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Abstract. We introduce three 5-valued paraconsistent logics that we
name FiveASP1, FiveASP2 and FiveASP3. Each of these logics is genuine
and paracomplete. FiveASP3 was constructed with the help of Answer
Sets Programming. The new value is called e attempting to model the
notion of ineffability. If one drops e from any of these logics one obtains a
well known 4-valued logic introduced by Avron. If, on the other hand one
drops the “implication” connective from any of these logics, one obtains
Priest logic FDEe. We present some properties of these logics.
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1 Introduction

Belnap [16] claims that a 4-valued logic is a suitable framework for computer-
ized reasoning. Avron in [3,2,4,1] supports this thesis. He shows that a 4-valued
logic naturally express true, false, inconsistent or uncertain information. Each
of these concepts is represented by a particular logical value. Furthermore in [3]
he presents a sound and complete axiomatization of a family of 4-valued logics.

On the other hand, Priest argues in [22] that a 4-valued logic models very
well the four possibilities explained before, but here in the context of Buddhist
meta-physics, see for instance [26]. This logic is called FDE, but such logic fails
to satisfy the well known Modus Ponens inference rule. If one removes the im-
plication connective in this logic, it corresponds to the corresponding fragment
of any of the logics studied by Avron. Priest then extends FDE to a 5-valued
logic named FDEe, see [23]. This new logic has a new valued e with the aim to
represent the notion of ineffability, but FDEe lacks of an implication connective.

Some authors claim that many arguments formulated in Buddhist texts cor-
respond to such well recognized rules of inference as Modus Ponens, constructive
dilemma and categorical syllogism (also known as hypothetical syllogism) among
other rules of inference, see [21,14]. Having an implication that does not satisfy
Modus Ponens or removing the implication connective, can be consider as a kind
of weakness of FDEe, see [21].

However Priest makes a remarkable work by studying in great detail the
work of the buddhist texts from the Pali Canon to the MMK by Nāgārjuna and
beeing able to model their way of reasoning in terms of modern non-classical
logics [22,23,24,25].
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A main issue is to represent the notion of ineffability. The fifth value, e, then,
is the value of ineffable.

There is a complex but well known phenomenon that often arises when a
philosophy argues that there are limits to thought/language, and tries to justify
this view by giving reasons as to why there are things about which one cannot
think/talk—in the process appearing to give the lie to the claim. In poetry we
also find a similar situation: the need to talk about extreme situations, which
somehow we can not talk [8,17]. Priest is concerned with that phenomenon.
According to him, Buddhist philosophy has resources to address this kind of
issue much less present in Western traditions. Buddhist logicians consider that
there are four possibilities: only true, only false, both true and false, and finally
neither true or false. Later developments add a fifth possibility: ineffability3. Of
course, one might be skeptical that such ideas can be made logically respectable.
Priest shows how to accomplish this task with some tools from contemporary
non-classical logic. His work is impeccable, but as stated earlier, we consider
prudent to extend FDEe logic with an ”implication” connective that at least
satisfies Modus Ponens.

For the nature of this work is desirable to consider the use of paraconsis-
tent logics [10]. In addition recent work on these logics considers also some
useful relative new properties, namely genuineness and paracompleteness, see
[7,15,20,18,4]. Arguments in favor of rejecting the law of non-contradiction have
been supported more recently by the research done on paraconsistent logics and
the applications they have encountered, in particular, in artificial intelligence.
Paraconsistent logics accept inconsistencies without presenting the problem that
once a contradiction has been derived, then any proposition follows as a conse-
quence, as is the case of classical logic.

