
Towards an Integrated Meta-Model for Requirements

Engineering

Georgios Koutsopoulos1, Niklas Kjellvard2, Jonathan Magnusson3 and Jelena Zdravkovic1

1Department of Computer and Systems Sciences, Stockholm University,
Postbox 7003, 164 07, Kista, Sweden

{georgios,jelenaz}@dsv.su.se
2Scania, Forskargatan 20, Södertälje, Sweden
niklas.kjellvard@scania.com

3NVBS, Löfströms allé 5, 172 66 Sundbyberg, Sweden
jonathan.magnusson@telia.com

Abstract. Traditional, plan-driven, requirements engineering identifies separate
phases in the process with well-documented outputs associated with of each of
them. The plan-driven system development is suitable for predictable projects
where all properties of the end system are known or requested from the start. In
many situations, however, the properties of the final system cannot be determined
on beforehand requiring thus a basic part of the system to be built fast, and further
enable it to evolve. For this reason, it has become more common in recent years
to adopt agile development methods, which foster interactive working with
customers, in short iterations, and with frequent system changes and releases.
Because the plan-driven and agile approaches substantially differ in their main
concepts and working steps related to requirements engineering, and the fact that
larger projects often blend them, we have identified a need for establishing
relationships between them through an integrated meta-model. The final artifact
contains the elements of both agile and plan-driven requirements engineering,
supporting thus their separate, or hybrid use, which we have illustrated and
thereby discussed and concluded this research-in-progress study.

Keywords: Requirements Engineering, Plan-driven, Agile, User Story,
Conceptual Modeling

1 Introduction

Traditional Requirements Engineering (RE) methods have been around for almost half
a century, and their concepts are well established. The best known of these is the
waterfall model introduced in 70’s; a sequential flow of steps, where the outcome of
each system development step serves as input to the next step [1]. System requirements
are completely determined up front in the requirements analysis phase, which is
followed by the subsequent phases of design, testing, implementation, and
maintenance. In the next two decades, the incremental model emerged, where the
requirements are specified in increments which are clearly defined - typically the core

Copyright © JJJJ for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

Copyright © 2020 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

Copyright © 2020 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

system functionality is defined in first increments, or a functionality involving the
highest risk in the development or use of the system. The requirements are therefore
prioritized; those with a higher priority were earlier specified and passed to the design.
A wide-known system development method relying on the incremental model is
Rational Unified Process (RUP) developed in the late 90’s, where, as for system
requirements, the main artifact was the model of Use Cases, which evolved over the
development phases inception, elaboration, construction, and transition [2]. Compared
to these traditional, i.e. plan-driven development approaches, which are incorporating
a defined process and working procedures, repeatability and predictability, extensive
documentation, up-front architecture, validation and other, its agile counterparts are
relatively young and different [3]. The basic principles of agile system development are
established in the early 2000s [4]. Instead of extensive documentation and planning,
emphasis is instead placed on individuals' interactions in processes and when using
tools. The agile RE can be summarized as focusing on interaction between customers
and development team, brief requirements, with their finalization during the
development process for avoiding volatile decisions [5]. The most known prominent
agile system development methods are Extreme Programming (XP) [6], and Scrum [7],
while other related include Crystal, Adaptive Software Development, and even other.
Agile approaches consider design and implementation to be the central activities in the
development process, while documentation and analysis of requirements are less
considered.

Insufficient RE can lead a project to go over its budget, and over the timeframe [8].
Correcting detected deficiencies in the requirements during the programming phase can
cost up to many times more, compared to whether these deficiencies would be rectified
already during the requirements analysis and based on a complete documentation. On
the other side, as competition in industry has increased, the way to develop systems and
software has gained a greater focus on product delivery and thus it has become more
important to be able to collect and manage requirements in a more flexible way, using
agile development methods [3].

Agile methods are effective when the system can be developed with a small co-
located team communicating informally. This may be a constraint for development of
bigger systems requiring larger development teams and lot of analysis before
implementation - in such a situation a plan-driven approach may better fit; in addition,
such systems may require more documentation and traceability of the development
artifacts to communicate the original intentions of the developers to the support team.

