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Abstract

Accurately predicting the propagation of fractures, or cracks,
in brittle materials is an important problem in evaluating
the reliability of objects such as airplane wings and con-
crete structures. Efficient crack propagation emulators that
can run in a fraction of the time of high-fidelity physics sim-
ulations are needed. A primary challenge of modeling frac-
ture networks and the stress propagation in materials is that
the cracks themselves introduce discontinuities, making ex-
isting partial differential equation (PDE) discovery models
unusable. Furthermore, existing physics-informed neural net-
works are limited to learning PDEs with either constant initial
conditions or changes that do not depend on the PDE outputs
at the previous time. In fracture propagation, at each time-
step, there is a damage field and a stress field; where the stress
causes further damage in the material. The stress field at the
next time step is affected by the discontinuities introduced by
the propagated damage. Thus, both stress and damage fields
are heavily dependent on each other; which makes model-
ing the system difficult. Spatiotemporal LSTMs have shown
promise in the area of real-world video prediction. Building
on this success, we approach this physics emulation problem
as a video generation problem: training the model on simula-
tion data to learn the underlying dynamic behavior. Our novel
deep learning model is a Physics-Informed Spatiotemporal
LSTM, that uses modified loss functions and partial deriva-
tives from the stress field to build a data-driven coupled dy-
namics emulator. Our approach outperforms other neural net
architectures at predicting subsequent frames of a simulation,
enabling fast and accurate emulation of fracture propagation.

Introduction and Motivation
Brittle materials fail suddenly with little warning due to the
growth of micro-fractures that quickly propagate and coa-
lesce. Prediction of fracture propagation in brittle materi-
als is a multi-scale modeling problem whose time dynam-
ics are well understood at the micro-scale but do not scale
well to the macro-scale necessary for practical evaluation
of materials under strain (White 2006; Hyman et al. 2016;
Kim et al. 2014). Fracture formation in brittle materials
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Figure 1: Machine learning emulates dynamics of micro
cracks to inform the continuum model.

is typically simulated using parallel implementations of fi-
nite discrete element methods (FDEM). Industrial software
packages applying these methods have been developed,
many of which are capable of representing the high-fidelity
dynamics and are extremely paralelized (Hyman et al. 2015;
Rougier et al. 2014). Yet, these codes are unable to simulate
samples large enough to have real-world scientific applica-
tions, due to the large computational requirements of sim-
ulating the behavior at the spatial and temporal resolutions
necessary. Upscaled continuum representations are used as
an approximation because they discard topological features
of the simulated material and are therefore faster; however,
precisely because they omit these features, they fail to match
experimental observations (Vaughn et al. 2019). Thus, we
develop a spatio-temporal machine learning model to emu-
late the micro-scale physics model and estimate the neces-
sary quantities of interest needed to ensure accuracy of the
continuum-scale model, as in Figure 1.

The goal is to predict summary statistics, or quantities of
interest, for both the damage field and the stress field in a
simulated 2-dimensional material from initial conditions un-
til the point of failure (when a single fracture spans the width
of the material). The dynamics of the stress field cannot be
modeled without the damage and vice versa. When dam-
age is static, the evolution of stress over the material mim-
ics properties of fluid flow. However, the damage caused in
the material changes the behavior of stress to no longer be



governed by a single PDE, e.g. stress accumulates at crack
tips and causes cracks (each of which is a discontinuity in
the stress field) to spread further. Thus, instead of using
solid state dynamics equations to predict this stress field, we
must extend approaches successfully demonstrated in ma-
chine learning to couple the dynamics of the damage field
and stress field.

It is tempting to treat damage and the stress tensor at each
location simply as different channels in the same time se-
ries and apply methods from the extensive prior work on
video prediction (Wang et al. 2018). However this approach
is ineffective because although the damage and stress fields
are highly coupled, they have dramatically different dynam-
ics in time. Therefore, one model cannot easily predict both
quantities simultaneously. The damage data is binary-valued
and sparse: most of the finite elements remain undamaged
for the entire simulation, as shown in Figure 2a. The stress
data is real-valued, where values as small as 10−6 are signif-
icant yet magnitudes also range up to 108 (see Figure 2); and
the stress field has spatial discontinuities wherever damage
has occurred. Furthermore, unlike video prediction which is
concerned with precise pixel-by-pixel accuracy, we need to
emulate the most important features of the simulation over
a long time horizon (hundreds of frames in the future) with
high enough accuracy to predict several quantities of interest
needed by the continuum model.

