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Abstract
Deep neural networks (DNN) have been used to model
nonlinear relations between physical quantities. Those
DNNs are embedded in physical systems described by
partial differential equations (PDE) and trained by min-
imizing a loss function that measures the discrepancy
between predictions and observations in some chosen
norm. This loss function often includes the PDE con-
straints as a penalty term when only sparse observa-
tions are available. As a result, the PDE is only satisfied
approximately by the solution. However, the penalty
term typically slows down the convergence of the op-
timizer for stiff problems. We present a new approach
that trains the embedded DNNs while numerically sat-
isfying the PDE constraints. We develop an algorithm
that enables differentiating both explicit and implicit
numerical solvers in reverse-mode automatic differen-
tiation. This allows the gradients of the DNNs and the
PDE solvers to be computed in a unified framework.
We demonstrate that our approach enjoys faster con-
vergence and better stability in relatively stiff problems
compared to the penalty method. Our approach allows
for the potential to solve and accelerate a wide range of
data-driven inverse modeling, where the physical con-
straints are described by PDEs and need to be satisfied
accurately.

Introduction: Data-driven Inverse Modeling
with Neural Networks

Models involving partial differential equations (PDE) are
usually used for describing physical phenomena in science
and engineering. Unknown parameters in the models can be
calibrated using observations, which are typically associated
with the output of the models.

When the unknown is a function, an approach is to ap-
proximate the unknown using a neural network and plug it
into the PDE. The neural network is trained by matching the
predicted and the observed output of the PDE model. In the
presence of full-field observations, in many cases we can ap-
proximate the derivatives in the PDE and reduce the inverse
problem to a standard regression problem (see [1] for an ex-
ample). However, in the context of sparse observations, i.e.,
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only part of the outputs of the models are observable, we
must couple the PDE and the neural network to obtain the
prediction.

Specifically, we formulate the inverse problem as a PDE-
constrained optimization problem

min
θ∈Θ

L(u) =
∑
i∈Iobs

(u(xi)− ui)2

s.t. F (θ, u) = 0

where L is called the loss function, which measures the dis-
crepancy between estimated outputs u and observed outputs
ui at locations {xi}. Iobs is the set of indices of locations
where observations are available. F is the PDE model from
which we can calculate the solution u. Θ is the space of
all neural networks with a fixed architecture and θ can be
viewed as weights and biases. Θ can also be physical pa-
rameter spaces when we solve a parametric inverse problem.
One popular way to solve this problem is by minimizing the
augmented loss function (penalty method) [2]

min
θ,u

L̃(θ, u) = L(u) + λ‖F (θ, u)‖22

However, this approach suffers from ill-conditioning and
slow convergence partially due to the additional independent
variable u besides θ.
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Figure 1: Comparison of the penalty method (left) and PCL
(right).

In this work, we propose a new approach, physics con-
strained learning (PCL), that improves the conditioning and
accelerates the convergence of inverse modeling. First, we



enforce the physical constraint F (θ, u) = 0 by solving the
PDE numerically. Our approach is compatible with common
numerical schemes such as finite difference methods, finite
volume methods, and finite element methods. Second, the
gradient ∂L(u(θ))

∂θ needed for optimization is computed with
reverse-mode automatic differentiation (AD) [3], and the re-
quired Jacobian is computed using forward-mode automatic
differentiation. We use ADCME1 for AD functionalities in
this work.

Methods: Physics Constrained Learning
The main step in PCL is how to compute the gradients
∂L(u(θ))

∂θ . PCL is based on the formula

∂L(u(θ))

∂θ
= −∂L(u)

∂u

∂F
∂u

∣∣∣∣∣
u=u(θ)

−1

∂F

∂θ
(θ, u(θ))

The key for efficiency is to compute the gradients in the fol-
lowing three steps

1. The Jacobian ∂F
∂u

∣∣∣
u=u(θ)

is computed with forward Jaco-

bian propagation and will remain sparse as long as the
numerical scheme we choose has local basis functions.

2. Solving the linear system∂F
∂u

∣∣∣∣∣
u=G(θ)

T

w =

(
∂L(u)

∂u

)T
(1)

3. Apply reverse mode automatic differentiation to compute

∂L(u(θ))

∂θ
= wT

∂F

∂θ
(θ,G(θ)) (2)

Here θ can be the neural network weights and biases and
thus can be high dimensional. The challenge here is to com-
pute the Jacobian matrix as well as the gradient Equation (2).
The detailed algorithm and analysis is presented in [4].

Findings and Discussion: Enabling Faster and
More Robust Convergence

The key finding from our work is that enforcing physical
constraints leads to faster and more robust convergence com-
pared to the penalty method for stiff problems. We conduct
multiple numerical examples and show that in our bench-
mark problems,

1. PCL enjoys faster convergence with respect to the number
of iterations to converge to a predetermined accuracy. Par-
ticularly, we observe a 104 times speed-up compared with
the penalty method in the Helmholtz problem. We also
prove a convergence result, which shows that for the cho-
sen model problem, the condition number in the penalty
method is much worse than that of PCL.

2. PCL exhibits mesh independent convergence, while the
penalty method does not scale with respect to the number
of iterations as well as PCL when we refine the mesh.
1https://github.com/kailaix/ADCME.jl

3. PCL is more robust to noise and neural network archi-
tectures. The penalty method includes the solution uh as
independent variables to optimize, and the optimizer may
converge to a nonphysical local minimum.

For theoretical analysis, we consider a model problem
min
θ
‖u− u0‖22

s.t.Au = θy

where u0 = A−1y so that the optimal θ = 1; the corre-
sponding penalty method solve a least square problem

min
θ
‖Aθ−y‖22 Aλ =

[
I 0√
λA −

√
λy

]
y =

[
u0

0

]
We have proved the following theorem
Theorem 0.1 The condition number of Aλ is

lim inf
λ→∞

κ(Aλ) ≥ κ(A)2

and therefore the condition number of the unconstraint op-
timization problem from the penalty method is the square of
that from PCL asymptotically.

Conclusions
We believe that enforcing physical constraints in ill-
conditioned inverse problem is essential for developing ro-
bust and efficient algorithms. Particularly, when the un-
knowns are represented by neural networks, PCL demon-
strates superior robustness and efficiency compared to
the penalty method. Technically, the application of auto-
matic differentiation gets rid of the challenging and time-
consuming process of deriving and implementing gradients
and Jacobians. Meanwhile, AD also allows for leveraging
the computational graph optimization to improve the inverse
modeling performance. One limitation of PCL is that the
PDE must be solved for each gradient computation, which
can be expensive in both memory and computational costs.
This computational challenge can be alleviated by consider-
ing accelerating techniques such as reduced-order modeling.
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