The main problem in this study revolves around the fact that concepts and phases in
the plan-driven RE methods are well established and well elaborated, but that it is not
clear how they relate to their agile counterparts, and whether the concepts and phases
overlap. It is not therefore clear whether and how the approaches could be blended, or
benefit from one another. We have therefore designed an integrated meta-model, to
explore the similarities and differences between the two approaches, and to unify their
concepts and relationships. The solution represents an opportunity to demonstrate how
project managers, requirements engineers and developers can combine concepts and
methods of both traditional and agile RE approaches.

The rest of the paper is organized as follows. Section 2 outlines a brief background
on plan-driven and agile RE and related studies. Section 3 presents the main theoretical
proposal, the 2 individual meta-models, and their integration to a unified model artifact,
and illustrates its use. A discussion is given in section 4 including concluding remarks
and future work.

2 Background and Related Work

2.1 Plan-driven and Agile Approaches

RE is a process that involves many activities, as well as there are many different
techniques and methods developed to support it. The traditional, plan-driven process is
well established and thus there are clear guidelines for the activities and concepts used,
which are generally divided into four phases [8]. Elicitation aims at initial collection of
requirements from various sources, such as stakeholders, users, organizational
documentation and existing systems; various techniques are used, such as interviews,
workshops, observation, and other. During the Documentation phase, the collected
requirements are formally specified using an adequate notation, typically in
combination of natural language and different models such as Use Cases and domain
class diagrams. In the Negotiation phase, the requirements are analyzed for various
possible conflicts – logical, business-related, or other, and accordingly prioritized.
Validation is performed to ensure that the documented individual requirements and the
entire requirement specification is understandable, consistent, complete, and meets
stakeholders’ needs. In parallel to these phases, requirements change management
records and track changes using specified dependency and traceability between the
requirements. The upper part of Figure 1 briefly visualizes the overall plan-driven
system development process:

Fig. 1. Plan-driven and Agile RE.

The agile process (the bottom part of Figure 1), in contrast, has been envisioned to
include practices such as tight and on-going communication with the customer, story-

Requirements
Engineering

Requirements
Specification

Design &
Implementation

Requirements
Engineering

Design &
Implementation

Plan-Driven

Development

Agile

Development

driven modeling, short development iterations with frequent releases, limited
documentation, designing and re-designing requirements as new evolve, or existing
ones change, relying as well on test cases as validation [9, 10]. The methods for agile
development evolved with XP and especially with Scrum [11]. These methods, as well
as the other mentioned in Introduction, differ in which of the agile practices they
promote the most, as well as how they consider the management of requirements. The
main common concept for the RE in agile methods has become Use Story. It is used to
describe a system requirement in the following way:

[Story Title] (A line naming the story)
As a [Role]
I want to [Functionality]
So I can/get [Benefit]

The User Story defines an action performed by a user in a specific role. The
Functionality can be seen as a function that the system should perform in order to give
a particular type of user (Role) an advantage (Benefit). A User Story is further detailed
in terms of conversation/scenario and test procedures.

2.2 Related Studies

A plethora of studies concerning the duality of plan-driven and agile RE exist in the
literature. Several studies concern research with a focus in the comparison between the
two approaches or within an approach like [12], where strengths and weaknesses of
agile approaches have been identified and discussed in a systematic comparison. A
possible reason behind this delimitation lies in the fact that there is research work
supporting that agile and traditional RE are juxtaposed and opposite in nature, even
though the objective of all approaches remains the same [13]. Nevertheless, despite this
fact, there is no lack of studies attempting to bridge the gap, by introducing or exploring
approaches that are characterized as integrated, mixed or hybrid.

For example, in [14], a literature review was conducted that explored the types of
hybrid approaches based on the way that the approaches are being combined. Two main
categories were identified. The first one, called “Hybrid by phases” concerns
approaches that combine the application of agile and plan-driven approaches per phase
of the project while the second one, namely “Hybrid by methods” utilizes mixed
methods, for example, a plan-driven estimation tool during agile development. What
was also identified is that the hybrid approaches are efficient both in IT and non IT
projects. Using parameters like project size, criticality, rate of changes, culture, and
people, a theoretical model was developed for the evaluation of hybrid approaches.

