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Abstract 
Flow-induced vibration depends on a large number of pa-
rameters or features. On the one hand, the number of candi-
date physical features may be too big to construct an inter-
pretable and transferrable model. On the other hand, failure 
to account for key dependence among features may over-
simplify the model. Feature selection is found to be able to 
reduce the dimension of the physical problem by identifying 
the most important features for a certain prediction task. In 
this paper, a weighted sparse-input neural network 
(WSPINN) is proposed, where the prior physical knowledge 
is leveraged to constrain the neural network optimization. 
The effectiveness of this approach is evaluated when ap-
plied to the vortex-induced vibration of a long flexible cyl-
inder with Reynolds number from 104 to 105. The important 
physical features affecting the flexible cylinders’ crossflow 
vibration amplitude are identified.  

 Introduction   
Vortex-induced vibration (VIV) is a multi-physics problem 
associated with a number of features (or variables) that 
characterize either the structure or the flow individually or 
their interaction. As flow passes around a cylinder, the 
wake becomes unstable. The periodically shed vortices 
induce unsteady forces on the cylinder which lead to VIV. 
Moreover, the VIV of long cylinders in ocean currents may 
vary from single mode dominated, narrow-band random 
vibration to multi-mode response, characterized by broad-
band random vibration. Different current profiles may 
cause structural vibration with standing waves or travelling 
wave patterns (Bourguet et.al. 2011; Vandiver et.al. 2018). 
The complexity of the nonlinear fluid-structure interaction 
process, especially for the VIV of long, flexible cylinders 
in high Reynolds numbers fluid flows, precludes exact 
analytical solutions and CFD simulations are not yet up to 
the task.  
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 To identify the key mechanisms and the governing di-
mensionless parameters behind the complicated fluid-
structure interaction process, extensive investigations have 
been made through structural response measurement, flow 
visualization and various force modeling techniques 
(Sarpkaya 2004). VIV research over the past decades has 
revealed that Strouhal number, Reynolds number, mass 
ratio, damping parameter etc. are all relevant VIV features 
(Vandiver 1993, Govardhan and Williamson 2006, Van-
diver et.al. 2018). However, if one is only interested in 
predicting a certain quantity of interest, such as cylinder’s 
vibration amplitude in the crossflow direction, some of 
these candidate features may be redundant or unimportant. 
 Feature selection algorithms are intended to extract the 
most important features out of the full set of candidate fea-
tures with the goal of keeping prediction accuracy at a de-
sirable level, but with a reduced set of features. A pre-
analysis of a features’ importance can be conducted by 
examining the statistical correlations among the features. 
However, the statistical analysis often fails to consider the 
complicated interactions among the physical input parame-
ters (features). To solve this problem, the importance of 
each feature subset can be assessed according to their pre-
diction accuracy using a learning machine, such as deep 
neural network (DNN). Several learning machine-based 
feature selection approaches have already been developed 
to iteratively search the optimal feature subset that gives 
similar prediction accuracy as the full feature set, but they 
can be computationally expensive especially when the 
number of input features becomes very large (Guyon 
2003). 
 To efficiently identify important features in a learning 
machine, several regularization techniques are introduced 
to the machine learning process. Rudy et. al. (2017) devel-
oped a sequential threshold ridge regression, which helped 
discover governing partial differential equations of a sys-
tem from measured time series. Inspired by the effective-
ness of the group lasso regularization in linear regression, 
Feng (2017) and Scardapane (2017) developed a sparse-



input neural network by imposing group lasso regulariza-
tion on the weight groups connecting each input neuron. 
The effectiveness of the approach was demonstrated 
through theoretical derivations and empirical evidence. 
 However, for physical problems, some of the system’s 
properties may be known in advance or can be obtained 
from the governing physical laws and dimensional analysis 
(Sonin, 2001). Studies have shown that incorporating the 
prior physical knowledge can help build more interpretable 
machine learning models (Ye et. al 2018). 
 In this paper, the sparse-input neural network proposed 
by Feng (2017) and Scardapane (2017) is modified to effi-
ciently identify the important features on top of prior phys-
ical information. Comparison with searching all combina-
tions of additional features shows its effectiveness in build-
ing compact predictive models, while maintaining prior 
physical information. The method was applied to the VIV 
response amplitude prediction problem at dominant vibra-
tion frequencies. On top of the Reynolds number and 
damping parameter, the in-line-cross-flow coupling and 
modal participation are found to be important global VIV 
features.  

