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Abstract 
Permeability prediction of porous media system is very im-
portant in many engineering and science domains including 
earth materials, bio-, solid-materials, and energy applica-
tions. In this work we evaluated how machine learning can 
be used to predict the permeability of porous media with 
physical properties. An emerging challenge for machine 
learning/deep learning in engineering and scientific research 
is the ability to incorporate physics into machine learning 
process. We used convolutional neural networks (CNNs) to 
train a set of image data of bead packing and additional phys-
ical properties such as porosity and surface area of porous 
media are used as training data either by feeding them to the 
fully connected network directly or through the multilayer 
perception network. Our results clearly show that the optimal 
neural network architecture and implementation of physics-
informed constraints are important to properly improve the 
model prediction of permeability. A comprehensive analysis 
of hyperparameters with different CNN architectures and the 
data implementation scheme of the physical properties need 
to be performed to optimize our learning system for various 
porous media system. 

 Introduction   
Recent advances in multiscale imaging techniques for the 
analysis of complex pore structures and compositions have 
revolutionized our ability to characterize various porous me-
dia systems (Bultreys et al., 2016). Applications of imaging 
for porous media systems have been expanded for multi-in-
terdisciplinary areas including fractured and porous natural 
media, biofilm, human bones/bodies, and various materials 
among many others. Flow and transport properties in porous 
media are very important to control and impact a variety of 
Earth science applications. Imaging methods have been tre-
mendously advanced to produce 2D/3D structures and com-
positions of porous media over a range of scales, and numer-
ical methods also have been advanced to fully understand 
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Multiphysics behaviors in complex porous media (e.g., 
Yoon et al., 2013 and 2015). Although it is now largely pos-
sible to understand how pore topology, structure, and com-
position impact various processes affecting flow patterns, 
transport process, and evolution of porous media by com-
bining a suite of imaging techniques and advanced numeri-
cal methods, integration of these techniques requires tre-
mendous computational powers and expenses. 
 Recent advances in machine learning provide a great op-
portunity to enhance image-based property estimation and 
modeling capabilities (e.g., Raissi et al., 2018; Wu et al., 
2018). In addition, combination of image data with other nu-
meric and categorical data has improved the prediction of 
various quantities such as house prices (e.g., Rosebrock, 
2019) and image classification as well (Aimone and Severa, 
2017). 
 In this work, we explore how machine learning can be 
used to predict the permeability of porous media with phys-
ical properties. An emerging challenge for machine learn-
ing/deep learning in engineering and scientific research is 
the ability to incorporate physics into machine learning pro-
cess. We used convolutional neural networks (CNNs) to 
train a set of image data of bead packing and additional 
physical properties such as porosity and surface area of po-
rous media are used as training data either by feeding them 
to the fully connected network directly or through the mul-
tilayer perception network. We evaluated the effect of hy-
perparameters with different training dataset on permeabil-
ity prediction.  

 Related work 
Convolutional neural network (CNN) has been very suc-
cessful for image classification and segmentation and has 
been adopted for various scientific and engineering 

 



problems including permeability estimation in network sys-
tems (Wu et al., 2018), physics-informed reduced order 
model combined with high fidelity turbulence simulations 
(Ling et al., 2016), and extraction of flow features (Ströfer 
et al., 2018). In particular, recent works (Ling et al., 2016, 
Raissi et al., 2018) demonstrated that deep neural network 
architectures have an ability to account for underlying phys-
ics behind the data. 

Dataset and Physical Properties 
First, a set of images as shown in Figure 1 was generated to 
represent a two-dimensional (2-D) porous media system 
with binary phase using an open source PoreSpy (Gostick et 
al., 2019) where a sphere packing module was used and po-
rosity (fraction of void space as black in Figure 1) and sur-
face area of porous media (i.e., beads as white in Figure 1). 
To represent a range of permeability which accounts for the 
capability of porous media system to allow fluid to flow 
through, different sizes of spheres were used to arrange the 
packing as shown in Figure 1. The set of images were used 
to compute the directional permeability of images using an 
open source OpenPNM (Gostick et al., 2016). The size of 
image is 192 x 192 and void and solid phases are shown in 
black and white, respectively.  All physical data (permeabil-
ity, porosity, and surface area) were normalized from 0 to 1. 
Since the logarithmic scale of the permeability is more cor-
related with porosity, we use a logarithmic permeability in 
this work. Figure 2 shows the relationship between permea-
bility and porosity-surface area. As seen, the permeability 
has positive and negative correlations with porosity and sur-
face area, respectively. 

Methods 
Additional physical information can provide physical con-
straints for training the model. The combination of image 
and numerical data allows us to build and train a hybrid 
physics-informed machine learning model. To handle pro-
cessing of the porous media images, we have developed 
convolutional neural networks (CNNs) whose input consists 
of binary phase image. The first CNN used in our work 
(CNN1) include four convolutional layers with the number 
of kernels from 16, 32, 64, and 128, each followed by batch 
normalization, leaky Relu activation, and a max pooling. 
Each convolutional layer has a kernel of size 3 x 3 to extract 
the features from the corresponding input, and the max pool-
ing with a kernel of size 2 x 2 were used. The two fully-
connected (FC) layers have 36 and 12 neurons and a dropout 
of 0.4 between two FC layers. The 12 neurons are combined 
with either the MLP output with the dense layers with 32 
hidden nodes and 4 output or two numerical data (porosity 

and surface area) as shown in Figure 3. For the MLP the 
activation function was Relu.  
 
