
Enforcing constraints for time series prediction in supervised, unsupervised and
reinforcement learning

Panos Stinis
Advanced Computing, Mathematics and Data Division

Pacific Northwest National Laboratory, Richland WA 99354

Abstract
We assume that we are given a time series of data from a
dynamical system and our task is to learn the flow map of
the dynamical system. We present a collection of results on
how to enforce constraints coming from the dynamical sys-
tem in order to accelerate the training of deep neural networks
to represent the flow map of the system as well as increase
their predictive ability. In particular, we provide ways to en-
force constraints during training for all three major modes of
learning, namely supervised, unsupervised and reinforcement
learning. In general, the dynamic constraints need to include
terms which are analogous to memory terms in model reduc-
tion formalisms. Such memory terms act as a restoring force
which corrects the errors committed by the learned flow map
during prediction.
For supervised learning, the constraints are added to the ob-
jective function. For the case of unsupervised learning, in
particular generative adversarial networks, the constraints are
introduced by augmenting the input of the discriminator. Fi-
nally, for the case of reinforcement learning and in particular
actor-critic methods, the constraints are added to the reward
function. In addition, for the reinforcement learning case, we
present a novel approach based on homotopy of the action-
value function in order to stabilize and accelerate training.
We use numerical results for the Lorenz system to illustrate
the various constructions.

Introduction
Scientific machine learning, which combines the strengths
of scientific computing with those of machine learning, is
becoming a rather active area of research. Several related
priority research directions were stated in the recently pub-
lished report (Baker et al. 2019). In particular, two prior-
ity research directions are: (i) how to leverage scientific do-
main knowledge in machine learning (e.g. physical prin-
ciples, symmetries, constraints); and (ii) how can machine
learning enhance scientific computing (e.g reduced-order or
sub-grid physics models, parameter optimization in multi-
scale simulations).

Our aim in the current work is to present a collection of
results that contribute to both of the aforementioned prior-
ity research directions. On the one hand, we provide ways

Copyright c© 2020, for this paper by its authors. Use permit-
ted under Creative Commons License Attribution 4.0 International
(CCBY 4.0).

to enforce constraints coming from a dynamical system dur-
ing the training of a neural network to represent the flow
map of the system. Thus, prior domain knowledge is incor-
porated in the neural network training. On the other hand, as
we will show, the accurate representation of the dynamical
system flow map through a neural network is equivalent to
constructing a temporal integrator for the dynamical system
modified to account for unresolved temporal scales. Thus,
machine learning can enhance scientific computing.

We assume that we are given data in the form of a time
series of the states of a dynamical system (a training trajec-
tory). Our task is to train a neural network to learn the flow
map of the dynamical system. This means to optimize the
parameters of the neural network so that when it is presented
with the state of the system at one instant, it will predict ac-
curately the state of the system at another instant which is
a fixed time interval apart. If we want to use the data alone
to train a neural network to represent the flow map, then it
is easy to construct simple examples where the trained flow
map has rather poor predictive ability (Stinis et al. 2019).
The reason is that the given data train the flow map to learn
how to respond accurately as long as the state of the system
is on the trajectory. However, at every timestep, when we
invoke the flow map to predict the estimate of the state at
the next timestep, we commit an error. After some steps, the
predicted trajectory veers into parts of phase space where
the neural network has not trained. When this happens, the
neural network’s predictive ability degrades rapidly.

One way to aid the neural network in its training task is to
provide data that account for this inevitable error. In (Stinis
et al. 2019), we advanced the idea of using a noisy version of
the training data i.e. a noisy version of the training trajectory.
In particular, we attach a noise cloud around each point on
the training trajectory. During training, the neural network
learns how to take as input points from the noise cloud, and
map them back to the noiseless trajectory at the next time
instant. This is an implicit way of encoding a restoring force
in the parameters of the neural network. We have found that
this modification can improve the predictive ability of the
trained neural network but up to a point.