Weighted sparse-input neural network 
(WSPINN) incorporating prior physical 

knowledge 
We consider a fully connected DNN with P input features 

Px R∈ in the input layer and M neurons in the first hidden 
layer that predict a certain target output 1y R∈ . The weight 
connecting the pth input feature and mth neuron in the first 
hidden layer is denoted as wpm. Figure 1 shows an example 
of the DNN with P=3 and M=4. The sparse-input neural 
network (Feng 2017; Scardapane 2017) aims at accom-
plishing two tasks simultaneously: On the one hand, it min-
imizes ( )ˆ,L y y , which is the prediction error (or loss) 
between the predicted ŷ  and the measured y.  Meanwhile, 
it tries to constrain the number of input features to the 
DNN to be no greater than k. To implement this constraint, 
we need to group the weights outgoing from the same input 
feature together, and then limit the number of non-zero 
weight groups to be no larger than k. Hence, the mathemat-
ical expression for the optimization objective can be ex-
pressed as, 
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Where 0
w is the l0 norm of weight vector w. |…| is the 

cardinality of the weight groups; p and m are the index for 

the input feature and the neuron in the first hidden layer, 
respectively. The magnitude of weight group for feature p 
is measured by pW . Since the l0 norm is non-convex and 
non-differentiable, l1 norm, which calculates the sum of 
absolute values of the vectors, is often used as a convex 
proxy (Tibshirani, 1996). It can be shown geometrically 
that l1 norm is the closest convex approximation for l0 
norm (Rosasco, 2010). Following the convex approxima-
tion, we obtain Equation (1), 
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The second term in Equation (2) introduces bias term for 
prediction. The hyperparameter λ is known as the group 
lasso penalty, which adjusts the sparsity of the input fea-
tures versus the prediction accuracy. When λ grows, the 
neural network will try to minimize the sum of the weight 
groups, and therefore more weight groups are likely to 
shrink to near 0. The input features with nonzero weight 
groups are the remaining features that contribute to the 
prediction. In this way, the model can be built out of fewer 
input features, but the prediction accuracy may decrease 
due to the loss of information.   

 
Figure 1: A DNN example with 3 inputs and 4 neurons in the first 

hidden layer  

 However, for many physical problems, some of the fea-
tures are known to be important in advance, which are 
termed as prior knowledge. In this case, the objective is to 
select a small number of additional features that will com-
plement the input features that are considered prior 
knowledge and lead to predictions of acceptable accuracy. 
Since the conventional sparse-input neural network cannot 
tell the difference between prior knowledge and additional 
features, the optimization objective in Equation (2) needs 
to be modified as follows, 
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Where Pp denotes the feature set representing the prior 
knowledge, and Pa denotes the set of all the additional fea-
tures. The parameters sp and sa are the weights assigned to 
the prior knowledge and additional features, respectively. 
These weights represent the level of confidence on the fea-
ture’ importance for prediction (Lian, 2018). The conven-
tional sparse-input neural network in Equation (2) is a spe-
cial case for the weighted formulation in Equation (3), 



where sa=sp=1, which assumes equal confidence for all the 
features’ importance. For the prior knowledge (i.e., feature 
set known to be important), we’d like to prevent the algo-
rithm from minimizing their weight groups to near 0, hence 
sp/sa should be set close to 0. 