The field of RE is evolving and there is interest in identifying how the perspectives
on what is considered traditional have been changing over the years. For example, 15
years ago, including Use Case modeling in RE projects was still considered a hybrid
approach [15], while nowadays, Use Cases are considered part of the tradition,

There have been research studies contributing towards the integration of the two
approaches as a means to incorporate the benefits of both and avoid their drawbacks.
One such study is [16], where, in order to avoid testing strategies on real projects, two
hybrid approaches for requirements prioritization have been introduced and empirical

simulations were conducted to compare the efficiency of agile, plan-driven and mixed
approaches. Their results suggest that mixed strategies outperform agile and plan-
driven approaches, even in their dominant areas, that is, large and complex projects
with stable requirements or small and dynamic projects, for plan-driven and agile
approaches respectively [16].

The development of RE meta-models as a means to provide practical support has
also been identified as a theme in the existing literature. Meta-modeling has been
encountered in several general and domain-specific studies regarding RE. In [17], a
meta-model has been developed for agile development with a focus on the variety of
existing process models. The meta-model aims to contribute towards a common
definition in the area and the development of a unified language for the agile
development processes. Another meta-model was proposed in [18], with a focus on the
description, representation and relationships of the concepts that the requirements
engineers should elicit and specify. The meta-model is specifically used to guide the
RE process in the domain of embedded systems. Meta-modeling has also been
employed in [19]. The focus of this study lies in the concept of traceability, and
specifically, the traceability of non-functional requirements. A plan-driven meta-model
has been enhanced with agile concepts and the specifically modified result is
contributing towards the resolution of issues in this specific research area. Another
meta-model for security requirements has been introduced in [20], based on existing
risk-based security RE meta-models. Finally, in [21] a meta-model is introduced,
optimized for modeling and managing requirements for the System Families approach.

3 An Integrated Requirements Engineering Meta-Model

The purpose of this study was to design an integrated meta-model of agile and plan-
driven RE methods. The aim of the meta-model is to provide an increased
understanding of the similarities, differences and relationships between the two
approaches, by presenting their concepts in a single artifact.

The design approach was to first separately conceptualize the meta-models of the
agile and plan-driven methods based on the literature study to obtain correct
understandings about them individually. Having these two meta-models visualized, has
enabled the identification of similarities and related concepts, along with their
integration into one. In addition, analyzing and understanding them individually was
made possible. The main requirements established in the design process were as
following:

• The integrated meta-model should contain existing concepts from agile and plan-
driven RE methods and be reasonably complete with regard to the conceptualization
of each of the methods.

• The integrated meta-model should enable independent use of any of the existing
individual RE methods, by preserving the concepts and the relationships of the
individual methods.

• The integrated-meta model should give a basis for combining the methods by
establishing the relationships between the concepts of the individual methods to
enable using them combined.

The integration process engaged the four authors of this study, and three reviewers – a
senior academic, a project manager having a long experience of work with different RE
methods, and a Scrum-certificated expert. The authors made the proposals for the
integrated meta-model based on the individual ones, which were in iterations analyzed
and commented by the reviewers, until a commonly agreed result was obtained.

3.1 Agile and Traditional Requirements Engineering Meta-Models

Agile development approaches mainly differ from each other in the activities performed
in the development phases, while the common part is that the elicitation of requirements
is mainly done through User Stories, as we explained in Section 2. The figure below
depicts a meta-model of the common agile concepts as they have been in the latest years
harmonized among the methods mentioned in Introduction and in sections 2.

Fig. 2. Agile RE meta-model.

The central element in the meta-model is User Story, describing an informal description
of a system function, written in a natural language from a user’s perspective consisting
of three parts: Role, Functionality and Benefit. Role is a type of user, from whose
perspective the User Story is written. Functionality represents a desired system
behavior. Benefit is the advantage provided by the system function to the user. Task is
a broken-down part of User Story, which contributes to the completion of the story.
Acceptance Criterion is a checklist designed to determine if one User Story is logically
correct and complete which should pass Validation. A criterion belongs to its
powertype Criterion Type. Estimation is a measurement of the time and the resources

User Story’s development requires. It is usually accompanied by Story Point(s), which
is a measure of the relative size and complexity of the User Story. Epic is a large story
containing multiple User Stories related through common Theme(s). Priority - User
Stories are prioritized by the customer in order to determine which stories should be
first developed. Several Epics or User Stories are grouped through common Themes.
Several Epics or User Stories grouped hierarchically make Initiative. Backlog is a
priority list, including Tasks, of the stories to be developed in an iteration. A popular
concept used in the agile literature is Feature, however, the lack of consensus on its
definition may result in possible confusion, therefore, it has been omitted from the
meta-model. The Functionality element refers to a low-level feature, while the Epic
element refers to a high-level feature.

