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Abstract

Bathymetry has a first order impact on nearshore and surfzone
hydrodynamics. Typical survey techniques are expensive and
time-consuming, require specialized equipment, and are not
feasible in a variety of situations (e.g. limited manpower
and/or site access). However, the emergence of nearshore
remote sensing platforms (e.g. Unmanned Aircraft Systems
(UAS), towers, and satellites) from which high-resolution im-
agery of the sea-surface can be collected at frequent inter-
vals, has created the potential for accurate bathymetric esti-
mation from wave-inversion techniques without in-situ mea-
surements. While a variety of physics-based algorithms have
been applied to nearshore and surfzone bathymetric inversion
problems, the commonly used approaches do not account for
non-linear hydrodynamics that are prevalent during breaking
waves. Models for estimating non-linear wave dynamics are
slow and often require large amounts of computational power
which make them unfeasible for rapid estimations of depth.
Fully convolutional neural networks (FCNs) are a branch of
artificial intelligence algorithms that have proven effective at
computer vision tasks in semantic segmentation and regres-
sion problems. In this work, we consider the use of FCNs for
inferring bathymetry from video-derived imagery. The FCN
model presented shows the feasibility of using an Al sys-
tem to perform bathymetric inversion on time-averaged im-
ages (timex) of realistic-looking, synthetically generated sur-
fzone imagery from the hydrodynamic wave model Celeris
(Tavakkol and Lynett 2017). Ongoing work includes extend-
ing the FCN to incorporate synthetic video frames as input as
well as testing with actual tower and satellite imagery.

Introduction

Accurate knowledge of nearshore and surfzone water depths
is important for a wide range of applications, ranging from
enhancing the personal safety of beach-goers, to industrial
and military applications such as identifying navigable ar-
eas for ships or other landing craft (Avera et al. 2002). The
bottom boundary condition is one of the most important in-
puts for numerical simulations of nearshore and surfzone
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processes, with water depth and slope being principal parts
of the governing wave equations in the nearshore. Currently
the most accurate methods for determining bathymetry are
in-situ observations involving physical contact with the bot-
tom, or acoustic hydrographic surveys from vessels (Moul-
ton, Elgar, and Raubenheimer 2014b). Both approaches are
limited by the requirement of a physical presence at the
site, which complicates their use in isolated environments
or during unsafe water conditions (Birkemeier and Mason
1984). In addition, the surfzone bathymetry is constantly
changing, and can vary considerably day-to-day making
consistent measurement impractical using traditional meth-
ods (Moulton, Elgar, and Raubenheimer 2014a). An alter-
native approach to estimate bathymetry that would over-
come some of these limitations is using remotely sensed
data sources, which don’t require a physical presence in the
water at a site. A number of remote sensing approaches to
estimate bathymetry have been developed including direct
(e.g. bathymetric LIDAR, multi and hyper-spectral imagery)
and inferred approaches (e.g. image or radar-derived obser-
vations of wave-kinematics and breaking)(Holland, Palm-
sten, and others 2018). Visible band imagery offers a low-
cost approach which exploits the visible surface signature
of shoaling and breaking waves in the nearshore — wave
transformation processes that are largely controlled by wa-
ter depth. Images record the location of wave breaking or
speeds of wave propagation, which can be related to wa-
ter depth using a bathymetry inversion algorithm (Holman,
Lalejini, and Holland 2016; Van Dongeren et al. 2008). The
use of different remote sensing platforms, such as satel-
lites and unmanned aerial vehicles (UAVs) (Holland et al.
2010; Holman, Brodie, and Spore 2017; Brodie et al. 2019;
Almar et al. 2019; Bergsma, Almar, and Maisongrande
2019), to collect this imagery offers opportunities to esti-
mate bathymetry in areas that would normally be difficult
or costly to assess with traditional methods, increasing data
availability and reducing costs (both financial and temporal)
compared to in-situ observation methods (Gao 2009).

While analyzing sequences of coastal video imagery with
traditional signal processing and computer vision algorithms



to estimate bathymetry holds promise, the inherent complex-
ity of the nearshore and surfzone, which includes many non-
linear processes, will always lead to errors in any bathymet-
ric inversion model that simplifies the effects of these pro-
cesses through a linear approach. Machine learning algo-
rithms, particularly deep neural networks, have previously
demonstrated the ability to identify and classify pixels in
complex images far beyond the quality of traditional hand-
written algorithms (Simonyan and Zisserman 2014). Apply-
ing machine learning for classification of remote sensing im-
ages on a pixel-wise basis is referred to as semantic segmen-
tation and has increasingly been utilized in remote sensing
over the past decade. The combination of high-resolution
data and faster computer processing has made this possible
by allowing for the parallel processing of millions of param-
eters, which is required to process the increasing resolutions
from remote sensing technologies, such as UASs and/or HD
camera systems (Christophe et al. 2011).