Relevant features for long flexible cylinders 
subjected to vortex-induced vibrations 

Flexible cylinder VIV modeling 
Figure 2 is a sketch of a tensioned elastic cylinder under a 
linearly sheared current profile U(z) distributed along axis 
z, which causes the cylinders’ vibration in both the inline 
(IL) and crossflow (CF) directions with respect to the in-
coming current. The vibration of the elastic cylinder can be 
approximated as a tensioned Euler-Bernoulli beam. The 
equation of motion in crossflow direction and inline direc-
tion can be expressed as, 
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 Where x and y are the displacement in inline and cross-
flow direction. m(z) is the cylinder’s mass per unit length, 
P(z,t) is tension of the vibrating cylinder, EI(z) represents 
bending stiffness. cs is the structural damping coefficient 
per unit length, Fcf and Fil are the vortex induced forces on 
the cylinder. The loading transfers energy from fluid to the 
structure in a well-defined region with length Lin, which is 
the “power-in” region. Outside this region, the vortex load-
ing dissipates energy by transferring energy from the struc-
ture to the fluid through hydrodynamic damping coeffi-
cient ch(z). The location of the “power-in” region can be 
identified from structural vibration measurements in exper-
iments or simulation (Rao 2015). Under steady-state, nar-
row-banded vibration, the total power dissipation in the 
flexible pipe can be normalized to an equivalent damping 
coefficient ce (Vandiver et.al. 2018). 

 
 

Figure 2: Side and front view of a cylinder under VIV 

 The VIV loading is the result of nonlinear interaction 
between vortex shedding and structural vibration via com-
plicated feedback mechanisms that depend on the structur-
al properties, the current profile and the structure’s motion 

at every instant Hence, the parameterization for VIV force 
in the “power-in” region may involve, 
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Where ρ , µ , L and D are fluid density and dynamic 
viscosity, cylinder’s length and diameter, respectively. 
 If the spatiotemporal root-mean-square (rms) amplitude 
of crossflow vibration Arms,cf in the power-in region is the 
target output, then from Equations (4)-(7), the predictive 
model can be expressed as, 
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It can be observed that Equations (6)-(8) involves spa-
tial-temporal distribution of structural response and system 
properties, which will be further simplified and represented 
by some global VIV features.  

Spatial-temporal analysis for typical VIV  
VIV measurements from the 2011 Shell experiments on a 
38-m-long cylinder (Lie et al 2013) were studied in this 
investigation.   
 The measured crossflow displacements in a linearly 
sheared current are presented in Figure 3. The top figures 
are the CF response time series at two locations within the 
“power-in” region, while their corresponding wavelet 
analysis is shown at the bottom. The vibration is found to 
be narrow-banded with the dominant frequency 𝜔𝜔𝑐𝑐𝑐𝑐 drift-
ing in time. Given the dominant vibration frequency and 
structural properties, the corresponding wavenumber k𝑐𝑐𝑐𝑐 
can be estimated by the dispersion relationship. 

 
Figure 3: Top: Time series of crossflow displacement at two loca-
tions in the power-in region; Bottom: Wavelet analysis on the 
measured time series. (2011 Shell experiment, D=30 mm, linearly 
sheared flow, Umax=1.6 m/s) 



 Meanwhile, Figure 4 shows the corresponding spatial- 
temporal distribution of crossflow displacement for the 
same test condition. The response is nonstationary, with a 
mixture of standing wave and travelling wave components. 
To better capture the temporal variation of the vibration 
signal, a moving window analysis is conducted. The vibra-
tion signal is windowed into overlapping time frames over 
each 3 vibration cycles, with 75% overlap.  
 Complex proper orthogonal decomposition (POD) is 
conducted on the crossflow displacement in each spatial-
temporal window in the “power-in” region to decompose 
the displacement in each window into several orthogonal 
complex modes (Feeny 2008). The ratio between the mod-
al energy of the dominant POD mode and the total energy 
is defined as κ , which suggests the dominance of the prin-
cipal mode. Additionally, by comparing the real and imag-
inary component of the dominant complex mode, the trav-
elling wave index α  can be defined, with 1α =  for travel-
ling waves, and 0α =  for standing waves (Feeny 2008). 
The middle and bottom of Figure 4 shows the temporal 
variation of the travelling wave index and the modal domi-
nance factor analyzed in the power-in region, which sug-
gests that the VIV process is single POD mode dominated, 
but the mode may vary from standing to travelling waves. 
Analysis from inline vibration also shows similar spatial-
temporal distribution. 

