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Abstract

Scientific computing is increasingly incorporating the advance-
ments in machine learning to allow for data-driven physics-
informed modeling approaches. However, re-targeting existing
scientific computing workloads to machine learning frame-
works is both costly and limiting, as scientific simulations tend
to use the full feature set of a general purpose programming
language. In this manuscript we develop an infrastructure
for incorporating deep learning into existing scientific com-
puting code through Differentiable Programming (∂P ). We
describe a ∂P system that is able to take gradients of full Julia
programs, making Automatic Differentiation a first class lan-
guage feature and compatibility with deep learning pervasive.
Our system utilizes the one-language nature of Julia pack-
age development to augment the existing package ecosystem
with deep learning, supporting almost all language constructs
(control flow, recursion, mutation, etc.) while generating high-
performance code without requiring any user intervention or
refactoring to stage computations. We showcase several ex-
amples of physics-informed learning which directly utilizes
this extension to existing simulation code: neural surrogate
models, machine learning on simulated quantum hardware,
and data-driven stochastic dynamical model discovery with
neural stochastic differential equations.

Introduction
A casual practitioner might think that scientific comput-
ing and machine learning are different scientific disciplines.
Modern machine learning has made its mark through break-
throughs in neural networks. Their applicability towards solv-
ing a large class of difficult problems in computer science has
led to the design of new hardware and software to process ex-
treme amounts of labelled training data, while simultaneously
deploying trained models in devices. Scientific computing,
in contrast, a discipline that is perhaps as old as computing
itself, tends to use a broader set of modelling techniques aris-
ing out of the underlying physical phenomena. Compared to
the typical machine learning researcher, many computational
scientists works with smaller volumes of data but with more
computational complexity and range. However, recent results
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like Physics-Informed Neural Networks (PINNs) suggest that
data-efficient machine learning for scientific applications can
be found at the intersection of the methods (Raissi, Perdikaris,
and Karniadakis 2019). While a major advance, this tech-
nique requires re-implementing partial differential equation
simulation techniques, such as Runge-Kutta methods, in the
context of machine learning frameworks like TensorFlow.
Likewise, it would be impractical to require every scientific
simulation suite to re-target their extensive stiff differential
equation solver and numerical linear algebra stacks to spe-
cific machine learning libraries for specific tasks. In order
to truly scale physics-informed learning to big science ap-
plications, we see a need for efficiently incorporating neural
networks into existing scientific simulation suites.

Differentiable Programming (∂P ) has the potential to be
the lingua franca that can further unite the worlds of sci-
entific computing and machine learning. Here we present
a ∂P system which allows for embedding deep neural net-
works into arbitrary existing scientific simulations, enabling
these packages to automatically build surrogates for ML-
acceleration and learn missing functions from data. Previous
work has shown that differentiable programming systems
in domain specific languages for image processing can al-
low for machine learning integration into the domain appli-
cations in a programmer-friendly manner (Li et al. 2018;
Li 2019). Supporting multiple languages within a single ∂P
system causes an explosion in complexity, vastly increasing
the developer effort required, which excludes languages in
which packages are developed in alternative languages like
Cython or Rcpp. For this reason we extend the full Julia
programming language (Bezanson et al. 2017) with differen-
tiable programming capabilities in a way that allows existing
package to incorporate deep learning. By choosing the Julia
language, we arrive at an abundance of pure-Julia packages
for both machine learning and scientific computing with both
speed and automatic compatibility, allowing us to test our
ideas on fairly large real-world applications.

Our system can be directly used on existing Julia pack-
ages, handling user-defined types, general control flow con-
structs, and plentiful scalar operations through source-to-
source mixed-mode automatic differentiation, composing the
reverse-mode capabilities of Zygote.jl and Tracker.jl with



ForwardDiff.jl for the "best of both worlds" approach. In this
paper we briefly describe how we achieve our goals for a
∂P system and showcase its ability to solve problems which
mix machine learning and pre-existing scientific simulation
packages.

A simple sin example: Differentiate Programs not
Formulas
We start out with a very simple example to differentiate sin(x)
written as a program through its Taylor series:

sinx = x− x3

3!
+
x5

5!
− . . . .