We want to aid the neural network further by enforcing
constraints that we know the state of the system satisfies. In
particular, we assume that we have knowledge of the dif-
ferential equations that govern the evolution of the system

(our constructions work also if we assume algebraic con-
straints see e.g. (Stinis et al. 2019)). Enforcing the differ-
ential equations directly at the continuum level can be ef-
fected for supervised and and reinforcement learning but it
is more involved for unsupervised learning. Here we have
opted to enforce constraints in discrete time. We want to in-
corporate the discretized dynamics into the training process
of the neural network. The purpose of such an attempt can be
explained in two ways: (i) we want to aid the neural network
so that it does not have to discover the dynamics (physics)
from scratch; and (ii) we want the constraints to act as reg-
ularizers for the optimization problem which determines the
parameters of the neural network.

Closer inspection of the concept of noisy data and of en-
forcing the discretized constraints reveals that they can be
combined. However, this needs to be done with care. Re-
call that when we use noisy data we train the neural net-
work to map a point from the noise cloud back to the noise-
less point at the next time instant. Thus, we cannot enforce
the discretized constraints as they are because the dynam-
ics have been modified. In particular, the use of noisy data
requires that the discretized constraints be modified to ac-
count explicitly for the restoring force. We have called the
modification of the discretized constraints the explicit error-
correction.

The meaning of the restoring force is analogous to that of
memory terms in model reduction formalisms (Chorin and
Stinis 2006). Note that the memory here is not because we
are only resolving part of the system’s variables (see e.g.
(Ma, Wang, and E 2018; Harlim et al. 2019)) but due to
the use of a finite timestep. The timescales that are smaller
than the timestep used are not resolved explicitly. However,
their effect on the resolved timescales cannot be ignored. In
fact, it is what causes the inevitable error at each applica-
tion of the flow map. The restoring force that we include
in the modified constraints is there to remedy this error i.e.
to account for the unresolved timescales albeit in a simpli-
fied manner. This is precisely the role played by memory
terms in model reduction formalisms. In the current work
we have restricted attention to linear error-correction terms.
The linear terms come with coefficients whose magnitude
is optimized as part of the training. In this respect, optimiz-
ing the error-correction term coefficients becomes akin to
temporal renormalization. This means that the coefficients
depend on the temporal scale at which we probe the system
(Goldenfeld 1992; Barenblatt 2003). Finally, we note that
the error-correction term can be more complex than linear.
In fact, it can be modeled by a separate neural network. It
can also involve not just the previous state but also states
further back in time. Results for such more elaborate error-
correction terms will be presented elsewhere.

We have implemented constraint enforcing in all three
major modes of learning. For supervised learning, the con-
straints are added to the objective function. For the case of
unsupervised learning, in particular generative adversarial
networks (GANs) (Goodfellow et al. 2014), the constraints
are introduced by augmenting the input of the discrimina-
tor (Stinis et al. 2019). Finally, for the case of reinforcement
learning and in particular actor-critic methods (Sutton et al.

1999), the constraints are added to the reward function. In
addition, for the reinforcement learning case, we have de-
veloped a novel approach based on homotopy of the action-
value function in order to stabilize and accelerate training.

In recent years, there has been considerable interest in
the development of methods that utilize data and physical
constraints in order to train predictors for dynamical sys-
tems and differential equations e.g. see (Berry, Giannakis,
and Harlim 2015; Raissi, Perdikaris, and Karniadakis 2018;
Chen et al. 2018; Han, Jentzen, and E 2018; Sirignano
and Spiliopoulos 2018; Felsberger and Koutsourelakis 2018;
Wan et al. 2018; Ma et al. 2018) and references therein.
Our approach is different, it introduces the novel concept
of training on purpose with modified (noisy) data in order to
incorporate (implicitly or explicitly) a restoring force in the
dynamics learned by the neural network flow map. We have
also provided the connection between the incorporation of
such restoring forces and the concept of memory in model
reduction.

Due to space limitations, we cannot expand on the details
of how to enforce constraints for the 3 major modes of learn-
ing (please see Sections 1 and 2 in (Stinis 2019) for a de-
tailed discussion of all the constructions). Instead we focus
on the presentation of numerical results for the Lorenz sys-
tem to showcase the performance of the proposed approach.
Also, we note that we have not included results which show
how enforcing constraints, implicitly or explicitly, is better
than not enforcing constraints at all (please see (Stinis et al.
2019) and (Stinis 2019) for such results).