We introduce three paraconsistent (genuine and paracomplete) logics that
are constructed based on the combination of two logics: BDEe (by Priest) and
a version of Four due to Avron that we call it BL⊃. The main point is to add
an implication to FDEe that satisfies (at least) Modus Ponens. Furthermore,
as a second contribution (a minor one) we briefly explain how to use Answer
Set Programming (ASP) [13] to construct one of our logics, namely FiveASP3.
According to our experience, we know that always it is very useful to have
software tools that help us to analyze logics. One of these tools is the ASP
tool called clasp4, which computes the answer sets of logic programs. ASP is
a declarative knowledge representation and logic programming language, it has
been used to develop different approaches in the areas of planning, logical agents
and artificial intelligence [6,12].

3 As far as the authors know, buddhist texts never talk explicitly about five possi-
bilities, as they actually mention four cases. However, Priest shows that buddhist
narratives assume this sort of incommensurable fifth, see [22,23,24,25].

4 http://potassco.sourceforge.net
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2 Background

In this section, we present two of the more common ways of defining a logic, and
provide examples. In Section 2.1 we define a logic from the semantical point of
view, particularly via muti-valued systems. On the other hand, in Section 2.2,
we present one axiomatic formal system for logic BL⊃, provided by Avron in
[5].

2.1 Multi-valued logics

A way to define a logic is by means of truth values and interpretations. Multi-
valued systems generalize the idea of using the truth tables that are used to
determine the validity of formulas in classical logic. It has been suggested that
multi-valued systems should not count as logics; on the other hand pioneers
such as  Lukasiewicz considered such multi-valued systems as alternatives to the
classical framework. Like other authors do, we prefer to give to multi-valued
systems the benefit of the doubt about their status as logics.

The core of a multi-valued system is its domain of values D, where some of
such values are special and identified as designated. Connectives (e.g. ∧, ∨, →,
¬) are then introduced as operators over D according to the particular defini-
tion of the logic. An interpretation is a function I : L → D that maps atoms
to elements in the domain. The application of I is then extended to arbitrary
formulas by mapping first the atoms to values in D, and then evaluating the
resulting expression in terms of the connectives of the logic. A formula is said
to be a tautology if, for every possible interpretation, the formula evaluates to
a designated value. The most simple example of a multi-valued logic is classical
logic where: D = {0, 1}, 1 is the unique designated value, and connectives are
defined through the usual basic truth tables.

Not all multi-valued logics must have the four connectives mentioned before,
in fact classical logic can be defined in terms of two of those connectives ¬,∧
(primitive connectives), and the other two (non-primitive) can be defined in
terms of ¬,∧. In case of a logic having the implication connective, it is desirable
that it preserves tautologies, in the sense that if x, x → y are tautologies, then
y is also a tautology. This restriction enforces the validity of Modus Ponens in
the logic.

Since we will be working with several logics, we will use subindices next
to the connectives to specify to which logic they correspond, for example ¬K

corresponds to the connective ¬ of Kleene’s logic. In those cases where the given
logic is understood from the context, we drop such subindexes. Objects 0, 1, 2
and 3 are part of the semantics of logics studied in this paper and were chosen
only for convenience, it does not correspond to natural numbers.

A logic satisfies the principle of explosion (EFQ)) if x,¬x |= y. A logic is
paraconsistent if it rejects the principle of explosion. A logic satisfies the principle
of non-contradiction (PNC) if |= ¬(x ∧ ¬x). A logic is genuine if it rejects the
principle of non-contradiction. A logic satisfies the law of excluded middle if
|= x ∨ ¬x. A logic is paracomplete if it rejects the law of excluded middle.
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Kleene’s 3-valued logic. The Kleene’s 3-valued logic, denote here by K, is
defined in [5]. Kleene’s logic is a 3-valued logic with truth values in the domain
D = {0, 1, 3}, where 3 is the only designated value5. Conjunction and disjunction
are defined as themin andmax functions respectively, namely α∧β = min(α, β),
and α ∨ β = max(α, β). The connectives →K and ¬K are defined according to
the tables given in Table 1. It is important to mention that in this paper we use
the implication of Kleene as defined by Avron in [5].

→K 0 1 3

0 3 3 3
1 3 3 3
3 0 1 3

x ¬Kx

0 3
1 1
3 0

Table 1. Truth tables of connectives → and ¬ in Kleene’s logic.