Traditional low-resolution algorithms used to analyze re-
mote sensing imagery do not maintain their effectiveness at
these higher resolutions of present-day interest, while the
abundance of parameters in the high spatial and spectral res-
olution data make a traditional analytical algorithm more
difficult to develop when classifying complex features (Zhu
et al. 2017). Image processing algorithms to simplify these
datasets are often time consuming to run and require sub-
stantial investment in powerful computer hardware. How-
ever, the performance of semantic segmentation of high-
resolution scenes has increased rapidly since 2012, which
was the beginning of the domination of supervised deep
learning with the introduction of the deep convolutional neu-
ral network (DCNN) AlexNet (Krizhevsky, Sutskever, and
Hinton 2012; Alom et al. 2018). In addition, deep neural
networks have the advantage of being extremely fast to com-
pute targets once trained, yielding portability to run on a
relatively modest processor. For example, deep neural net-
works allow for near real-time semantic segmentation on
board a UAS or sea-based vessel to aid autonomous navi-
gation (Tian et al. 2018).

However, the downside of typical supervised training with
deep neural networks is the requirement for extremely large
labeled datasets. Because of this, many classifiers and seg-
mentation networks start with pre-trained parameters as op-
posed to the typical machine learning approach where the
parameters start out as random values. These pre-trained
parameters are then transferred to the current task, chang-
ing only a small subset of them with the training data for
the new problem looking to be solved. Parameters that have
been pre-trained on large image datasets will be able to iden-
tify vague features, such as edges in an image. These vague
features are then used as inputs into the final layers, which
are the layers whose parameters will be adjusted by the new
training dataset. This application of a trained network be-
ing adjusted and then applied to another task is commonly
referred to as transfer learning (Huh, Agrawal, and Efros
2016).

Oceanographic data sets of coastal imagery coincident
to highly accurate bathymetric measurements are extremely
rare, and generally occur only during small waves. Available

training data sets using real imagery are likely too small to
find proper parameters from randomly initialized DCNN pa-
rameters, which would likely lead to over-fitting (Kemker,
Luu, and Kanan 2018). This study seeks to both utilize the
non-linear prediction powers of a deep neural network and
explore the use of synthetic data to approach the bathymetry
inversion problem through the development of a deep learn-
ing network using synthetic surfzone imagery derived from
a photorealistic visualization of the nearshore wave model,
Celeris (Tavakkol and Lynett 2017).

Background

Parametric equations have a long history of use to approxi-
mate beach slopes and are based on the model

h = Az?/3

where h is the water depth, A is a constant, and x is dis-
tance in the cross-shore direction (Bruun 1954). While para-
metric beach models are good for quantifying large-scale
trends, such as regional inundation due to sea level rise; in
smaller regions of interest, surfzone and nearshore variations
in bathymetry, like sandbars, are not accounted for. To ad-
dress the limitations of parametric bathymetry models, the
location of the shoreline and sandbars can be added to para-
metric models using time-averaged imagery (timex) (Hol-
man et al. 2014). Sandbars are identified by time-averaging
sequences of video imagery of the surfzone, to generate a
timex image (Lippmann and Holman 1989). Timex images
are used to identify regions of persistent wave breaking.
Waves break in areas with reduced water depth over sand-
bars, when the water depth decreases to be between 0.4 and
0.8 of their wave height (Komar and Gaughan 1973). Per-
sistent regions of wave breaking appear as a white-band that
can then be manually digitized from timex images to iden-
tify the position of the surf zone sandbars. Exposure times
to generate the time-averaged images can range from a min-
imum of 10 minutes to full day exposures, using a variety of
video capture techniques (Guedes et al. 2011).