Note that the number of terms will not be fixed, but will
depend on x through a numerical convergence criterion.

To run, install Julia v1.1 or higher, and install the Zygote.jl
and ForwardDiff.jl packages with:
using Pkg
Pkg.add("Zygote")
Pkg.add("ForwardDiff")
using Zygote, ForwardDiff

function s(x)
t = 0.0
sign = -1.0
for i in 1:19

if isodd(i)
newterm = x^i/factorial(i)
abs(newterm)<1e-8 && return t
sign = -sign
t += sign * newterm

end
end
return t

end

While the Taylor series for sine could have been written
more compactly in Julia, for purposes of illustrating more
complex programs, we purposefully used a loop, a condi-
tional, and function calls to isodd and factorial, which
are native Julia implementations. AD just works, and that is
the powerful part of the Julia approach. Let’s compute the
gradient at x = 1.0 and check whether it matches cos(1.0):
julia> ForwardDiff.derivative(s, 1.0)
0.540302303791887

julia> Zygote.gradient(s, 1.0)
(0.5403023037918872,)

julia> cos(1.0)
0.5403023058681398

Implementation
Recent progress in tooling for automatic differentiation (AD)
has been driven primarily by the machine learning commu-
nity. Many state of the art reverse-mode AD tools such as
Tracker.jl (Innes et al. 2018; Gandhi et al. 2019), PyTorch (Py-
Torch Team 2018), JAX (Johnson et al. 2018), and Tensor-
Flow (Abadi et al. 2016) (in the recent Eager version) employ

tracing methods to extract simplified program representations
that are more easily amenable to AD transforms. These traces
evaluate derivatives only at specific points in the program
space. Unfortunately, this generally unrolls control flow (i.e.
building a tape that requires O(n) memory instead of keep-
ing the loop construct intact) and requires compilation and
optimization for every new input.

This choice has been driven largely by the fact that, as
the JAX authors put it, “ML workloads often consist of
large, accelerable, pure-and-statically-composed (PSC) oper-
ations” (Johnson et al. 2018). Indeed, for many ML models
the per-executed-operation overhead (in both time and mem-
ory) incurred by tracing-based AD systems is immaterial,
because these execution time and memory requirements of
the operations dwarf any AD overhead.

However, this assumption does not hold for many scientific
inverse problems, or even the cutting edge of ML research.
Instead, these problems require a ∂P system capable of:

1. Low overhead, independent of the size of the executed
operation

2. Efficient support for control flow

3. Complete, efficient support for user defined data types

4. Customizability

5. Composability with existing code unaware of ∂P

6. Dynamism.

Particularly, scientific programs tend to have adaptive al-
gorithms, whose control flow depends on error estimates
and thus the current state of the simulation, numerous scalar
operations, define large nonlinear models using every term
individually or implementing specialized numerical linear
algebra routines, and pervasive use of user-defined data struc-
tures to describe model components, which require efficient
memory handling (stack-allocation) in order for the problem
to be computationally feasible.

To take these kinds of problems, Zygote does not utilize
the standard methodology and instead generates a derivative
function directly from the original source which is able to
handle all input values. This is called a source-to-source trans-
formation, a methodology with a long history (Baydin et al.
2018) going back at least to the ADIFOR source-to-source
AD program for FORTRAN 77 (Bischof et al. 1996). Using
this source-to-source formulation, Zygote can then be com-
pile, heavily optimize, and re-use a single gradient definition
for all input values. Significantly, this transformation keeps
control flow in tact: not unrolling loops to allow for all pos-
sible branches in a memory-efficient form. However, where
prior source-to-source AD work has often focused on static
languages, Zygote expands upon this idea by supporting a
full high level language, dynamic, Julia, in a way that al-
lows for its existing scientific and machine learning package
ecosystem to benefit from this tool.