The basic 3-valued paraconsistent logic PAC. We consider the domain of
the logic PAC as D = {0, 2, 3}, this logic is a 3-valued paraconsistent logic with
2 and 3 as designated values (We take this domain with the purpose of PAC
becomes a fragment of BL⊃ logic). The connectives ¬, ∧ and ∨ have exactly
the same properties as those of the logic K. Table 2 shows the truth tables of
connectives ¬PAC and →PAC [5].

→PAC 0 2 3

0 3 3 3
2 0 2 3
3 0 2 3

x ¬PACx

0 3
2 2
3 0

Table 2. Truth tables of connectives →, ¬ in PAC.

Logic BL⊃. This logic is a 4-valued logic with truth values in the domain
D = {0, 1, 2, 3} where 2 and 3 are the designated values. The connectives ∧ and
∨, as usually, correspond to the greatest lower bound (Glb) and the least upper
bound (Lub), respectively. The connectives ¬ and → are defined according to
the truth tables given in Table 3.

5 The reason for considering this domain is that these values and the behavior of its
connectives coincide with part of the logic BL⊃.
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→BL⊃ 0 1 2 3

0 3 3 3 3
1 3 3 3 3
2 0 1 2 3
3 0 1 2 3

x ¬BL⊃x

0 3
1 1
2 2
3 0

Table 3. Truth tables of connectives → and ¬ in logic BL⊃.

The logic BL⊃ is represented in Fig. 1. Note that if we consider only the
values 0, 1 and 3 (right part of the Fig. 1) we obtain the Kleene’s logic while if
we take the values 0, 2 and 3 (left part of the Fig. 1) we have the PAC logic.

Fig. 1. Lattice logic BL⊃

As A. Avron mentions in [3], BL⊃ is interlaced 6 and hence satisfies 1∧2 = 0
and 1∨ 2 = 3. As a consequence of this result, we can take D = {1, 2}. However,
for simplicity we use D = {0, 1, 2, 3}.

2.2 The system HBL

Let us consider HBL, a formal axiomatic theory for BL⊃ [3] formed by the prim-
itive logical connectives: ¬,→,∧ and ∨. We also consider one logical connective
defined in terms of the primitive ones:

α↔ β := (α→ β) ∧ (β → α)

the well-formed formulas are constructed as usual, the axiom schemas are:

I1 α→ (β → α)
I2 (α→ (β → γ)) → ((α→ β) → (α→ γ))
I3 ((α→ β) → α) → α
C1 (α ∧ β) → α

6 This means that each one of ∧, and ∨ is monotonic with respect to both ≤t and ≤k

[3]
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C2 (α ∧ β) → β
C3 α→ (β → (α ∧ β))
D1 α→ (α ∨ β)
D2 β → (α ∨ β)
D3 (α→ γ) → ((β → γ) → (α ∨ β → γ))
N1 ¬(α ∨ β) ↔ ¬α ∧ ¬β
N2 ¬(α ∧ β) ↔ ¬α ∨ ¬β
N3 ¬¬α↔ α
N4 ¬(α→ β) ↔ α ∧ ¬β

and as the only inference rule: Modus Ponens

α α→ β

β

Logic BL⊃ is sound and complete with respect to this axiomatization.

Theorem 1. [3][Soundness and Completeness]

Γ ⊢BL⊃ α if and only if Γ |=BL⊃ α.

2.3 First Degree Entailment system

This subsection is a summary of some material from [23] that we need to borrow
for the definition of our logics.

First Degree Entailment (FDE) is a system of logic defined by Priest that
can be set up in many ways, but one of these is as a 4-valued logic whose values
are t (true only), f (false only), b (both), and n (neither). Negation maps t to f ,
vice versa, n to itself, and b to itself. Conjunction is greatest lower bound, and
disjunction is least upper bound. The set of designated values, D, is {b, t} The
four corners of truth and the FDE logic seem like a correct match.