 

Figure 1. Examples of porous media generated with different 
sizes of sphere. Fluid flows through the void space in black. The 

black and white pixels have one and zero values in a Boolean 
type, respectively. Permeability decreases from upper left to 
lower right and ranges over two orders of magnitude in m2.  

 

Figure 2. Normalized permeability in x-direction (log10Kx) vs. 
porosity (left) and surface area.  

 

 The second CNN (CNN2) follows the CNN architecture 
from Wu et al. (2018) where 2 CNN layers with 10 channels, 
each of size 5x5 were followed by the three FC layers with 
10,32, and 10 neurons. The porosity and surface area data 
are directly combined into the second FC layer. For the 
CNN2+Num model, two direction permeability values (in x 
and y directions) are trained. For the CNN1, a total number 
of 345 images are used with 80% and 20% of training and 
testing data. For the CNN2, a total number of 250 images 



(out of 345 images) are used with 70% and 30% of training 
and testing data. In particular, the CNN2 was trained with 
two directional permeability values compared to one hori-
zontal permeability in the CNN1. 
 Key hyper parameters are the following: the 
(Leaky)ReLU activation function, the dropout of 0.4 for the 
CNN1, a batch size of 16 for the CNN1, Adam optimizer 
with a learning rate of 0.0005 and the decay of 0.0001. The 
number of epochs was 250 for most of cases with an obser-
vation of apparent no learning after 250 epochs based on 
cases with 750 and 5000 epochs. The loss function is the 
mean-squared error (MSE). A number of network sizes were 
evaluated, but in this work we focus on the impact of addi-
tional data and different CNN+Numeric data structure on 
permeability prediction. 

Figure 3. Schematics of convolutional neural networks and addi-
tional information stream to construct a physics-informed model 

architecture.  

Results and Discussion 
The mean squared error (MSE) values for training and vali-
dation data are reported in Table 1.  Testing results with val-
idation data sets for six different case are shown with a linear 
regression fitting. First, it is very clear that all four cases 
with the CNN1 and numeric data outperformed the CNN2 
with numeric data in training and validation. Although we 
need to compare the results with the same training data, the 
CNN architecture significantly influences the learning pro-
cess of the features of porous media image and numeric data. 
The CNN1 with image only performed similarly to the 
CNN2 with numeric data. 
 Second, all CNN1 models with additional physical nu-
meric data performed better than two other models (Table 
1). To compare the prediction with validation data, the pre-
dicted and validation data are plotted with the linear regres-
sion fitting and a R2 value in Figure 4. As a reference, the 
single perfect line is also shown. The slope shows the over-
all performance of each model with a better performance 
closer to one, while the R2 value shows the proximity of 
predicted data along the linear regression line. As expected, 
the CNN1 with both porosity and surface area performed 
better than the CNN1 with either porosity and surface area. 
As shown in Figure 2, the porosity and surface area are cor-
related with the permeability, so both information would 
provide additional physical constraints that are combined 

with features extracted from image data. Although there is 
need to study what features are extracted from image and 
how two input data can be used to learn the underlying fea-
ture to the permeability, Figure 4 shows that the CNN1 mod-
els with both numeric data tend to predict the lower and up-
per ranges of permeability better than the CNN1 models 
with single numeric data. This may imply that the physical 
constraints from the numeric data would influence the learn-
ing process of the features that impact either high and low 
permeability systems. For example, the high and low per-
meability (see an example in Figure 1) contains larger and 
smaller space (or cross-sectional distance) between spheres, 
respectively.  The fact that the CNN1 with image data only 
tends to predict the permeability over a narrow range (be-
tween ~0.3 and ~0.7) may indicate that without physical 
property information the CNN tends to learn more common 
features rather than critical features for low and high perme-
ability patterns. 
 

Table 1. Summary of results with six different models.  

MSE 
CNN1 
+Poro 
+SA 

CNN1-
modified 

+Poro 
+SA 

CNN1 
+Poro 

CNN1 
+SA 

CNN1 
only 

CNN2 
+Poro 
+SA 

Training 0.00176 0.00171 0.00307 0.00185 0.00360 0.00789 
Valida-

tion 
0.00689 0.00708 0.00684 0.00720 0.01060 0.01030 

MSE – Mean Squared Error with normalized permeability values. 
Poro and SA stand for porosity and surface area. CNN1-modified 
has a variation from CNN1 with two fully connected dense layers 
with 36 and 4 neurons. The 4 outputs from the CNN1 are combined 
with one MLP output with the dense layer of 16 hidden nodes. 

Conclusions 
We evaluated how additional physical information can en-
hance the permeability prediction with the CNN models. As 
it is now well accepted in the community that a physics-in-
formed machine learning model can overcome overfitting to 
the training data and improve the features underlying the 
physical processes, there is a strong need to improve how 
the physical constraints and/or additional information (e.g., 
equations and theory) can enhance the learning process in 
machine learning. Our results clearly show that the optimal 
neural network architecture and implementation of physics-
informed constraints are important to properly improve the 
model prediction of permeability. The analysis of the fea-
tures learned through each layer and the output data from 
the MLP will reveal a better mechanistic understanding of 
the machine learning processes. A comprehensive analysis 
of hyperparameters with different CNN architectures and 
the data implementation scheme of the physical properties 
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will be performed to optimize our learning system for vari-
ous porous media system.  
 

Figure 4.  Comparison of the permeability prediction with six dif-
ferent models listed in Table 1 for the validation data. The linear 
regression fitting is also shown. The black dot line represents the 

perfect predicted case.  
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