Parametric bathymetry models can also be used in two-
dimensions (2D) to generate more complex bathymetry
(Holman, Lalejini, and Holland 2016). Their parametric
beach tool requires twelve parameters to create a shore-
line morphology, however eight of the parameters are eval-
uated to constants in practical implementation. The remain-
ing variable inputs are the climatological beach slope at the
shoreline, the depth and bottom slope at some location sea-
ward of the active bar zone, and the cross-shore location of
the sand bar crest. In the 2D implementation, a mean shore-
line is input by the user, and normal transects from the shore-
line are calculated. The distance from the shoreline to the
sandbar, using expert identification with time lapsed images,
is also input into the model, along with an estimated offshore
depth and beach slope. This inversion model was tested by
(Holman, Lalejini, and Holland 2016) and showed to have a
mean bias and RMSE error of 0.27 m and 0.49 m, respec-
tively, over the study area at Duck, NC.

Beyond simple parametric representations, a number of
efforts have been made to directly measure surf-zone pa-



rameters of interest in order to estimate bathymetry. Di-
rect inversion techniques have focused on measuring wave
speeds from image sequences and estimating bathymetry
using linear wave theory (Stockdon and Holman 2000;
Plant, Holland, and Haller 2008; Holman, Plant, and Hol-
land 2013; Bergsma and Almar 2018; Bergsma, Almar, and
Maisongrande 2019), whereas other inversion schemes have
utilized data assimilation techniques which combine the re-
motely sensed parameters with numerical models. Data as-
similation techniques have ranged from classical variational
methods and Kalman Filters (Holman, Plant, and Holland
2013; Wilson and Berezhnoy 2018) to ensemble approaches
(Wilson, Ozkan Haller, and Holman 2010) and more recent
nonlinear extensions of the Kalman Filter (Ghorbanidehno
etal. 2019). The types of surface observations that have been
explored includes wave speeds as well as wave heights, cur-
rents (Holman, Plant, and Holland 2013; Wilson et al. 2014;
Moghimi et al. 2016) and estimates of wave energy dis-
sipation from timex images (Van Dongeren et al. 2008;
Aarninkhof, Ruessink, and Roelvink 2005). In general, ap-
proaches combining modern inversion techniques with high
fidelity models of nearshore hydrodynamics have shown the
potential to provide higher accuracy estimates under a wider
set of hydrodynamic regimes. However, this accuracy intro-
duces added complexity and computational expense, which
are potential barriers to fielding these approaches for real-
time application in limited resource environments like mo-
bile platforms.

In this effort we explore the ability of machine learn-
ing algorithms to learn the relationship between locations
of persistent wave breaking in timex images and surfzone
bathymetry, removing the need for manual digitization of the
sandbar location (e.g. (Holman, Lalejini, and Holland 2016))
or a numerical wave dissipation model (e.g. (Van Dongeren
et al. 2008)).

Methodology
Wave Modeling Software Selection

Celeris is an open source Bousinessq wave model that runs
on a GPU cluster and creates visually realistic simulations
of nearshore and surfzone waves in near real-time on a typ-
ical desktop computer (Tavakkol and Lynett 2017). Celeris
generates and visualizes different wave interactions, such as
shoaling, refraction, reflection, and breaking. These are the
relevant processes influencing the visual expression of wave
propagation in the nearshore, and therefore the wave model
results provide a relevant corollary to observations collected
by remote video platforms. This wave model was selected
not only for its efficient run time, but also its pseudo-realistic
visualizations of wave transformation and breaking, which
can be used as a proxy for coastal video imagery. Through
video capture of the wave model results, a 20 minute video
is created after an initial 10 minute spinup time. These video
files of the Celeris visualization are then averaged in time to
produce a timex image (similar to the timex images typically
created by nearshore video monitoring stations (Holman and
Stanley 2007)) for that bathymetry and wave condition (Fig-
ure 1).

Time-lapse images from video

Figure 1: A single frame of the Celeris visualization (a),
8000 frames are averaged together to form the time-
averaged image (timex) (b), with brighter areas showing
where waves break more often. The far offshore part of the
visualization in (a), which is the deepest section, is not in-
cluded in the final timex (b) due to the lack of breaking
waves. This produces a timex image (b) of 1795 m in the
alongshore direction, and 860 m in the cross-shore direction.
Finally, the timex is then cropped to be (512, 512) pixels and
centered on the alongshore of the image (c). The shape is for
ease of input to the ML model, while the position is due to
edge effects from wave generation.