 
Figure 4: Contour plot of CF vibration around the dominant fre-
quency, its corresponding travelling wave index cfα , and mode 
dominance factor cfκ in the estimated “power-in” region 
(z/L=0~0.3) 

Dimensional analysis for narrow-banded VIV 
process 
For a homogeneous, tensioned cylinder in uniform or line-
arly sheared current undergoing narrow-banded VIV, 
Equation (8) can be approximated by the following rele-
vant global quantities,  

, ,
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Where Urms and /U L∆ are the spatial root-mean-square 
and the shear gradient of the current profile, respectively 
within the power-in region. Arms,cf  and Arms,il are the spatio-
temporal rms for the crossflow and inline VIV amplitude 
in the power-in region. cs and ce are respectively, the struc-
tural damping coefficient and the equivalent rigid cylinder 
damping coefficients that will lead to the same power dis-
sipation as discussed by (Vandiver et.al. 2018). P0 and P 
are the initial tension before VIV and the mean tension 
during the VIV process, respectively.  
 Non-dimensionalizing Equation (9) gives,   
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Where *
, /cf rms cfA A D= , *

, /il rms ilA A D=  are the dimension-
less crossflow and inline response amplitude, respectively.  
Re /rmsU Dρ µ=  is Reynolds number; ( )( )/ /rmsD U U Lβ = ∆  
is known as the shear parameter; ( )2 / ,cf cfVr U Dπ ω=

( )2 /il ilVr U Dπ ω=  are the crossflow and inline reduced 
velocities, respectively; ( )* 24 /m m Dζ ζ πρ= is known as 
the mass damping parameter in the VIV literature, which 
historically has been thought to be important in controlling 
rigid cylinder’s VIV amplitude. * 2

,2 /cf e cf cf rmsc c Uω ρ= and 
* 2

,2 /il e il il rmsc c Uω ρ=  are the dimensionless forms of the 
equivalent damping parameter in the crossflow and inline 
directions, respectively (Vandiver et.al. 2018).  
 Although Equation (10) suggests that crossflow response 
prediction in the “power-in” region may require consider-
ing the effect of all the 17 dimensionless variables, it is 
likely that the dimension of the input features can be fur-
ther reduced due to redundancy or correlation between 
features or irrelevance to the prediction target. We are in-
terested in finding a smaller and more manageable subset 
of parameters that are ultimately the most important out of 
the full set when it comes to determining the CF response 
amplitude. The motivation behind this is our interest to 
understand what causes the CF response variability that is 
observed in the temporal domain. At the very least, we 
would like to start associating changes to certain parame-
ters with that variability that is often observed but is too 
complicated to understand.  

Feature selection for flexible cylinder VIV 

Dataset description 
The dataset is from a set of experiments conducted by 
Shell Oil Co. in 2011 at Marintek. The vibration of 38-
meter-long cylinders under various current profiles were 
measured. The test matrix included two pipes with differ-



ent diameters (30-mm and 80-mm) but of the same bend-
ing stiffness. The cylinders were tested in uniform and lin-
early sheared current profiles with the maximum flow 
speed, Umax, ranging from 0.5 m/s to 2.5 m/s. This resulted 
in the Reynolds number Re ranging from 1.0 ×104 – 
20×104. The dataset also included cases where the 80-mm 
pipe was covered with strakes over 50% of its length. The 
pipe tests were conducted in uniform flows with Umax vary-
ing from 0.5 m/s to 1.5 m/s. The strakes dissipated vibra-
tion energy and limited the power-in region to 0.5inL L= , 
50% of the cylinder’s length. Detailed descriptions of the 
experiments can be found in Lie (2013) and Rao (2015).  
 The structural damping ratio ζ  in the experiment was 
around 0.5% (Vandiver et.al. 2018). The cross flow re-
duced velocity cfVr  varies in a narrow range from 6 to 9 
and / 2cf ilVr Vr ≈ . 