Generality, Flexibility, and Composability
One of the primary design decisions of a ∂P system is how
these capabilities should be exposed to the user. One con-
venient way to do so is using a differential operator J that



function J(f . g)(x)
a, da = J(f)(x)
b, db = J(g)(a)
b, z -> da(db(z))

end

Figure 1: The differential operator J is able to implement the
chain rule through a local, syntactic recursive transformation.

julia> f(x) = x^2 + 3x + 1
julia> gradient(f, 1/3)
(3.6666666666666665,)

julia> using Measurements;
julia> gradient(f, 1/3 +- 0.01)
(3.6666666666666665 +- 0.02,)

Figure 2: With two minimal definitions, Zygote is able to obtain
derivatives of any function that only requires those definitions,
even through custom data types (such as Measurement) and
many layers of abstraction.

operates on first class functions and once again returns a
first class function (by returning a function we automatically
obtain higher order derivatives, through repeated application
of J ). There are several valid choices for this differential
operator, but a convenient choice is

J (f) := x→ (f(x), Jf (x)z),

i.e. J (f)(x) returns the value of f at x, as well as a func-
tion which evaluates the jacobian-vector product between
Jf (x) and some vector of sensitivities z. From this primitive
we can define the gradient of a scalar function g : Rn → R
which is written as:

∇g(x) := [J (g)(x)]2 (1)

([]2 selects the second value of the tuple, 1 = ∂z/∂z is the
initial sensitivity).

This choice of differential operator is convenient for sev-
eral reasons: (1) The computation of the forward pass often
computes values that can be re-used for the computation of
the backwards pass. By combining the two operations, it is
easy to re-use this work. (2) It can be used to recursively
implement the chain rule (see figure 1).

This second property also suggests the implementation
strategy: hard code the operation of J on a set of primi-
tive f ’s and let the AD system generate the rest by repeated
application of the chain rule transform. This same general
approach has been implemented in many systems (Pearl-
mutter and Siskind 2008; Wang et al. 2018) and a detailed
description of how to perform this on Julia’s SSA form IR is
available in earlier work (Innes 2018).

However, to achieve our extensibility and composability
goals, we implement a slight twist on this scheme. We define

a fully user extensible function ∂ that provides a default
fallback as follows

∂(f)(args...) = J (f)(args...),

where the implementation that is generated automatically
by J recurses to ∂ rather than J and can thus easily be
intercepted using Julia’s standard multiple dispatch system
at any level of the stack. For example, we might make the
following definitions:

∂(f)(:: typeof(+))(a :: IntOrFloat,b :: IntOrFloat) =

a+ b, z → (z, z)

∂(f)(:: typeof(∗))(a :: IntOrFloat,b :: IntOrFloat) =

a ∗ b, z → (z ∗ b, a ∗ z)

i.e. declaring how to compute the partial derivative of +
and ∗ for two integer or float-valued numbers, but simultane-
ously leaving unconstrained the same for other functions or
other types of values (which will thus fall back to applying
the AD transform). With these two definitions, any program
that is ultimately just a composition of ‘+‘, and ‘*‘ operations
of real numbers will work. We show a simple example in
figure 2. Here, we used the user-defined Measurement type
from the Measurements.jl package (Giordano 2016). We did
not have to define how to differentiate the ∧ function or how
to differentiate + and ∗ on a Measurement, nor did the Mea-
surements.jl package have to be aware of the AD system in
order to be differentiated. Thus standard user definitions of
types are compatible with the differentiation system. This
extra, user-extensible layer of indirection has a number of
important consequences:

• The AD system does not depend on, nor require any
knowledge of primitives on new types. By default we
provide implementations of the differentiable operator for
many common scalar mathematical and linear algebra op-
erations, written with a scalar LLVM backend and BLAS-
like linear algebra operations. This means that even when
Julia builds an array type to target TPUs (Fischer and Saba
2018), its XLA IR primitives are able to be used and differ-
entiated without fundamental modifications to our system.

• Custom gradients become trivial. Since all operations
indirect through ∂, there is no difference between user-
defined custom gradients and those provided by the sys-
tem. They are written using the same mechanism, are co-
optimized by the compiler and can be finely targeted using
Julia’s multiple dispatch mechanism.

Since Julia solves the two language problem, its Base, stan-
dard library, and package ecosystem are almost entirely pure
Julia. Thus, since our ∂P system does not require primitives
to handle new types, this means that almost all functions
and types defined throughout the language are automatically
supported by Zygote, and users can easily accelerate specific
functions as they deem necessary.