In order to capture the long-term frame dependencies, re-
current neural networks (RNNs) (Williams and Zipser 1995)
have been recently applied to video predictive learning. For-
mer state-of-the-art models applied complex nonlinear tran-
sition functions from one frame to the next, constructing
a dual memory structure (Wang et al. 2018) upon Long
Short-Term Memory (LSTM) (Hochreiter and Schmidhuber
1997b). To emulate the spatio-temporal model, we propose
a Physics-Informed Spatiotemporal LSTM model. First, lin-
ear interpolation is used to coarsen the damage data to re-
tain the important fracture features while discarding the un-
informative undamaged regions. Next, a modified recurrent
neural network learns temporal evolution in the latent space
representation (Wang et al. 2018). Finally, the predictions
from the recurrent neural network are passed to the decoder
sub-network of the convolutional autoencoder, and decoded
into time-advanced simulation states. As input to the con-
volutional autoencoder network, we include point estimates
of partial derivatives of stress values. This allows us to pre-
dict Coupled Dynamical PDEs unlike existing PDE discov-
ery models.

Results show that this approach makes accurate predic-
tions of fracture propagation. Our method outperforms other
neural net architectures at predicting subsequent frames of
a simulation, and reproduces physical quantities of interest
with higher fidelity.

Related Work
Machine learning-based prediction of behavior in physical
systems in general, and partial differential equations specif-
ically, is an area of active research. Broadly, machine learn-
ing approaches to PDE emulation fall into one of two cat-
egories. In the first category are approaches that acceler-

ate methods to solve a PDE whose form is known using
data; for example, (Han, Jentzen, and E 2018). (Long, She,
and Mukhopadhyay 2018) uses convolutions in the LSTM
cells in a fully convolutional network to train a PDE solver
with varying input perturbations. Our work falls under the
second category of approaches; which emulate the behav-
ior of a system governed by PDEs; such as fluid dynam-
ics (Kim et al. 2019; Wiewel, Becher, and Thuerey 2019;
White, Ushizima, and Farhat 2019; Guo, Li, and Iorio 2016).
Unlike these fluid dynamics emulators where the boundary
conditions and topology are constant, in our case the evo-
lution of the damage field changes both the boundary con-
ditions and topology. Furthermore, our problem has a bi-
directional relationship between stress (which is governed
by a PDE, when damage is constant) and damage (which is
not) and hence we cannot fit a simple PDE and simply unroll
forward in time.

Physics-Informed Spatiotemporal Model
Formally, the problem to solve is: given initial conditions,
predict a time series of damage field and stress field evo-
lution. The initial conditions given to this generative model
are some number of simulated frames, from which the rest
of the time-series is predicted.

Architecture of the deep learning model
Our data-driven approach to predict physical behavior in a
complex system leverages advances in deep neural networks
(Hinton et al. 2012). We use a Convolutional Neural Net-
work (CNN) (Krizhevsky, Sutskever, and Hinton 2012) to
learn a nonlinear mapping from the stress and damage val-
ues in local neighborhoods at time t to the stress and damage
fields at the next time-step. CNNs are designed for problems
with high spatial correlation and translation invariance, mak-
ing them an ideal choice for physical problems.

In prior work, we found that using a CNN alone to make
predictions at the next time step, tends to make biased pre-
dictions of lower stress and damage values than the truth. As
we unroll the predictions over time, these errors compound
resulting in highly inaccurate predictions of stress values af-
ter 10 or so frames in time; and virtually no predictions of
damage occurring. We incorporate an explicit modeling of
the time component using a recurrent neural network (RNN)
which shares weights over subsequent time-steps of the in-
put (Pearlmutter 1989). The hidden state of the RNN after
consuming an entire time series thus is a fixed-length en-
coding of that (varying-length) time series. Specifically, we
use a Long Short-Term Memory network (LSTM) that al-
lows the network to separately “remember” both long-term
global context, as well as short-term recent context (Hochre-
iter and Schmidhuber 1997a).