Plan-driven requirements specification, unlike agile, has a focus on artifacts and
phases (see Figure 3). The concepts and the relations have been constructed based on
[8]:

Fig. 3. Plan-driven RE meta-model.

Requirement is an expression for a desired system behavior. A Functional Requirement
is describing a task to be performed by a system; it can be described using different
formalism, one common is by Use Case, a collection of actions that defines the
interaction between an actor and the system. Non-Functional Requirement describes a

quality (sometimes referred as “constraint”) of the system, such as performance,
security, or other. Goal describes an intended result to be achieved by the system. A
Requirement, or a Goal, or a Scenario, is identified through Elicitation and when
specified during Documentation, it becomes a Requirements Artifact included in a
Requirements Specification. A Requirement Artifact has an Actor responsible for it,
such as a stakeholder, or a Use Case actor. Negotiation phase aims at identifying and
resolving any conflicts, as well as determining Priority of requirements by following a
Priority Type rule. Validation phase takes the focus on quality control of Requirement
Artifact(s).

3.2 The Integrated Meta-Model

The integration process has resulted in the meta-model shown in Figure 4. The blue
color is used to depict the concepts of the agile meta-model, the orange for the plan-
driven, while the green is depicting the concepts common for the both methods.

Fig. 4. Integrated RE meta-model.

In brief, the integrated meta-model depicts several concepts which bear the same name
and are used in the same way in the both methods; it also depicts new relationships and
classes, which were established to link similar concepts of the methods. Details are
explored in Table 1 below:

Table 1. Unified, linked and new elements of the integrated meta-model.

Class/Relationship Description

Priority Priority is found in both agile and traditional requirements
management, and has the same meaning.

Phase Collection class for the phases of plan-driven RE, including
Validation, which is also found in agile requirements
management.

Validation Found in both agile and plan-driven RE, but with different
meanings. Within agile, Validation is aimed at testing the
Acceptance Criterion, while in the plan-driven, it aims at
reviewing the requirement specification.

Method A class that contains the various methods of requirements
management, such as agile and plan-driven.

Iteration It is added to create a bridge between Method, Phase and User
Story. There is at least one iteration, both in the plan-driven
phases and in the agile collection of User Stories.

Documentation Does not refer to the documentation phase taking place during
the course of the project within plan-driven RE (Requirements
Specification), as well as within agile requirements
engineering (Backlog), but to the set of documents derived
from the phase.

Backlog -
Documentation

Backlog is an outcome of documenting in the agile method.

Functionality –
Functional
requirement

A Functionality of a User Story in the agile method
corresponds to a Functional Requirement in the plan-driven
method.

Benefit - Goal In the agile method, the Benefit of a User Story may coincide
with a Goal in the plan driven method.

Role - Actor The Role of a User Story in the agile method corresponds to
the Actor in the plan-driven method, such as to stakeholder or
a Use Case actor.

Illustration 1.

With this illustration, the intention is to demonstrate how the proposed integrated meta-
model (Figure 4) can contribute to better coordination in larger projects, where the
management of requirements is done by following both agile and plan-driven
approaches.

The example is based on a project where a new CRM system, in a 3-layer
architecture is to be developed. The project consists of a group that works agile (Agile-
g) and the other that works according to a plan-driven approach (PlanD-g). The Agile-
g manages and develops the requirements for the presentation layer, including user
interface, while PlanD-g focuses on the Database and Business Logic layers. This is for
the reason that within the agile requirements management the focus is on what the
customer wants to obtain, in short iterations, and with the releases of limited functional
software. Therefore, Agile-g starts by collecting User Stories, such as:

─ As a [Seller] I want to be able to [Get call lists for prospects] So that I can get
[Increased efficiency in my sales]