FDE can be characterised by the following sound and complete rule system,
where a double line indicates a two-way rule, and overlining indicates discharging
an assumption7:

A,B
A∧B

A∧B
A(B)

A(B)
A∨B

A∨B A...C B...C
C

¬(A∧B)

¬A∨¬B
¬(A∨B)

¬A∧¬B
¬¬A
A

Now we move to FDEe, a 5-valued logic that incorporates the notion of
ineffability. According to Priest, technically, the obvious thought is to add a new
value, e, to our existing four {t, f, b, n}), expressing this new status.

Since e is the status of claims such that neither they nor their negations
should be accepted, it should obviously not be designated. Thus, we still have

7 The paper [23] downloaded from the Priest’s home page has a typo. It says:
¬(A∨B)

¬A∨¬B

instead of:
¬(A∨B)

¬A∧¬B
.
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that same designated values. Priest addresses the following major question: How
are the connectives to behave with respect to e?

Both e and n are the values of things that are, in some sense, neither true
nor false, but they need to behave differently if the two are to represent distinct
alternatives. The simplest suggestion is to take e to be such that whenever any
input has the value e, so does the output: e-in/e-out.

The logic that results by modifying FDE in this way is obviously a sub-logic
of it. It is a proper sub-logic. It is not difficult to check that all the rules of FDE
are designation-preserving except the rule for disjunction-introduction, which is
not, as an obvious counter-model shows. However, replace this with the rules:

φ(A) C
A∨C

φ(A) C
¬A∨C

φ(A) ψ(B) C
(A∧B)∨C

where φ(A) and ψ(B) are any sentences containing A and B. Call these the
φ Rules, and call this system FDEφ. FDEφ is sound and complete with respect
to the semantics.

3 Our 5-valued logics

We present three logics that are constructed based on the combination of two
logics: BDEe (by Priest) and BL⊃.

The core of the three logics is based on the following assumptions.
We have 5 values: {0, 1, 2, 3, e}. FDEe uses {f, n, b, t, e} instead. The desig-

nated values are {2, 3} as FDEe. {0, 1, 2, } defines a lattice where 0 < 1, 0 < 2,
1 < 3, 2 < 3. The connective ∨ is the lub, while ∧ is the glb.

Since e is interpreted as ineffable then X op e = e op X = e, where X ∈
{0, 1, 2, 3, e}. With respect to negation (−), we have −0 = 3, −3 = 0, −1 = 1,
−2 = 2, −e = e.

Implication is as defined by Avron for the subdomain {0, 1, 2, 3}, namely:
X → Y = 3 when X is not designated, X ̸= e, Y ̸= e. While X → Y = Y when
X is designated, Y ̸= e.

The next two expressions are yet undefined e → X and e → X for X in
{0, 1, 2, 3, e}.

Notice that the sublogic defined in the subdomain {0, 1, 2, 3} corresponds ex-
actly to BL⊃ logic. Also the sublogic in the domain {0, 1, 2, 3, e} but eliminating
the implication connective correspond exactly to FDEe.

3.1 FiveASP1

This logic tries to stay very close to FDEe. We define e → X = X → e = e for
X ∈ {0, 1, 2, 3, e}, and we name this logic as FiveASP1.

Theorem 2. FiveASP1 is a paraconsistent, genuine and paracomplete logic.

Proof (sketch). Directly using truth tables. For example, to prove that it is
paracomplete, it is enough to evaluate the formulas with val(X) = 1, for every
atom X.

90



FDEe admits no tautologies. FiveASP1 is faithful in this aspect to FDEe and
hence we have the following result.

Theorem 3. FiveASP1 admits no tautologies.

Proof (sketch). Evaluating each atom in any formula with e, then the final eval-
uation is e which is not designated.

