHV could
eventually learn to ignore the notifications, leading to the degradation of the effectiveness of the notifier. In practice, FNs
and FPs, or recall and precision, have to be traded off [3]. To get fewer FNs and higher recall, an algorithm has to suffer
more FPs and lower precision, and vice versa. In fact, there are two extremes:

(1) Achieve 100% recall by always notifying the RHV. This extreme amounts to the RHV’s manually driving the vehicle.
(2) Achieve 100% precision by never notifying the RHV. This extreme amounts to having a fully-autonomous vehicle.

For now, the second extreme is not acceptable, as for the foreseeable future, self-driving vehicles make too many mistakes.
The first extreme is not much better, as it eliminates the autonomy of an AV. So, the goal for an AV’s RMN is for its
Monitor to achieve as high a recall as possible without degrading the effectiveness of its Notifier and without defaulting
into the RHV’s just manually driving the vehicle.

It appears that all 13 items in the literature known to the authors about monitoring algorithms manage the tradeoff
only implicitly, by assuming, sometimes with no discussion, that FNs and FPs are equally bad, i.e., (1) in the formula for
accuracy, the four regions of the space of decisions are weighted equally, and (2) in the formula for Fβ , β = 1 and thus, R
and P are weighted equally. A discussion of this literature is found in Section 5.5 of the full paper [8].

However, suppose that the designers of AVs learned from the experiences of aircraft designers’ introduction of automa-
tion to aircraft cockpits and applied HCA to design Notifiers with notification techniques whose effectiveness does not
degrade with repetition. Then, the associated Monitor should be designed with the highest recall possible, even at the cost
of a moderately low precision (not to the extreme of always reporting inattention), as is done for AIs that examine medical
data to screen patients for diseases particularly when a follow-up test is cheap [9]. So, if a vehicle’s response to a prediction
of inattentiveness is one that does not start to be ignored in the presence of FPs, the algorithm, or variation thereof, with
the highest recall should be chosen. For example, among Braunagel et al.’s algorithms, the one with the highest recall
achieved only 76% recall. This recall is not very good, because the algorithm is failing to detect 24% of the inattentive
spells, leaving the vehicle with no supervision almost one-quarter of the time. It would pay for Braunagel et al. to play
more with the algorithm to see if tolerating more imprecision can bring recall closer to 100% than 76%.

In deciding the tradeoff for the Monitor, it is essential to compare the costs of an FP and of an FN in the whole RMN.

(1) The effect of an FN is for the system to not notice that the RHV is inattentive. The expected cost of an FN is (1) the
probability of an FN, times (2) the probability that an accident will happen when the RHV is not attentive, times (3) the
average cost of an accident.
(2) The effect of an FP is for the RHV to be notified of inattentiveness unnecessarily. The expected cost of an FP is (1)
the probability of an FP, times (2) the probability that an FP will finally teach the RHV to ignore warnings thus making
warnings useless and leaving the driver inattentive after all, times (3) the average cost of an accident.

These two expected costs have to be compared in any situation. Observe that the average cost of an accident is a factor
in both expected costs, so the comparison is between two products of probabilities. The ratio of these two products of
probabilities can be used as the ratio of the importance of recall to the importance of precision in any situation, and thus as
the β in the formula for Fβ to evaluate the Monitor.

Berry explains how to obtain and calculate the data, including β, for doing a thorough evaluation of a tool based on its
recall, precision, and context [3]. Winkler et al. show how to use Fβ not only to evaluate the effectiveness of an ML-based
tool for classifying natural language statements of requirements, but also how to optimize the tool according to, and in the
direction indicated by, the weight β (for recall if β > 1) and to a degree consistent with the difference between 1 and β
[19].

4 Conclusion and Future Work
This paper recounts the circumstances of two fatal accidents involving AVs during which their RHVs failed to maintain the
required attentiveness. It shows how HCA helped the aviation industry successfully counteract pilot inattentiveness and
suggests ways to do the same with AVs.



The main point of the paper is that if HCA is applied to the design of the Notifier of an RMN to produce a Notifier
whose effectiveness in bringing the RHV back to attentiveness does not degrade in the face of too frequent notifications,
then the Monitor of the RMN can be safely optimized for fewer FNs, or higher recall, at the cost of more FPs, or lower
precision, to obtain a more effective overall RMN. Heretofore, the assumption has been that FPs and FNs are equally bad
and that recall and precision should be weighted equally.

Application of HCA to ordinary vehicle owners who have opted to buy AVs at Level 2 or 3, taking on the role of RHVs,
will be a challenge. AV RHVs are nowhere as well trained as aircraft pilots, and their emergencies have a much shorter
time frame than those of aircraft pilots. It will be necessary to invent notification techniques that are both sustainably
effective and not so disruptive as to momentarily disorient the RHV. The authors admittedly have difficulty thinking of such
notification techniques. However, we are not going to begin to find any such techniques if we don’t look for them with the
knowledge that they can be used. That said, there is one class of RHVs for which HCA may work, namely professional
drivers as for taxis and trucks. These drivers have known how to use walkie-talkies for years without becoming distracted
from driving.

Thus, there is a need for future work in the simultaneous design of high recall Monitors and low degradation Notifiers
for use in high effectiveness RMN for AVs. The lower the degradation of the Notifier’s effectiveness the more FPs, or low
precision, can be tolerated in the quest for few FNs, or high recall, in the Monitor.
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