Deep neural network setup 
The deep neural network was constructed using two hidden 
layers. Each hidden layer had twenty neurons using a sig-
moid activation function. The total number of data points 
was around 6000. 70% of the experimental data were used 
as the training data, while the rest was used as the test data. 
The input variables x were standardized to keep the fea-
tures at the same scale, while the output variables y were 
normalized to values between 0 to 1. The mean absolute 
percentage error (MAPE) was chosen as the loss function 
between prediction and measurement ( )ˆ,L y y . The neural 
network optimization was conducted via FTRL algorithm 
(McMahan 2013). During neural network training, the 
batch size was 128 and learning rate was 0.01. The sa and 
sp in Equation (3) were fixed to be 1 and 0.02, respectively. 
After the optimization, we remove the input features whose 
magnitude of the weight groups have shrunk to near 0 from 
prediction model. In this paper, the magnitude of a weight 
group is considered to be near 0 when it’s value is less than 
5% of the maximum magnitude among all of the input fea-
tures. 

Prior physical knowledge for VIV 
Experimental studies on small spring-mounted rigid cylin-
ders show that the response amplitude increases with in-
creasing Reynolds number in the range 103 to 104 and de-
creases as the dimensionless damping increases 
(Govardhan & Williamson 2006, Vandiver 2012). 
 Similarly, studies on long flexible cylinders have shown 
that the Reynolds number and the dimensionless damping 
continue to play important roles on the VIV response am-
plitude (Resvanis 2012, Rao 2015) but as discussed earlier, 
the large number of potentially relevant parameters and the 
response variability result in scatter in the data. 
 Because it is known that Reynolds number Re and di-
mensionless damping parameter *

cfc  are important, these 

two parameters are designated to be used as prior 
knowledge. The shear parameter β  which is ideally suited 
to differentiating between uniform or sheared flows was 
the third parameter that was chosen as prior knowledge 
before starting the feature selections process. 

Feature selection on top of prior physical 
knowledge 
The feature selection procedure was conducted by increas-
ing the hyperparameter λ from 0.01 until all the input fea-
tures except the prior knowledge shrank to 0. Figure 5 
demonstrates how varying the value of λ determines the 
number of features chosen by the proposed algorithm. In 
the figure the retained features are indicated by the pres-
ence of a black bar at each λ value tested. 

 
Figure 5: Top: The variation of remaining features with λ. The 
black bars represent the features selected by the neural network. 
Bottom: Comparison of the prediction error (MAPE) between 
weighted sparse-neural network (WSPINN) prediction and the 
DNN prediction using combinatorically searched features under a 
given number of features  

 The prediction error varies with the retained features in 
the prediction model, which is presented in the bottom part 
of Figure 5. At each number of features, a brute force ap-
proach that searches all the possible combinations of the 
additional features is also carried out. The error obtained 
from the WSPINN is compared with hundreds runs of 
DNN predictions using combinatorically searched features 
in addition to the 3 features representing prior knowledge. 
The comparison suggests that the WSPINN is able to find 
the feature subsets that gives smallest prediction error 
among all the feature combinations. Besides, it can be ob-
served that there could be multiple combinations of fea-
tures that give similar prediction accuracy. For example, 
both the additional features * ,il cfA κ  and * ,il ilA κ  gives predic-



tion error around 13%. This suggests the correlations and 
interactions among some of the VIV features.  
 After balancing the prediction accuracy with the sparsity 
of input features, we find that the feature subset containing 
5 features: * *Re, , , ,cf il cfc Aβ κ  gives 13% MAPE, which is 
close to 10.6% MAPE using all 17 features.  
 We have also applied the WSPINN algorithm to other 
VIV related problems, such as the prediction for rigid cyl-
inder’s VIV amplitude and flexible cylinders’ VIV ampli-
tude at higher harmonics etc. Because of space limitations 
we cannot demonstrate this here. Moreover, since this pa-
per only studied the important parameters for VIV sheared 
and uniform current profiles, the importance of the features 
may be different for more complicated current profiles. 