Numerical results
The Lorenz system is given by

dx1
dt

= σ(x2 − x1) (1)

dx2
dt

= ρx1 − x2 − x1x3 (2)

dx3
dt

= x1x2 − βx3 (3)

where σ, ρ and β are positive. We have chosen for the nu-
merical experiments the commonly used values σ = 10,
ρ = 28 and β = 8/3. For these values of the parameters
the Lorenz system is chaotic and possesses an attractor for
almost all initial points. We have chosen the initial condition
x1(0) = 0, x2(0) = 1 and x3(0) = 0.

We have used as training data the trajectory that starts
from the specified initial condition and is computed by the
Euler scheme with timestep δt = 10−4. In particular, we
have used data from a trajectory for t ∈ [0, 3]. For all three
modes of learning, we have trained the neural network to
represent the flow map with timestep ∆t = 1.5 × 10−2 i.e.
150 times larger than the timestep used to produce the train-
ing data. After we trained the neural network that represents
the flow map, we used it to predict the solution for t ∈ [0, 9].
Thus, the trained flow map’s task is to predict (through iter-
ative application) the whole training trajectory for t ∈ [0, 3]
starting from the given initial condition and then keep pro-
ducing predictions for t ∈ (3, 9].

This is a severe test of the learned flow map’s predictive
abilities for four reasons. First, due to the chaotic nature of
the Lorenz system there is no guarantee that the flow map
can correct its errors so that it can follow closely the training
trajectory even for the interval [0, 3] used for training. Sec-
ond, by extending the interval of prediction beyond the one
used for training we want to check whether the neural net-
work has actually learned the map of the Lorenz system and
not just overfitting the training data. Third, we have chosen
an initial condition that is far away from the attractor but our
integration interval is long enough so that the system does
reach the attractor and then evolves on it. In other words, we
want the neural network to learn both the evolution of the
transient and the evolution on the attractor. Fourth, we have
chosen to train the neural network to represent the flow map
corresponding to a much larger timestep than the one used to
produce the training trajectory in order to check the ability
of the error-correcting term to account for a significant range
of unresolved timescales (relative to the training trajectory).

We performed experiments with different values for the
various parameters that enter in our constructions. We
present here indicative results for the case of N = 2 × 104

samples (N/3 for training, N/3 for validation and N/3 for
testing). We have chosen Ncloud = 100 for the cloud of
points around each input. Thus, the timestep ∆t = 1.5 ×
10−2. This is because there are 20000/100 = 200 time
instants in the interval [0, 3] at a distance ∆t = 3/200 =
1.5× 10−2 apart.

The noise cloud for the neural network at a point t was
constructed using the point xi(t) for i = 1, 2, 3, on the train-
ing trajectory and adding random disturbances so that it be-
comes the collection xil(t)(1 − Rrange + 2Rrange × ξil)
where l = 1, . . . , Ncloud. The random variables ξil ∼
U [0, 1] and Rrange = 2 × 10−2. As we have explained
before, we want to train the neural network to map the in-
put from the noise cloud at a time t to the noiseless point
xi(t+∆t) (for i = 1, 2, 3,) on the training trajectory at time
t+ ∆t.

We have to also motivate the value of Rrange for the
range of the noise cloud. Recall that the training trajectory
was computed with the Euler scheme which is a first-order
scheme. For the interval ∆t = 1.5 × 10−2 we expect the
error committed by the flow map to be of similar magnitude
and thus we should accommodate this error by considering
a cloud of points within this range. We found that taking
Rrange slightly larger and equal to 2× 10−2 helps the accu-
racy of the training.

We denote by (F1(zj), F2(zj), F3(zj)) the neural net-
work flow map prediction at tj + ∆t for the input vector
zj = (zj1, zj2, zj3) from the noise cloud at time tj . Also,
xdataj = (x1(tj +∆t), x2(tj +∆t), x3(tj +∆t)) is the point
on the training trajectory computed by the Euler scheme
with δt = 10−4. For the mini-batch size we have chosen
m = 1000 for the supervised and unsupervised cases and
m = 33 for the reinforcement learning case.