The spatial and temporal elements can be combined with
a Convolutional LSTM or ConvLSTM which maintains the
spatial structure of the input as it processes time series. We
find that the best model is a Spatiotemporal LSTM (ST-
LSTM) (Lu, Hirsch, and Scholkopf 2017). The main rea-
son for the improved predictive power is the inclusion of the
Spatiotemporal Memory in each LSTM block in addition to
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Figure 2: (a) Ratio of pixels that are damaged versus time. (b) Histogram of absolute value of stress values at one time frame, for
an example simulation run. Note that values range from very small (≈ 10−8) to very large (≈ 108). (c) Example of coarsened
damage field at the initial time frame for an example simulation. Field is coarsened using the Lanczos method by a factor of 8.

the Temporal Memory. While temporal states are only shared
horizontally between time-steps, the spatiotemporal state is
shared between the stacked ST-LSTM blocks. This enables
efficient flow of spatial information. We make the memory
representations of the ST-LSTM cells common between all
input fields. This feature allows us to model the highly co-
dependent nature of the stress and damage fields. Figure 3
shows our novel physics-informed architecture. We intro-
duce various aspects inspired by the physical properties of
the damage propagation problem allowing for a closer fit-
ting PDE.

Coarsening of input damage images
The damage field is very sparse with damaged pixels form-
ing less than 2% of the entire spatial domain. The increase
in damaged pixels from the initial seed damage at t = 0,
to the damage at the final step when the sample has failed,
is less than 0.2% of the total pixels, as shown in Figure 2a.
This makes it difficult for an ML model to capture and pre-
dict this information, since (formulated as a binary classi-
fication task) the two prediction classes are extremely im-
balanced. Furthermore the distance between cracks is quite
large relative to the size of a crack which complicates the use
of convolutional filters. Hence, we coarsen the damage data
with a linear Lanczos method (Lanczos 1950) with a filter
of 3x3 (see Figure 2c). We then convert the damage field to
a binary 0-1 field by applying a threshold of 0.11 which is
a standard threshold in this domain beyond which damage
cannot be repaired, i.e. any pixels with values higher than
this will be considered as a damaged pixel and all others
are non-damaged. In this manner, we effectively coarsen the
fields by a factor of 8. Empirically, we find that this coars-
ening method preserves the important features to accurately
predict physical quantities of interest.

Informing the model with partial derivatives
The FDEM model that we are emulating is a Markovian
process: the damage and stress fields of the next time-step
are completely determined by the current state. Unlike the
FDEM model, the machine learning model does not have the
actual PDE to define the dynamics, and so we predict each
time-step from up to k previous time-steps. We use k = 3 so

that dynamic information can be observed.
The stress field, without damage, follows a 2nd-order

PDE. To build a deep learning model that fits to such PDEs,
we include the 1st and 2nd order partial spatial and tempo-
ral derivatives as input. Using k = 3 time-steps as input
allows us to capture temporal derivative information accu-
rately. We use the gradient and Hessian calculating func-
tions of Tensorflow to calculate the gradients (Abadi and
others 2015). At each step, we append the derivatives to the
input fields and predict them as part of the next-step pre-
diction. This enables the spatiotemporal memory blocks of
the network to carry information about spatial and temporal
derivatives of stress. Through this, we overcome the issue of
vanishing gradients discussed in (Wang et al. 2018), as well
as capture the monotonically increasing nature of the dam-
age field. We ensure the mean squared error of the predicted
derivatives and derivatives calculated from the stress fields
lies within a pre-decided threshold σ as a self-check. These
modeling choices were imbibed from the physical princi-
ples governing the damage propagation process creating a
novel ”physics-informed” deep learning model. Empirical
results show that this physics-informed approach of training
the model significantly improves accuracy.

Experiment
We focus on three variants of LSTM models: Stacked
LSTM, convLSTM, and ST-LSTM. All three models take in
the first k = 3 time-steps of coarsened data as input frames.
Next, to encourage the model to fit to a PDE, we calculate
the 1st and 2nd derivatives of the stress field w.r.t. time and
append that information to the inputs. The LSTM block cal-
culates predicted values for the next frame corresponding to
each pixel in the input frames. Each model with derivatives
as inputs is called Physics-Informed. The whole model is
unrolled to predict the entire simulation.