Theorem 4. FiveASP satisfies:

1. Modus ponens and Hipothetical sylogism.
2. All inference rules of FDEe.

Proof (sketch). (case 1) They are proven by contradiction using truth tables.
(case 2) They are proven by construction, since the three logics behave as logic
FDEe regarding the connectives ∧, ∨ and negation, and that logic satisfies such
inference rules.

3.2 FiveASP2

This logic is somehow the “middle way” between logics FiveASP1 and FiveASP3
(to be introduced soon). It only changes “e → e = e” (in FiveASP1) to “e →
e = 3” (in FiveASP2), in order to allow some basic tautologies. Recall that
the notion of ineffable is to some extend paradoxical, we can not talk about
something ineffable but actually we do it in order to convey a given major
message (at least partially). Here, we have that: if X is ineffable and is true and
only true that X → Y , then (our logic claims that) Y is ineffable.

We define e → X = X → e = e for X ∈ {0, 1, 2, 3} and e → e = 3 and we
name this logic as FiveASP2.

Theorem 5. FiveASP2 is a paraconsistent, genuine and paracomplete logic.

Proof (sketch). Directly using truth tables.

We can observe that FiveASP2 satisfies some well known tautologies, as
X → X and De Morgan laws, among some of them. Hence, we have the following
theorem.

Theorem 6. FiveASP2 admits some tautologies.

Proof (sketch). FiveASP2 accept the mentioned tautologies in the phrase previ-
ous to this theorem and they are proven directly.

Theorem 7. FiveASP2 satisfies:

1. Modus Ponens and Hipothetical Sylogism.
2. All inference rules of FDEe.

Proof (sketch). (case 1) They are proven by contradiction using truth tables.
(case 2) They are proven by construction, since the three logics behave as logic
FDEe regarding the connectives ∧, ∨ and negation, and that logic satisfies such
inference rules.
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→FiveASP3 0 1 2 3 4

0 3 3 3 3 3
1 3 3 3 3 3
2 0 1 2 3 1
3 0 1 2 3 1
4 3 3 3 3 3

Table 4. Truth table of connective → in logic FiveASP3.

3.3 FiveASP3

This logic is kind of pragmatic and the connective “Implication” is a kind of
metalinguistic connective [9], we name this logic as FiveASP3. We do not allow
to have two values X, Y such that X → Y = e, and hence FiveASP3 is the other
extreme case with respect to FiveASP1 logic. Note that this logic gains many
well know tautologies. This logic complies with the tautologies I1-I3, C1-C3, D3,
N1-N4 (see section 2.2). We consider this logic potentially useful in Artificial
Intelligence applied to art (literature). The connective → is defined according to
the truth table given in Table 4.

Theorem 8. FiveASP3 is a paraconsistent, genuine and paracomplete logic.

Proof (sketch). Directly using truth tables.

We can observe that FiveASP3 satisfies many well known tautologies, as
X → X and De Morgan laws, the standard two implication rules for positive
logic among some of them. Hence, we have the following theorem.

Theorem 9. FiveASP3 admits some tautologies.

Proof (sketch). FiveASP3 accepts the mentioned tautologies in the phrase pre-
vious to this theorem and they are proven directly.

Theorem 10. FiveASP3 satisfies:

1. Modus Ponens and Hipothetical Sylogism.
2. All inference rules of FDEe.

Proof (sketch). (case 1) They are proven by contradiction using truth tables.
(case 2) They are proven by construction, since the three logics behave as logic
FDEe regarding the connectives ∧, ∨ and negation, and that logic satisfies such
inference rules.

Recall that ASP is logic programming that allows to write the specification
of a problem (defining only the “what” with no concern to the “how”). On this
regard, it follows a generate and test strategy. In this case our concern is to
define an implication operator that satisfies certain given constraints. To define
such implication operator we write:
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1{impl(X,Y, Z) : v(Z)}1 : −v(x), v(Y ).

Meaning that given the domain for X,Y (in this case v(X), v(Y )) we define
a function ”impl” with co-domain Z (defined by v(Z)).