We also need to specify the constraints that we want
to enforce. Using the notation introduced above, we want
to train the neural network flow map so that its out-
put (F1(zj), F2(zj), F3(zj)) for an input data point zj =

(zj1, zj2, zj3) from the noise cloud makes zero the residuals

εj1 = F1(zj)− zj1 −∆t[σ(zj2 − zj1)] + ∆ta1zj1 (4)
εj2 = F2(zj)− zj2 −∆t[ρzj1 − zj2 − zj1zj3] + ∆ta2zj2

(5)
εj3 = F3(zj)− zj3 −∆t[zj1zj2 − βzj3] + ∆ta3zj3, (6)

where a1, a2 and a3 are parameters to be optimized dur-
ing training along with the parameters of the neural network
flow map. The first three terms on the RHS of (4)-(6) are the
forward Euler scheme, while the third is the diagonal linear
error-correcting term. More elaborate error-correcting terms
will appear elsewhere (see also (Stinis 2019)).

Supervised learning
The loss function used for enforcing constraints in super-
vised learning was

Loss =
1

m

[m∑
j=1

3∑
l=1

[(Fl(zj)− xdatajl)2 + ε2jl]

]
, (7)

where εjl are the residuals given by (4)-(6). The uncon-
strained loss function is given by (7) without the residuals.

We used a deep neural network for the representation of
the flow map with 10 hidden layers of width 20. We note
that because the solution of the Lorenz system acquires val-
ues outside of the region of the activation function we have
removed the activation function from the last layer of the
generator (alternatively we could have used batch normal-
ization and kept the activation function). Fig. 1 compares
the evolution of the prediction for x1(t) of the neural net-
work flow map starting at t = 0 and computed with a
timestep ∆t = 1.5 × 10−2 to the ground truth (training
trajectory) computed with the forward Euler scheme with
timestep δt = 10−4. We show plots only for x1(t) since the
results are similar for the x2(t) and x3(t).

We make two observations. First, the prediction of the
neural network flow map is able to follow with adequate ac-
curacy the ground truth not only during the interval [0, 3] that
was used for training, but also during the interval (3, 9]. Sec-
ond, the explicit enforcing of constraints i.e. the enforcing of
the constraints (4)-(6) (see results in Fig. 1(b)) is better than
the implicit enforcing of constraints.

Unsupervised learning
For the case of unsupervised learning we have chosen
GANs. To enforce constraints we consider a two-player min-
max game with the modified value function V const(D,G) :

min
G

max
D

V const(D,G) = Ex∼pdata(x)[logD(x, εD(x))]

+Ez∼pz(z)[log(1−D(G(z), εG(z)))], (8)

where εD(x) ∼ N (0, (2δt)2) is the constraint residual for
the true sample (see explanation in Section 2.4 in (Stinis
et al. 2019)). Also, εG(z) is the constraint residual for the
generator-created sample (see (4)-(6) above). The uncon-
strained value function is given by (8) without the residuals.
Note that in our setup, the generator input distribution pz(z)
will be from the noise cloud around the training trajectory.

x 1

−15

−10

−5

0

5

10

15

20

Time
0 1 2 3 4 5 6 7 8 9

(a)

x 1

−15

−10

−5

0

5

10

15

20

Time
0 1 2 3 4 5 6 7 8 9

(b)

Figure 1: Supervised learning. Comparison of ground truth
for x1(t) computed with the Euler scheme with timestep
δt = 10−4 (blue dots) and the neural network flow map pre-
diction with timestep ∆t = 1.5 × 10−2 (red crosses). Note
that the timestep of the neural network flow map is 150 times
larger than the timestep used to produce the training data. (a)
noisy data without enforced constraints during training; (b)
noisy data with enforced constraints during training (see text
for details).

On the other hand, the true data distribution pdata is the dis-
tribution of values of the (noiseless) training trajectory.

We have used for the GAN generator a deep neural net-
work with 9 hidden layers of width 20 and for the discrim-
inator a neural network with 2 hidden layers of width 20.
The numbers of hidden layers both for the generator and
the discriminator were chosen as the smallest that allowed
the GAN training to reach its game-theoretic optimum with-
out at the same time requiring large scale computations. Fig.
2 compares the evolution of the prediction of the neural
network flow map starting at t = 0 and computed with a
timestep ∆t = 1.5 × 10−2 to the ground truth (training
trajectory) computed with the forward Euler scheme with
timestep δt = 10−4.