The dataset consists of 61 simulations each of which has
260 time-steps. We split our dataset into 41 simulations used
for training, 10 for validation, and 10 as test cases. We train
our models until saturation which we reach between 350-
400 epochs. To prevent the model from overfitting, we per-
form one round of cross-validation at the end of each epoch.

Our models are designed to allow us to plugin different



Figure 3: Left: a basic SpatioTemporal LSTM (ST-LSTM) cell. Right: The novel Physics-Informed LSTM generative model.
The spatial and temporal memories work in parallel: the red lines denote the deep transition paths of the spatial memory, while
horizontal black arrows indicate the update directions of the temporal memories. The green lines indicates direction flow of the
stress field derivatives. Gradient Highway Units (GHU) help overcome the problem of vanishing gradients.

ML architectures, choose whether to include partial deriva-
tive information, and test various loss functions. This mod-
ular approach makes it easy to train the necessary compo-
nents as needed. Our experiments show that we achieve the
best performance by using 6 ST-LSTM blocks stacked on
top of each other, each of size 128. We use tanh (Hochre-
iter and Schmidhuber 1997a) as the activation function for
the LSTM and Leaky-ReLu (Maas, Hannun, and Ng 2013)
for the CNN. For our experiments, we test several combi-
nations of loss functions such as L1 loss, L2 loss, L2 loss
weighted by pixel values, cross-entropy loss, etc. We use the
same loss functions for all our models to directly compare
performance. For the best results, we treat the damage fields
as a binary classification problem i.e. deducing whether a
given pixel i, j is damaged or not, and use a cross-entropy
loss (Goodfellow, Bengio, and Courville 2016). The cross-
entropy loss LD for the damage field is:

LD = −0.5
∑
i,j

∑
c={1,2}

yDij ,c log(pDij ,c), (1)

where y is a binary indicator (0 or 1) if class label c is the
correct prediction for damage field observation Dij and p is
the probability of the model predicting class c for damage
field observation Dij .

For the stress fields, we use L1 and L2 losses and a gradi-
ent difference loss (GDL) which sharpens the image predic-
tion (Mathieu, Couprie, and LeCun 2016). The stress field

loss function LS is given by:

LS = α3LGDL +
∑
i,j

(
α1(Sij − Ŝij)

2 + α2|Sij − Ŝij |
)
,

LGDL =
∑
i,j

(∣∣∣|Si,j − Si−1,j |−|Ŝi,j − Ŝi−1,j |
∣∣∣+∣∣∣|Si,j−1 − Si,j |−|Ŝi,j−1 − Ŝi,j |
∣∣∣),

(2)

where i, j ranges over the pixels, Ŝij are the predicted stress
values, Sij are the true values and α1, α2, and α3 are hy-
perparameters that weight the relative importance of each
term of the loss function. We use α1 = 0.3, α2 = 0.1, and
α3 = 0.1.

Prediction of quantities of interest
The continuum-scale model requires as input several quanti-
ties that describe a material behavior under given conditions.
These quantities of interest (QoI) are: (a) number of cracks
as a function of time; (b) distribution of crack lengths as a
function of time; and (c) maximum stress over the field as
a function of time. To predict these quantities of interest,
we collect stress and damage predictions from our physics-
informed spatiotemporal generative model; then, we calcu-
late the QoI.

Evaluation Metrics
We evaluate model performance with two standard video
similarity metrics and by quantifying the prediction of quan-
tities of interest. MSE: Mean Squared Error compares the
squared difference between prediction and truth, averaged



Table 1: Evaluation of models. Low is good for MSE and
QoI. High is good for SSIM. Best score is bold.

Model MSE SSIM QoI
Stacked LSTM 8.14 0.61 0.35
Physics-Informed Stacked LSTM 6.81 0.72 0.31
ConvLSTM 3.73 0.86 0.28
Physics-Informed ConvLSTM 2.10 0.87 0.21
ST-LSTM 1.55 0.94 0.12
Physics-Informed ST-LSTM 1.23 0.92 0.09

over all pixels. SSIM: The Structural Similarity Index Met-
ric considers perception-based similarity between two im-
ages (Wang et al. 2004). Note that higher is better for SSIM.
QoI: We weigh the quantities of interest (QoI) defined above
equally and measure the mean absolute error which indicates
how well the continuum model will perform with this model
as an emulator.