Bathymetry Selection

While there are multiple parameters to adjust in the Celeris
wave model, two inputs have the largest effect on the gen-
eration of synthetic video imagery of surfzone processes:
bathymetry and offshore wave boundary conditions. A set
of 100 statistically driven bathymetries were generated us-
ing an Empirical Orthogonal Function approach on 40
years of in-situ bathymetry surveys collected at the U.S.
Army Corps of Engineers Field Research Facility (Braud
and Obled 1991). This set of bathymetries were then di-
vided into separate sets of training (80 bathymetries), val-
idation (10 bathymetries), and testing (10 bathymetries).
These bathymetries extend 1795 m in the alongshore direc-
tion (parallel to the beach), and 970 m in the cross-shore di-
rection (perpendicular to the beach), with an average shore-
line position of about 220 m in the cross-shore direction.
The cross-shore distance is chosen due to its correspon-
dence with the location of the FRF’s 8 m water depth pres-
sure sensor array. In addition, 100 synthetically generated
bathymetries were created, using parametric beach slopes,
with sandbars, troughs, and depressions created by perturb-
ing the slope at random locations, frequencies, and inten-
sities (Figure 2). These bathymetries are introduced to al-
low the ML model to learn different breaking patterns, such
as multiple sandbars, and their correspondence with water
depth that are not usually visible in the bathymetries statis-
tically driven from the observed data set from Duck, NC.
It also serves as a preventative measure against over-fitting,
intending to generalize the ML model’s ability to accurately
assess water depths for breaking wave intensities from im-
agery, by using a wider range of inputs and depths at differ-
ent cross-shore locations beyond that of the statistics from
the historical dataset (Figure 3). Perturbations from the mean
profile were generated and added between 200 m from the
shoreward domain edge and 200 m from the offshore bound-
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Figure 2: The different parts of the random bathymetry gen-
erator. This script was created to model different beaches
and slopes than typically found in Duck, NC, such as multi-
sandbar beaches. First a parametric profile is created, from
that trough, sandbar, and spot variations are combined onto
the original slope. This is then blurred to create the final
bathymetry.
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ary. Between 0-25 bar-trough (alongshore uniform) features,
of random amplitudes and spacing, are generated and ap-
plied to the mean profile. At least 50 and up to 100 along-
shore non-uniform, circular features of various radii and am-
plitude (positive and negative) are applied to the same por-
tion of the profile area. The bathymetry is smoothed and
stretched with a length scale of up to 20, and then the en-
tire profile is shifted so that the average depth at the offshore
boundary is at the desired depth. Bathymetries were con-
ditioned to be centered at 8 m water depth at the offshore
boundary since Celeris was setup to force with wave obser-
vations observed in 8 m depth. This set of bathymetries was
similarly divided into separates set for training (80), valida-
tion (10), and testing (10).

Wave Condition Selection

To force the wave model, we selected the most highly proba-
ble wave conditions that were measured at the FRF’s phased
array of pressure sensors in 8 m water depth (about 950m
from the shoreline) (Long and Oltman-Shay 1991). The
wave rose, (Figure 4), bins the historical wave conditions
by significant wave height and direction over the course
of 10 years. Individual simulations were performed using
the most frequent wave conditions observed in Duck, NC.
While additional conditions were initialized by using the
probabilistic wave conditions as boundary conditions for a
Latin hypercube sub-sampling of the data plotted in Fig-
ure 3. The wave height affects where in the domain the
waves break, whereas the wave frequency will affect how
often the waves break (and resultant image intensity). The
wave direction also affects the final timex image by vary-
ing the direction waves travel toward the shore, and thus
the direction in which breaking occurs. These ranges are:
wave heights between 0.7 m and 2.5 m, peak frequencies
between 0.09 Hz and .2 Hz, and peak wave direction be-
tween 45° and 112.5° True North). Wave directions outside
of these ranges only occur 14.7% of the time over the sam-
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Figure 3: Density plot of the range of water depths at each
location that were derived within a standard deviation of
historical Duck, NC bathymetries. A similar density plot of
the randomly generated bathymetries. Red areas are where
nearly all of the 100 bathymetries had the same average
cross-shore depth at that point.
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Figure 4: Binned histogram of observed wave conditions at
the FRF’s 8 m offshore array in Duck, NC from 1/1/2010 to
12/31/2019. The radial direction shows the incoming direc-
tion of waves. The outward axis shows the conditions binned
by their wave height. For example you can see that Duck,
NC, where normally incident waves travel from 71.8°, expe-
rienced waves of a 0.5 - 1 m average significant wave height
from the 67.5° to 90° interval around 6% of the time during
the queried interval.



pled time period. While wave conditions with wave heights
smaller than 0.7 m are quite common (greater than 80% of
the time), they are not considered in this study due to the
very small observable surfzone features produced by low
energy wave conditions and lack of wave breaking. These
three conditional inputs were used as inputs to the TMA
equation to generate a 2D wave spectra (Bouws et al. 1985;
Hughes 1984) that is used as the input wave condition to the
Celeris wave model.