Physical insight interpretation 
The importance of the identified features for flexible cylin-
der VIV can be examined by systematically varying the 
ranges of input features to the constructed neural network 
models. Figure 6 and Figure 7 show the effect of varying 

*Re, cfc  while constraining the other variables in the predic-
tion model to characteristic values most often observed in 
the Shell experiments. The black dots are the experimental 
measurements within 20% from the referenced values and 
are included to demonstrate that the prediction model (con-
tours) did in fact have data in that vicinity. 
 The results demonstrate that increasing Reynolds num-
ber tends to increase the spatiotemporal CF RMS ampli-
tude. This Reynolds number effect is obvious in the uni-
form flow data which typically has small dimensionless 
damping values ( *

cfc <0.3-0.4). While the Reynolds number 
effect is virtually non-existent when looking at the sheared 
flow cases with damping parameters ( *

cfc >0.4). 
 Figure 8 shows the effect of varying *

ilA  and cfκ  while 
constraining the other variables. It can be found that the 
crossflow response tends to increase with inline response. 
Such a relationship has also been observed in spring-
mounted rigid cylinder’s VIV experiments (Dahl 2008), 
where the fluctuating inline force increased with crossflow 
motion. Finally, the prediction model suggests that as the 
mode-participation factor increases so does the CF re-
sponse amplitude. Note that both standing wave and travel-
ling wave response can result in high mode-participation 
factors and in this situation, the factor primarily character-
izes whether all points on the flexible cylinder are respond-
ing in a similar manner (spanwise coherence). 

 
Figure 6: Contours of CF RMS amplitude as a function of *

cfc  
and Re (in uniform flow) 

 
Figure 7: Contours of CF RMS amplitude as a function of *

cfc  
and Re (in sheared flow) 

 
Figure 8: Contours of CF RMS amplitude as a function of *

ilA  
and cfκ  (in sheared flow) 

Special properties of the approach compared 
to other machine learning  

1. Direct and learning task dependent dimension reduction 
in the original feature space while retaining the prior in-
formation in the model. 
 The WSPINN is one of the dimension reduction ap-
proaches. However, different from widely used PCA or 
auto-encoders, WSPINN seeks to reduce the dimension 
directly in the original input feature space. Moreover, 
through machine learning prediction, WSPINN is able to 



identify most important input feature with respect to the 
target output. The much smaller constraints placed on the 
prior knowledge also allows the prior knowledge to retain 
in the prediction model to improve prediction and also 
identify additional important features.  
2. High prediction accuracy due to the universal approxi-
mation property of the DNN (Hornik, 1993) 

The WSPINN is a feature selection approach embed-
ded in DNN, which is able to predict nonlinear input-
output relationships accurately. For instance, for the cross-
flow VIV amplitude prediction, the prediction accuracy 
from the DNN and linear regression given * *Re, , , ,cf il cfc Aβ κ  
are 13% and 25%, respectively.  However, training DNN 
with WSPINN requires several rounds of iterations to op-
timize the weights in each layer, hence it was found to be 
more computationally expensive than most of the other 
machine learning methods We consider the computational 
cost acceptable since our intention is not to create a fast 
predictive tool but rather to use machine learning to reduce 
the dimensionality of the problem as we try to understand 
the importance of each of the many governing parameters. 

Conclusion 
In this paper, we modify and propose changes to a sparse-
input neural network so it can efficiently select additional 
features which can complement a subset of features known 
to be important in advance (i.e. prior knowledge). The al-
gorithm was applied to the experimental results from vor-
tex-induced vibration of flexible cylinders. The complicat-
ed spatiotemporal response measurements of the continu-
ous system are reduced to an equivalent 2 Degree of Free-
dom system. The proposed algorithm is then used to inves-
tigate the role of Reynolds number, damping parameter, 
and shear parameter (3 parameters for which we have prior 
knowledge), as well as 14 other parameters that the dimen-
sional analysis indicated might be important. The algo-
rithm was able to reduce the 14 additional parameters to 
just 2 additional parameters on top of the prior knowledge. 
We found that this feature selection technique is much 
more efficient than a brute force combinatorial search. 
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