Results

Our Physics-Informed ST-LSTM outperforms other models
particularly on MSE and on predicting the QoI, as shown
in Table 1. ST-LSTM does perform slightly better according
to the SSIM metric, but the difference is small and SSIM
measures visual similarity which is not our main goal. Qual-
itatively, we see in Figures 5 and 6 our Physics-Informed
ST-LSTM model can faithfully emulate both the stress and
damage field propagation. The Stacked LSTM model in par-
ticular, tends to predict overly smooth stress fields and no
change in damage, even with the Physics Informed model.

Our model learns an approximation to the physical equa-
tions governing the evolution of stress and damage fields al-
lowing it to make predictions on previously unseen condi-
tions. The quantities of interest are then extracted from these
predictions. As an example, Figures 4 and 7 show the results
for these quantities of interest for a held-out test simulation.
From this example, we can see generally that our model pre-
dicts cracks coalescing with neighbor cracks slightly earlier
than when it actually occurs; causing (a) the total damage
to be overestimated, (b) the number of cracks are under-
estimated, and (c) the length of individual cracks are over
estimated during the most dynamic parts of the simulation.
This is likely due to the coarsening of the damage field and
is not a major concern. We predict the entire stress field for
all three directions (or channels) of stress and then extract
the maximum value from our prediction to compare against
the maximum value in the ground truth stress field. Figure 7
shows that our model routinely under-estimates the maxi-
mum stress value, yet generally gets the trend and peaks of
the time series. This is a typical result from machine learn-
ing prediction, which tends not to predict extreme values.
We could improve our prediction of this quantity by opti-
mizing specifically for the prediction of the maximum stress
rather than predicting the entire stress field, but leave this for
future work.

Run-time and speed-up
High-fidelity simulators for material failure are computa-
tionally expensive, taking on the order of 1500 CPU-hours
to run one simulation of a 2-dimensional material for 260
time-steps, such as in the dataset we use (Rougier et al.
2014). Physics-Informed ST-LSTM accelerates the entire
workflow by generating approximate QoI in a fraction of the
time. We train each model to saturation in 10-12 hours on
four GeForceGTX1080Ti2.20GHz GPUs, after which emu-
lation of the physical behavior is on the order of millisec-
onds, rather than minutes, per timestep. This is a speedup on
the order of 50,000 times faster. Furthermore, once trained,
the model can generate QoI for any number of simulations
drawn from the same initial conditions.

Discussion
The complexity of our model architecture and loss functions
are necessary for accurately emulating a complex spatiotem-
poral process over a long time horizon. The LSTM learns the
monotonically increasing nature of the damage field with-
out any constraints being imposed. This physically-plausible
learned model is an important result that favored the use
of LSTMs that can capture time-dependent evolution bet-
ter than conventional neural network architectures. Explic-
itly calculating the partial derivatives and including them as
input improves prediction. This is because the model now
fits to a PDE which is a closer approximation to the original
physical problem. The dual memory representation of spa-
tial and temporal information in our ST-LSTM cell improves
performance of our model on this problem significantly. The
failure of Stacked-LSTM (Hermans and Schrauwen 2013)
is also evidence of this. Furthermore, both local and global
spatio-temporal information is important to reduce com-
pounding errors to make predictions at any given time.

We see that the maximum stress is consistently under-
predicted, even after weighting the losses by actual stress
values. We believe this is due to the inherent nature of ML
finding an average representation from training data and the
inherently difficult inference problem of estimating a max-
imum statistic. However, an important point to take note of
is that our model is able to follow the peaks and trends of
the maximum stress quite accurately. Future work in uncer-
tainty quantification could learn the correction in our maxi-
mum stress estimate.

The damage model tends to predict crack coalescence
early. We coarsen the simulation data before giving it as in-
put to our model, which proportionately reduces the non-
damaged regions between cracks. Due to this, our model
tends to predict crack coalescence a few steps earlier than
ground truth. However, the model is able to converge to the
correct number of cracks towards the end of the simulations
(see Figure 4). In future work, learning a coarse representa-
tion, such as with a convolutional autoencoder (Masci et al.
2011), could learn to correct this bias.