Fig. 2(a) shows results for the implicit enforcing of con-
straints. We see that this is not enough to produce a neural
network flow map with long-term predictive accuracy. Fig.
2(b) shows the significant improvement in the predictive ac-
curacy when we enforce the constraints explicitly. The re-
sults for this specific example are not as good as in the case
of supervised learning presented earlier. We note that train-
ing a GAN with or without constraints is a delicate numeri-
cal task as explained in more detail in (Stinis et al. 2019).
One needs to find the right balance between the expres-
sive strengths of the generator and the discriminator (game-
theoretic optimum) to avoid instabilities but also train the
neural network flow map i.e. the GAN generator, so that it

x 1

−15

−10

−5

0

5

10

15

20

Time
0 1 2 3 4 5 6 7 8 9

(a)

x 1

−15

−10

−5

0

5

10

15

20

Time
0 1 2 3 4 5 6 7 8 9

(b)

Figure 2: Unsupervised learning (GAN). Comparison of
ground truth for x1(t) computed with the Euler scheme
with timestep δt = 10−4 (blue dots) and the neural net-
work flow map (GAN generator) prediction with timestep
∆t = 1.5 × 10−2 (red crosses). (a) noisy data without en-
forced constraints during training; (b) noisy data with en-
forced constraints during training (see text for details).

has predictive accuracy.
We also note that training with noiseless data is even more

brittle. For the very few experiments where we avoided in-
stability the predicted solution from the trained GAN gener-
ator was not accurate at all.

Reinforcement learning
The last case we examine is that of reinforcement learning
(see (Stinis 2019) for notation and details about the con-
structions). In particular, we use a deterministic policy actor-
critic method (Lillicrap et al. 2015). In our application we
have identified the neural network flow map with the action
policy. For the representation of the deterministic action pol-
icy, we used a deep neural network with 10 hidden layers of
width 20. For the representation of the action-value func-
tion we used a deep neural network with 15 hidden layers of
width 20. The task of learning an accurate representation of
the action-value function is more difficult than that of find-
ing the action policy. This justifies the need for a stronger
network to represent the action-value function.

The training of actor-critic methods in their original form
suffers from stability issues. Researchers have developed
various modifications and tricks to stabilize training (see
the review in (Pfau and Vinyals 2016)). The one that en-
abled us to stabilize results in the first place is that of target
networks (Mnih et al. 2015; Lillicrap et al. 2015). The tar-
get network concept uses different networks to represent the
action-value function and the action policy that appear in
the expression for the target in the Bellman equation. How-

ever, the predictive accuracy of the trained neural network
flow map i.e. the action policy, was extremely poor unless
we also used our homotopy approach for the action-value
function. This was true for both cases of enforcing or not
constraints explicitly during training. With this in mind we
present results with and without the homotopy approach for
the action-value function to highlight the accuracy improve-
ment afforded by the use of homotopy.

After each iteration of the optimizer for the action-value
function, the homotopy approach uses the quantity

δ×Q(st, µ(st)) + (1− δ)× [rt + γQ(st+1, µ(st+1))] (9)

in the optimization for the action policy. Here, Q(st, µ(st))
is the action-value function, µ(st) is the action policy and rt
the reward function, γ ∈ [0, 1] is the discount factor which
expresses the degree of faith in future actions, and δ is the
homotopy parameter (see Section 2.3 in (Stinis 2019)). We
initialized the homotopy parameter δ at 0, and increased its
value (until it reached 1) every 2000 training iterations.

We have set the discount factor to γ = 1, which is a diffi-
cult case. It corresponds to the case of a deterministic envi-
ronment which means that the same actions always produce
the same rewards. This is the situation in our numerical ex-
periments where we are given a training trajectory that does
not change. We have conducted more experiments for other
values of γ but a detailed presentation of those results will
await a future publication.

The reward function (with constraints) for an input point
zj from the noise cloud at time tj

r(zj , x
data
j) = −

3∑
l=1

[
(µl(zj)− xdatajl)2 + ε2jl

]
(10)

where xdataj is the noiseless point from the training trajec-
tory at time tj + ∆t. Also, µl(zj) is the action at zj i.e.
the prediction of the neural network flow map and εjl is the
constraint residual for the prediction (see (4)-(6) above).