The rest of the code provides basic definitions such as the domain, the des-
ignated values, etc. and also some constraints (test part) such as for example:

: −not impl(Y,X, 3), v1(Y ), v1(X), notdes(Y ).

This constraint says that our implication operator should behaved as BL⊃,
namely that if the first argument of the implication operator is not designated
(and belongs to the subdomian of this 4-valued logic) then our operator should
evaluate to 3. In the appendix A, the complete program code with some further
comments is presented.

4 Conclusions

We introduce three 5-valued logics by combining FDEe and BL⊃. The three of
them satisfy the following properties: they are paraconsistent, genuine and para-
complete logics. They satisfy Modus Ponens and Hypothetical Syllogism as well
as all inference rules of FDEe. More research needs to be done to understand
these logics and to find further mathematical properties of each of them. We
also believe that our logics or some extensions of them could be used to repre-
sent/understand complex poems where inconsistent, uncertain and/or ineffable
beliefs are considered.

It is also interesting to consider extending these logics by defining a pos-
sibilistic version of each of our three logics, see [11,19]. In this way we could
(perhaps) gain a new dimension of expressibility of some notions.
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A Appendix

FiveASP3.clasp is a program that builds a logic of five values from two logic,
one from Priest and another from Avron. The logic of Priest has five values
but does not include implication connective. Avron’s logic has only four values
but includes all the connectives. We verify known tautologies, among these:
(x∧y) → x, (x∧y) → y, x→ (y → (x∧y)), (x∨y) → ((x→ z) → ((y → z)) → z),
y ↔ ¬¬y, Pierce formula ((x→ y) → x) → x.

#show impl/3.

v1(0..3). v(e). v(X):- v1(X). des(2..3).

%% Definition AND (Priest)

and(X,X,X) :- v1(X). and(0,X,0) :- v1(X). and(X,0,0):- v1(X).

and(X,3,X) :- v1(X). and(3,X,X) :- v1(X). and(1,2,0).

and(2,1,0). and(e,X,e) :- v(X). and(X,e,e) :- v(X).

%% Definition OR (Priest)

or(X,X,X):- v1(X). or(0,X,X):- v1(X). or(X,0,X):- v1(X).

or(X,3,3):- v1(X). or(3,X,3):- v1(X). or(1,2,3).

or(2,1,3). or(e,X,e) :- v(X).

% impl (Any function of 2 arguments)

1 { impl(X,Y,Z) : v(Z) } 1 :- v(X), v(Y).

% Restrictions for the implication of Avron (4-valued logic)

:- not impl(Y,X,3), v1(Y), v1(X), not des(Y).

:- not impl(Y,X,X), v1(Y), v1(X), des(Y).

% Traditional definition of equivalence

equ(X,Y,Z) :- impl(X,Y,L), impl(Y,X,R), and(L,R,Z).

% Definition of negation according to Priest

neg(0,3).

neg(3,0).

neg(1,1).

neg(2,2).

neg(e,e).

%% inference rules MP

:- impl(X,Y,Z), des(X), des(Z), v(Y), not des(Y).

%% axioms 1,2 impl,

%X -> ( Y -> X)

:- impl(Y,X,Z), impl(X,Z,R), v(R), not des(R).

% (X -> (Y -> Z)) -> ( ( X -> Y) -> (X -> Z)
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:- impl(Y,Z, L1), impl(X,L1,L), impl(X,Y,R1), impl(X,Z,R2), impl(R1,R2,R),

impl(L,R,S), v(S), not des(S).

%% -(A ->B) <-> (A & -B)

:- impl(A,B,L), neg(L,L1), neg(B,B1), and(A,B1,R), equ(L1,R,Q),

not des(Q), v(Q).

%%% FINISHES Basic construction.

%There are exactly 4 logics that meet the above.

%% We eliminate the one that evaluate e for values at {0,1,2,3} x {e}

% to contrast with logic fiveASP1. The result is a single logic.

:- impl(X,e,e), v1(X).
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