Conclusion
Emulation of complex physical systems has long been a goal
of artificial intelligence because although we can write down
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Figure 4: Example predicted damage quantities of interest for one held-out simulation.

(a) Truth (b) Stacked (c) ConvLSTM (d) ST-LSTM

Figure 5: Example predicted stress field of a test frame. Re-
sults shown are all from the Physics-Informed version of the
model. The three directions of the stress field are visualized
with false-color by mapping each channel of stress direction
(Sxx, Sxy, Syy) to an image color channel (red, green, blue).

the micro-scale physics equations of such a system, it is
computationally intractable to simulate the physics model
to obtain meaningful predictions on a large scale; yet the
macro-scale patterns of these dynamic systems can be quite
intuitive to humans (Lerer, Gross, and Fergus 2016). We
present Physics-Informed ST-LSTM, an extension and ap-
plication of Spatiotemporal LSTM (ST-LSTM) neural net-
work models to emulate the time dynamics of a physical
simulation of stress and damage in a material. Unlike PDE
emulators that assume a PDE form, our entirely data driven
framework, can be used equally well on high dimensional
experimental studies where binary variables can arise. We
demonstrate that ST-LSTMs outperform two other machine
learning models at predicting these time dynamics and phys-
ical quantities of interest, and furthermore that all three mod-
els increase in performance when they are physics-informed,
that is they have access to the underlying physics of the sim-
ulation. Physics information comes both in the form of spa-
tiotemporal derivatives, and in a loss function which takes
into account the QoI. We furthermore demonstrate that a
reduced-order model can gainfully capture the time dynam-
ics of these physical QoI without needing pixel-perfect ac-
curacy, an important step towards using machine learning to
massively accelerate prediction of complex physics.

(a) Truth (b) Stacked (c) ConvLSTM (d) ST-LSTM

Figure 6: Example predicted damage field of a test frame.
Results shown are all from the Physics-Informed version of
the model. White means damaged and black means not dam-
aged.

Figure 7: Maximum stress for a heldout simulation.
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Masci, J.; Meier, U.; Cireşan, D.; and Schmidhuber, J. 2011.
Stacked convolutional auto-encoders for hierarchical feature ex-
traction. In Artificial Neural Networks and Machine Learning.
Mathieu, M.; Couprie, C.; and LeCun, Y. 2016. Deep multi-scale
video prediction beyond mean square error. In International Con-
ference on Learning Representations.
Pearlmutter, B. A. 1989. Learning state space trajectories in recur-
rent neural networks. Neural Computation.

Rougier, E.; Knight, E. E.; Broome, S. T.; Sussman, A. J.; and
Munjiza, A. 2014. Validation of a three-dimensional finite-discrete
element method using experimental results of the split hopkinson
pressure bar test. International Journal of Rock Mechanics and
Mining Sciences.
Vaughn, N.; Kononov, A.; Moore, B.; Rougier, E.; Viswanathan,
H.; and Hunter, A. 2019. Statistically informed upscaling of dam-
age evolution in brittle materials. Theoretical and Applied Fracture
Mechanics.
Wang, Z.; Bovik, A. C.; Sheikh, H. R.; and Simoncelli, E. P. 2004.
Image quality assessment: from error visibility to structural simi-
larity. In IEEE Transactions on Image Processing.
Wang, Y.; Gao, Z.; Long, M.; Wang, J.; and Yu, P. S. 2018. Pre-
drnn++: Towards a resolution of the deep-in-time dilemma in spa-
tiotemporal predictive learning. In International Conference on
Machine Learning.
White, C.; Ushizima, D.; and Farhat, C. 2019. Neural networks
predict fluid dynamics solutions from tiny datasets. arXiv preprint
arXiv:1902.00091.
White, P. 2006. Review of methods and approaches for the struc-
tural risk assessment of aircraft. Technical report, Australian Gov-
ernment Department of Defence, Defence Science and Technology
Organisation, DSTO-TR-1916.
Wiewel, S.; Becher, M.; and Thuerey, N. 2019. Latent space
physics: Towards learning the temporal evolution of fluid flow. In
Computer Graphics Forum.
Williams, R. J., and Zipser, D. 1995. Gradient-based learning algo-
rithms for recurrent networks and their computational complexity.