Fig. 3 presents results of the prediction performance of
the neural network flow map when it was trained with and
without the use of homotopy for the action value function.
In Fig. 3(a) we have results for the implicit enforcing of con-
straints while in Fig. 3(b) for the explicit enforcing of con-
straints. We make two observations. First, both for implicit
and explicit enforcing of the constraints, the use of homo-
topy leads to accurate results for long times. Especially for
the case of explicit enforcing which gave us some of the best
results from all the numerical experiments we conducted for
the different modes of learning. Second, if we do not use
homotopy, the predictions are extremely poor both for im-
plicit and explicit forcing. Indeed, the green curve in Fig.
3(a) representing the prediction of x1(t) for the case of im-
plicit constraint enforcing without homotopy is as inaccu-
rate as it looks. It starts at 0 and within a few steps drops to
a negative value and does not change much after that. The
predictions for x2(t) and x3(t) are equally inaccurate.

Discussion and future work
We have presented a collection of results about the enforc-
ing of known constraints for a dynamical system during the

x 1

−15

−10

−5

0

5

10

15

20

Time
0 1 2 3 4 5 6 7 8 9

(a)

x 1

−15

−10

−5

0

5

10

15

20

25

Time
0 1 2 3 4 5 6 7 8 9

(b)

Figure 3: Reinforcement learning (Actor-critic). Compar-
ison of ground truth for x1(t) computed with the Euler
scheme with timestep δt = 10−4 (blue dots), the neural net-
work flow map prediction with timestep ∆t = 1.5 × 10−2

with homotopy for the action-value function during training
(red crosses) and the neural network flow map prediction
with timestep ∆t = 1.5 × 10−2 without homotopy for the
action-value function during training (green triangles). (a)
noisy data without enforced constraints during training; (b)
noisy data with enforced constraints during training (see text
for details).

training of a neural network to represent the flow map of the
system. We have provided ways that the constraints can be
enforced in all three major modes of learning, namely su-
pervised, unsupervised and reinforcement learning. In line
with the law of scientific computing that one should build in
an algorithm as much prior information is known as pos-
sible, we observe a striking improvement in performance
when known constraints are enforced during training. There
is an added benefit of training with noisy data and how these
correspond to the incorporation of a restoring force in the
dynamics of the system (see (Stinis et al. 2019) and (Stinis
2019) for more details). This restoring force is analogous to
memory terms appearing in model reduction formalisms. In
our framework, the reduction is in a temporal sense i.e. it al-
lows us to construct a flow map that remains accurate though
it is defined for large timesteps.

The model reduction connection opens an interesting av-
enue of research that makes contact with complex sys-
tems appearing in real-world problems. The use of larger
timesteps for the neural network flow map than the ground
truth without sacrificing too much accuracy is important. We
can imagine an online setting where observations come at
sparsely placed time instants and are used to update the pa-
rameters of the neural network flow map. The use of sparse
observations could be dictated by necessity e.g. if it is hard

to obtain frequent measurements or efficiency e.g. the local
processing of data in field-deployed sensors can be costly.
Thus, if the trained flow map is capable of accurate estimates
using larger timesteps then its successful updated training
using only sparse observations becomes more probable.

The current approach approximates the flow map using a
feed-forward neural network. It will be interesting to com-
pare its performance with other approaches, most notably
Recurrent Neural Networks which have been used to model
time series data (see e.g. the review (Bianchi et al. 2017)).

The constructions presented in the current work depend
on a large number of details that can potentially affect their
performance. A thorough study of the relative merits of en-
forcing constraints for the different modes of learning needs
to be undertaken and will be presented in a future publica-
tion. We do believe though that the framework provides a
promising research direction at the nexus of scientific com-
puting and machine learning.

Acknowledgements
The author would like to thank Court Corley, Tobias
Hagge, Nathan Hodas, George Karniadakis, Kevin Lin, Paris
Perdikaris, Maziar Raissi, Alexandre Tartakovsky, Ramakr-
ishna Tipireddy, Xiu Yang and Enoch Yeung for helpful
discussions and comments. The work presented here was
partially supported by the PNNL-funded “Deep Learning
for Scientific Discovery Agile Investment” and the DOE-
ASCR-funded ”Collaboratory on Mathematics and Physics-
Informed Learning Machines for Multiscale and Multi-
physics Problems (PhILMs)”. Pacific Northwest National
Laboratory is operated by Battelle Memorial Institute for
DOE under Contract DE-AC05-76RL01830.