Network Architecture

The need to directly convert the visual signal of breaking
waves in an image to water depth from the visual input fea-
tures partially motivates the usage of a 2D fully convolu-
tional neural network (FCN), which has proven to be effec-
tive in pixel-wise regression and semantic segmentation ap-
plications in other remote sensing fields (Wu et al. 2019).
Another motivation for this network selection is the poten-
tial for transfer learning. By attempting to generate and use
synthetic data as visually close to measured optical data as
possible, the potential exists for transfer learning, where the
found bathymetric inversion ML model can be only slightly
modified with the smaller subset of true coastal imagery
data that exists, compared to the near limitless availability
of synthetic data. The FCN setup has been demonstrated as
a particularly apt network architecture for transfer learning,
with examples of it being successful for semantic segmen-
tation with similar remotely sensing data (Kemker, Salvag-
gio, and Kanan 2018; Kim et al. 2018; Sakurai et al. 2018;
Wurm et al. 2019). The type of FCN model chosen is a mod-
ified U-net (Ronneberger, Fischer, and Brox 2015) architec-
ture, which can be easily modified to do pixel-wise regres-
sion as well as its original use for semantic segmentation
(Yao et al. 2018). The current architecture is modified to
accept images of (512, 512, 4) size by adding two layers.
The traditional dropout rates and upsampling methods used
originally are also modified for better generalization to our
domain.

Numerical Experiments

The FCN model was trained, validated, and tested using Py-
Torch, Tensorflow, scipy, numpy, cv2, and tifffile libraries.
The PyTorch.Dataset class was overwritten to perform si-
multaneous loading and augmenting of the dataset to in-
clude an additional channel with information on the offshore
beach slope. The FCN model and training/validating/testing
functions were implemented in Tensorflow 2.0, due to the
smaller memory imprint than when using a PyTorch model.
The Celeris model simulations were ran on a Dell Precision
5820 with 64GB of RAM and a NVIDIA RTX 2080. The
FCN model was trained on a custom built PC with 64GB of
RAM and a NVIDIA RTX Titan V with 24GB of VRAM.
The final timex image used for training is a subset of the
entire Celeris wave model domain (Figure 1). This timex im-
age is stored with 3 red, green, and blue (RGB) channels as
a (512, 512, 3) dff file. When these files are loaded during
training an additional channel is added to provide additional
input features (slope) for a more accurate prediction, result-
ing in a final image size of (512, 512, 4). The constant value

for slope is written to the last channel. The RGB channels
are normalized across the training set. The slope is calcu-
lated by finding the physical slope from the alongshore av-
eraged shoreline elevation to the alongshore averaged end of
image depth for each bathymety. Estimated offshore beach
slope is also an input to the latest parametric beach model
(Holman, Lalejini, and Holland 2016). With all the inputs
into the model the role of the trained FCN model is to es-
timate the existence and extent of perturbations from the
parametric slopes by examining the breaking wave pattern
observable through the timex imagery.

Training

Training was performed using the timex images from 80 ran-
domly generated bathymetries and 10 of the most highly
probable wave conditions measured at Duck, NC, yielding
800 training samples, of which there are 80 unique targets.
The training was done with Tensorflow 2.0’s train_on_batch
function and random images were selected using the modi-
fied PyTorch Dataset class for a mini-batch size of 15, which
was chosen because it was the largest mini-batch size that
could fit into GPU memory on current local hardware. Dur-
ing training, mini-batches were randomly selected from the
training dataset until the end of the epoch. The validation
dataset was created similarly to the training dataset but con-
sists of 10 different bathymetries ran over the same 10 wave
conditions used in the training set. At the end of each of
these randomly sampled epochs validation was ran over 50
images randomly selected from the validation dataset.

The optimizer that found the best convergence was
NAdam with all parameters at default settings except the
starting learning rate is modified to .00008. In addition, a
custom learning rate decay is introduced where the learn-
ing rate is reduced by 10 percent after the validation loss
has not decreased for 8 straight epochs. Convergence with
these parameters takes around 12 hours of training time on
the hardware described above.