─ As a [Seller] I want to be able to [See sales statistics per item for specific time period]
So that I can get [Optimized Sales Opportunities]

─ As a [Seller] I want to be able to [Get detailed sales statistics for each customer]
So that I can get [Optimized Sales Opportunities]

Through the shared access to Documentation (Figure 4), PlanD-g gets the access to the
written User Stories, and accordingly can initiate elicitation of requirements for its
system parts. Based on the relationship between Role and Actor, Plan-D gets access to
Actor, which allows identification of responsible Actors (stakeholders, and even Use
Case actors) for Requirements, in this case - Seller. The main high-level Requirements
elicited, negotiated and validated by PlanD-g are:

─ FR1: the system shall provide the customer database,
─ FR2: the system shall provide periodic sales statistics for individual customers,
─ FR3: the system shall provide customer statistics.

Like for the given example, Agile-g can obtain, through a common relationship with
Documentation, the access to any elicited requirement, including related Non-
functional Requirements to the existing ones, through Dependency. In this way, Agile-
g can, in an early iteration, conduct acceptance tests for validation of some important
Requirements such as non-functional (performance, reliability, or other) which would
otherwise not have been considered or prioritized in User Stories knowing that their
focus lies on functionality (see also Section 2).

Illustration 2.
The following simple example demonstrates a utility of the meta-model by illustrating
how it can facilitate an asynchronous application of both approaches on a system. The
example concerns upgrading a payment system, in particular, an automated self-
checkout functionality is being introduced. Originally, the requirements for the system
had been elicited using a plan-based approach, while the requirements for an upgrade
are elicited following an agile approach. The existing specification would include a
plethora of detailed requirements, however, only a small fragment concerning the
payment is illustrated and depicted in Table 1, to serve the example purpose.

Table 2. A fragment of the fictitious requirements specification.

ID Description
Trace

from

G1 Process customer payments more efficiently.

FR1 The system should process payments. G1

USE1 Process payments FR1

NFR1
The system should calculate payments in 2
seconds.

G1

A functional requirement and a non-functional requirement, namely FR1 and NFR1
respectively, have been derived and are traced from goal G1. A Use Case (USE1) has

been documented in the original specification along with its associated traceability, as
shown in Table 1, its priority as high, and Cashier as its actor. The level of detail in the
description of USE1 also allowed the inclusion of a main and an alternative flow along
with pre-conditions and post-conditions. In particular, the main flow concerns payment
by cash, the alternative flow card payments, a pre-condition that the system is operating
and is connected to a database and a bank, and post-condition that the payment has been
processed and registered and a receipt has been printed.

Instantiating the model would result in an instance of the Use Case class, namely
USE1 and G1 would be an instance of the Goal class, which are both associated with
an instance of the Trace To class to depict their traceability link. An association with
the Priority class assigns Priority values of a specific Priority Type during the
Negotiation phase. This can also be reflected in the model using associations. The
association with the Requirements Specification class would reflect the documented
state of the requirements.

The agile approach for upgrading the system would suggest starting from the
beginning by eliciting User Stories. However, the integrated meta-model enables the
potential to reverse engineer User Stories from the existing Use Case information in the
Requirements specification. The shared access to the Documentation class would
provide enough information to identify required tasks, and in return, User Stories. Any
alternative flow can possibly generate a User Story, the roles are existing as actors, the
benefits exist as goals and pre-conditions and post-conditions can serve as acceptance
criteria along with any possible dependence with non-functional requirements.
Traceability and priority can also be extracted.

A minimal and abstract description of USE1 would include these steps:

Main Flow:
1. Product is scanned
2. System registers price and quantity
3. Sum is requested
4. Systems calculates sum
5. Cash amount is registered
6. The system Change calculates and displays change, receipt is printed.
Alternative Flow:
5a. Card is scanned

In this particular example, USE1 provides information adequate information for the
following User Stories:

─ As a [Cashier] I want to be able to [Have a receipt printed] so that I can [Process
customer payments more efficiently]

─ As a [Cashier] I want to be able to [Calculate payments by cash] so that I can [Process
customer payments more efficiently]

─ As a [Cashier] I want to be able to [Calculate payments by card] so that I can [Process
customer payments more efficiently]

─ As a [Cashier] I want to be able to [Register payments by cash] so that I can [Process
customer payments more efficiently]

─ As a [Cashier] I want to be able to [Register payments by card] so that I can [Process
customer payments more efficiently]

The role is still the cashier since the self-checkout machines need to be supervised by
a cashier. The functionalities that are still missing before completing the initial agile
iteration are the automatic delivery of receipt and the automatic return of change as
long as cash payment is concerned. Collecting the two User Stories below is completing
the set.