References
Baker, N.; Alexander, F.; Bremer, T.; Hagberg, A.;
Kevrekidis, Y.; Najm, H.; Parashar, M.; Patra, A.; Sethian,
J.; Wild, S.; and Willcox, K. 2019. Workshop report on
basic research needs for scientific machine learning: Core
technologies for artificial intelligence.
Barenblatt, G. I. 2003. Scaling. Cambridge University Press.
Berry, T.; Giannakis, D.; and Harlim, J. 2015. Nonpara-
metric forecasting of low-dimensional dynamical systems.
Phys. Rev. E 91:032915.
Bianchi, F. M.; Maiorino, E.; Kampffmeyer, M. C.; Rizzi,
A.; and Jenssen, R. 2017. An overview and comparative
analysis of recurrent neural networks for short term load
forecasting. arXiv preprint arXiv:1705.04378.
Chen, R. T. Q.; Rubanova, Y.; Bettencourt, J.; and Duve-
naud, D. 2018. Neural ordinary differential equations. arXiv
preprint arXiv:1806.07366v3.
Chorin, A. J., and Stinis, P. 2006. Problem reduction, renor-
malization and memory. Communications in Applied Math-
ematics and Computational Science 1:1–27.
Felsberger, L., and Koutsourelakis, P. 2018. Physics-
constrained, data-driven discovery of coarse-grained dy-
namics. arXiv preprint arXiv:1802.03824v1.

Goldenfeld, N. 1992. Lectures on Phase Transitions and the
Renormalization Group. Perseus Books.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. Advances in neural in-
formation processing systems 2672–2680.
Han, J.; Jentzen, A.; and E, W. 2018. Solving high-
dimensional partial differential equations using deep learn-
ing. Proceedings of the National Academy of Sciences
115(34):8505–8510.
Harlim, J.; Jiang, S. W.; Liang, S.; and Yang, H. 2019. Ma-
chine learning for prediction with missing dynamics. arXiv
preprint arXiv:1910.05861.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.
Ma, H.; Leng, S.; Aihara, K.; Lin, W.; and Chen, L. 2018.
Randomly distributed embedding making short-term high-
dimensional data predictable. Proceedings of the National
Academy of Sciences 115(43):E9994–E10002.
Ma, C.; Wang, J.; and E, W. 2018. Model reduction with
memory and the machine learning of dynamical systems.
arXiv preprint arXiv:1808.04258v1.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature 518(7540):529–533.
Pfau, D., and Vinyals, O. 2016. Connecting generative ad-
versarial networks and actor-critic methods. arXiv preprint
arXiv:1610.01945.
Raissi, M.; Perdikaris, P.; and Karniadakis, G. 2018. Nu-
merical Gaussian processes for time-dependent and non-
linear partial differential equations. SIAM J. Sci. Comput.
40:A172–A198.
Sirignano, J., and Spiliopoulos, K. 2018. DGM: A deep
learning algorithm for solving partial differential equations.
Journal of Computational Physics 375:1339 – 1364.
Stinis, P.; Hagge, T.; Tartakovsky, A. M.; and Young, E.
2019. Enforcing constraints for interpolation and extrapo-
lation in generative adversarial networks. Journal of Com-
putational Physics 397.
Stinis, P. 2019. Enforcing constraints for time series predic-
tion in supervised, unsupervised and reinforcement learning.
arXiv preprint arXiv:1905.07501.
Sutton, R. S.; McAllester, D.; Singh, S.; and Mansour, Y.
1999. Policy gradient methods for reinforcement learning
with function approximation. In Proceedings of the 12th
International Conference on Neural Information Processing
Systems, NIPS’99, 1057–1063. Cambridge, MA, USA: MIT
Press.
Wan, Z.; Vlachas, P.; Koumoutsakos, P.; and Sapsis, T. 2018.
Data-assisted reduced-order modeling of extreme events in
complex dynamical systems. PLoS ONE 13:e0197704.