Testing

Testing was done by using timex images from 10 bathyme-
tries and 10 wave conditions selected using Latin hypercube
sampling within the realistic boundary conditions measured
in Duck, NC, yielding 100 testing samples, where there were
10 unique targets. The bathymetries used for the test set were
generated with the same bathymetry generation code used to
make the random training bathymetry sets, but differed visu-
ally from the training and validation samples, and were not
used during those processes. The wave conditions were also
unique to the test set.

The testing was done with Tensorflow 2.0’s predict func-
tion, with visualization done with matplotlib.pyplot. Exam-
ple outputs are shown in Figure 5. In Figure 5a and 5b, the
largest RMSE and a significant amount of Bias error oc-
curs offshore of the sandbar/breaking wave visual signature
(right side of images). These areas will only occasionally
see breaking waves and in turn the estimates are biased by
the algorithm as a result. Additionally, errors grow in the
trough between the sandbar and the shoreline, where the



Example outputs & analysis
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Figure 5: Three example input features and outputs are
shown above (a;b;c). Each prediction has six frames of data
shown here. The first frame shows the input RGB channels
of the timex image. The second frame is the ground truth
elevation. The third frame is the predicted elevation. The
fourth frame shows two average offshore cross-shore tran-
sects, with the black line being the predicted transect, and
the cyan line being ground truth. The fifth frame shows the
average offshore cross-shore RMSE error. The sixth frame
shows the offshore Bias with areas predicted too shallow in
red, and areas predicted too deep in blue. The tables (d) give
summary statistics on each particular input: Mean Absolute
Error, Mean Square Error, Mean Bias, Median Absolute Er-
ror, Greatest Pixel Error, and percentile error, such that *95%
of the pixels have less error than this value’ over the offshore
portion of the test set.

waves have dissipated enough energy to stop breaking be-
fore re-breaking near the shoreline, and thus little informa-
tion about depth is observable in this region (Figure Sc).
Over the entire test set of 10 unique bathymetries and 10
unique wave conditions the mean bias and RMSE of water
depth were 0.449 m and 0.390 m (Figure 5d). In most in-
stances across the test set, the prediction was too shallow
(negative bias), exceptions to this rule are commonly seen in
nearshore troughs and the seaward side of the sandbar when
there are no breaking waves and the resulting prediction is
often too deep (positive bias).

Conclusions

Initial results show promise in the ability of the trained FCNs
to estimate nearshore water depths from synthetic wave
breaking signatures expressed in timex imagery, generated
with the wave model Celeris. The FCN model shows a clear
ability to identify the differences between deeper and shal-
lower areas, identifying the location of sandbars, troughs,
and depressions not seen in the original training dataset, and
that they are directly related the amount of breaking waves in
that particular location. For this study, the bias (0.449 m) and
RMSE (0.390 m) over the test set is encouraging, and com-
parable to other remotely sensed inversion techniques. Some
error is inherent as the timex images extend up to 660m off-
shore, where waves are generally not breaking. We chose to
use unique wave conditions during the testing phase to deter-
mine if the FCN model could show understanding that timex
images that varied greatly depending on different wave pat-
terns can still point to the same target water depth. Testing
with conditions not seen during training is also important
because it would be impossible to train for all possible com-
bination of wave conditions that could be seen at a given lo-
cation due to the wide ranges in wave heights, frequencies,
and directions.

Future Work

Modifications to the model are currently in development.
The most promising is the inclusion of wave condition fea-
tures as inputs to the U-net architecture by including their
values along with slope in the additional channel. These en-
vironmental parameters are hypothesized to help with the
algorithm because they directly impact the resultant (RGB)
timex image generated by the wave model. Development
of these input features would also be advantageous for the
transfer to real datasets, as they are available at most loca-
tions worldwide from global wave and tide models.
Additional future work will improve the FCN model and
analysis by 1) comparing the bias and RMSE of the FCN
model on the test set to predictions made by the paramet-
ric beach tool introduced by (Holman, Lalejini, and Holland
2016); 2) expand the synthetic training and testing dataset
in the form of more bathymetries and wave conditions to
significantly increase the ranges of slopes and wave condi-
tions seen during training/testing; 3) introduce video frame
data as a feature input into the FCN model, likely improv-
ing the accuracy in areas with little to no breaking waves by
allowing the algorithm to utilize observations of wave speed



in these areas (which is proportional to water depth) in addi-
tion to wave breaking; and 4) curate and compile a real timex
and bathymetry dataset that can be similarly represented by
Celeris to then test the ability of the FCN model to transfer
to real datasets.
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