─ As a [Cashier] I want to be able to [Return change to customers automatically] so
that I can [Process customer payments more efficiently].

─ As a [Cashier] I want to be able to [Deliver an automated receipt] so that I can
[Process customer payments more efficiently]

So, the majority of the User Stories that would comprise the payment epic, have been
extracted from an existing plan-driven specification. Taking also into consideration that
the User Story mapping can be facilitated by the existence of traceability and priority
associations, this can enable the potential to save valuable time and effort from the
requirements engineers that are working on the project.

4 Discussion, Conclusions and Future Work

In the traditional view, RE is considered as critical to avoid wrong, incomplete, or
ambiguous requirements, which will be as such delivered to system design. Hence, in
the plan-driven approach, it is a common practice to use a process to plan successful
management of requirements and creation of the system requirements specification, by
doing extensive elicitation, documentation, negotiation and validation. The agile
methods have, in contrast, focus to, by highly interactive practices reduce the amount
of documentation, do smaller chunks of requirements specified and managed less
formally. This, in turn, leads to a faster implementation, which means that user
feedback comes at an earlier stage. Yet, some challenges may emerge when scaling an
agile system development method across a large project and teams because of the lack
of overall planning, coordination and specification. Both approaches may be seen have
advantages and disadvantages depending on the development environment - agile is
well suited for the projects with high levels of uncertainty in requirements, and plan-
driven is more suited for low level of uncertainty projects, i.e. where requirements are
rather stable.

The goal of this study has been therefore to, by individually conceptualizing the main
concepts of the two approaches, design an integrated conceptualization to understand
how they relate to each other. The main propose behind that is gaining insight about the
differences of the two approaches, and moreover opportunity to (i) consolidate in a
single place (the integrated meta-model) different methods being used in a project; and
(ii) blend the approaches by, for instance, practicing the use of different or additional
concepts in current agile methods in the way that they benefit from plan-based when
the size and complexity of a project motivates that.

The presented integrated meta-model has been reviewed and discussed by few
experts as we reported in Section 3 and its use was demonstrated by two illustrative
examples. The main subjects of the future work are therefore to test the integrated meta-
model in a real project, and thus also to investigate in which directions the artifact
should be improved; enlarge it to include even more detailed concepts, or enrich it with
the methods of use; or even extend it to support emerging approaches relying on new
requirements-related notions such as for capability-driven system development [22];
or, for example, by considering digital requirements sources in addition to human
customers / stakeholders.

Acknowledgment. We would like to express our gratitude to the experts mentioned in
Section 3 who dedicated their time for reviewing the meta-model artifacts throughout
their development.

References

1. Royce, W.W.: Managing the Development of Large Software Systems-Concepts and
Techniques. 1970. In: Proceedings of IEEE WESCON. pp. 1–9. TRW (1970).

2. Booch, G., Rumbaugh, J., Jacobson, I.: The unified modeling language user guide. Addison-
Wesley, Reading Mass (1998).

3. Inayat, I., Salim, S.S., Marczak, S., Daneva, M., Shamshirband, S.: A systematic literature
review on agile requirements engineering practices and challenges. Computers in Human
Behavior. 51, 915–929 (2015). https://doi.org/10.1016/j.chb.2014.10.046.

4. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., others: Manifesto for agile software
development. (2001).

5. Zowghi, D., Coulin, C.: Requirements Elicitation: A Survey of Techniques, Approaches,
and Tools. In: Aurum, A. and Wohlin, C. (eds.) Engineering and Managing Software
Requirements. pp. 19–46. Springer-Verlag, Berlin/Heidelberg (2005).
https://doi.org/10.1007/3-540-28244-0_2.

6. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, Reading,
MA (2000).

7. Schwaber, K.: SCRUM Development Process. In: Sutherland, J., Casanave, C., Miller, J.,
Patel, P., and Hollowell, G. (eds.) Business Object Design and Implementation. pp. 117–
134. Springer London, London (1997). https://doi.org/10.1007/978-1-4471-0947-1_11.

8. Pohl, K.: Requirements engineering: fundamentals, principles, and techniques. Springer,
Heidelberg ; New York (2010).

9. Leffingwell, D.: Agile Software Requirements: Lean Requirements Practices for Teams,
Programs, and the Enterprise. Addison-Wesley, Upper Saddle River, NJ (2011).

10. Ramesh, B., Cao, L., Baskerville, R.: Agile requirements engineering practices and
challenges: an empirical study: Agile RE practices and challenges. Information Systems
Journal. 20, 449–480 (2007). https://doi.org/10.1111/j.1365-2575.2007.00259.x.

11. Rubin, K.S.: Essential Scrum: a practical guide to the most popular agile process. Addison-
Wesley, Upper Saddle River, NJ (2012).

12. Muneer, S.U., Nadeem, M., Kasi, B.: Comparison of modern techniques for analyzing NFRs
in Agile: A systematic literature review. Journal of Software Engineering Practice. 3, 1–12
(2019).

13. Abbas, J.: Quintessence of Traditional and Agile Requirement Engineering. JSEA. 09, 63–
70 (2016). https://doi.org/10.4236/jsea.2016.93005.

14. Imani, T., Nakano, M.: A Model for Effective Area of Hybrid Approach Combining Agile
and Plan-Driven Methods in IT Project. Journal of International Association of P2M. 13,
52–70 (2018).

15. Daniels, J., Bahill, T.: The hybrid process that combines traditional requirements and use
cases. Syst. Engin. 7, 303–319 (2004). https://doi.org/10.1002/sys.20013.

16. Port, D., Bui, T.: Simulating mixed agile and plan-based requirements prioritization
strategies: proof-of-concept and practical implications. European Journal of Information
Systems. 18, 317–331 (2009). https://doi.org/10.1057/ejis.2009.19.

17. Schön, E.-M., Sedeño, J., Mejías, M., Thomaschewski, J., Escalona, M.J.: A Metamodel for
Agile Requirements Engineering. JCC. 07, 1–22 (2019).
https://doi.org/10.4236/jcc.2019.72001.

18. Pereira, T., Sousa, A., Oliveira, R., Albuquerque, D., Alencar, F., Castro, J.: A Metamodel
to Guide a Requirements Elicitation Process for Embedded Systems. In: 2018 11th
International Conference on the Quality of Information and Communications Technology
(QUATIC). pp. 101–109. IEEE, Coimbra (2018).
https://doi.org/10.1109/QUATIC.2018.00023.

19. Binti Arbain, A.F., Ghani, I., Wan Kadir, W.M.N.: Agile non functional requiremnents
(NFR) traceability metamodel. In: 2014 8th. Malaysian Software Engineering Conference
(MySEC). pp. 228–233. IEEE, Langkawi, Malaysia (2014).
https://doi.org/10.1109/MySec.2014.6986019.

20. Faily, S., Fléchais, I.: A meta-model for usable secure requirements engineering. In:
Proceedings of the 2010 ICSE Workshop on Software Engineering for Secure Systems -
SESS ’10. pp. 29–35. ACM Press, Cape Town, South Africa (2010).
https://doi.org/10.1145/1809100.1809105.

21. Cerón, R., Dueñas, J.C., Serrano, E., Capilla, R.: A Meta-model for Requirements
Engineering in System Family Context for Software Process Improvement Using CMMI.
In: Bomarius, F. and Komi-Sirviö, S. (eds.) Product Focused Software Process
Improvement. pp. 173–188. Springer Berlin Heidelberg, Berlin, Heidelberg (2005).
https://doi.org/10.1007/11497455_15.

22. Zdravkovic, J., Stirna, J., Kuhr, J.-C., Koç, H.: Requirements Engineering for Capability
Driven Development. In: Frank, U., Loucopoulos, P., Pastor, Ó., and Petrounias, I. (eds.)
The Practice of Enterprise Modeling. pp. 193–207. Springer, Berlin, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45501-2_14.