Figure 3: Using a neural network surrogate to solve in-
verse problems

∂P in Practice

Surrogates for Realtime ML-Acceleration of
Inverse Problems

Model-based reinforcement learning has advantages over
model-agnostic methods, given that an effective agent must
approximate the dynamics of its environment (Atkeson and
Santamaria 1997). However, model-based approaches have
been hindered by the inability to incorporate realistic en-
vironmental models into deep learning models. Previous
work has had success re-implementing physics engines us-
ing machine learning frameworks (Degrave et al. 2019;
de Avila Belbute-Peres et al. 2018), but this effort has a
large engineering cost, has limitations compared to existing
engines, and has limited applicability to other domains such
as biology or meteorology. For example, one notable example
has shown that solving the 3-body problem can be acceler-
ated 100 million times by using a neural surrogate approach,
but required writing a simulator that was compatible with the
chosen neural network framework (Breen et al. 2019).

Zygote can be used for control problems, incorporating the
model into backpropagation with one call to gradient. We
pick trebuchet dynamics as a motivating example. Instead of
aiming at a single target, we optimize a neural surrogate that
can aim it given any target. The neural net takes two inputs,
the target distance in metres and the current wind speed. The
network outputs trebuchet settings (the mass of the counter-
weight and the angle of release) that get fed into a simulator
which solves an ODE and calculates the achieved distance.
We compare to our target and backpropagate through the en-
tire chain to adjust the weights of the network. Our dataset is
a randomly chosen set of targets and wind speeds. An agent
that aims a trebuchet to a given target can thus be trained in a
few minutes on a laptop CPU, resulting in a network which
is a surrogate to the inverse problem that allows for aiming
in constant-time. Given that the forward-pass of this network
is about 100× faster than performing the full optimization
on the trebuchet system (Figure 3), this surrogate technique
gives the ability to decouple real-time model-based control
from the simulation cost through a pre-trained neural net-
work surrogate to the inverse. We present the code for this
and other common reinforcement learning examples such as
the cartpole and inverted pendulum (Innes, Joy, and Karmali
2019).

Quantum Machine Learning
On the one hand, a promising potential application and
research direction for Noisy Intermediate-Scale Quantum
(NISQ) technology (Preskill 2018) is variational quantum
circuits (Benedetti, Lloyd, and Sack 2019), where a quantum
circuit is parameterized by classical parameters in quantum
gates, which may have less requirements on the hardware.
Here, in many cases, the classical parameters are optimized
with classical gradient-based algorithms. On the other hand,
designing quantum circuits is hard, however, it is poten-
tially an interesting direction to explore using gradient-based
method to search circuit architecture for certain task with AD
support.

One such state of the art simulator is the Yao.jl (zhe Luo et
al. 2019) quantum simulator project. Yao.jl is implemented
in Julia and thus composable with our AD technology. There
are a number of interesting applications of this combination
(Mitarai et al. 2018).

A subtle application is to perform traditional AD of the
quantum simulator itself. As a simple example of this capa-
bility, we consider a Variational Quantum Eigensolver (VQE)
(Kandala et al. 2017). A variational quantum eigensolver is
used to compute the eigenvalue of some matrix H (gener-
ally the Hamiltonian of some quantum system for which the
eigenvalue problem is hard to solve classically, but that is eas-
ily encoded into quantum hardware). This is done by using
a variational quantum circuit Φ(θ) to prepare some quan-
tum state |Ψ〉 = Φ(θ)|0〉, measuring the expectation value
〈Ψ|H|Ψ0〉 and then using a classical optimizer to adjust θ to
minimize the measured value. In our example, we will use a 4-
site toy Hamiltonian corresponding to an anti-ferromagnetic
Heisenberg chain:

H =
1

4

∑
〈i,j〉

σx
i σ

x
j + σy

i σ
y
j + σz

i σ
z
j


We use a standard differentiable variational quantum cir-

cuit composed of layers (2 in our example) of (parameterized)
rotations and CNOT entanglers with randomly initialized ro-
tation angles. Figure 4 shows the result of the minimization
process as performed using gradients provided by Zygote.

Data-Driven Stochastic Dynamical Model
Discovery with Neural Stochastic Differential
Equations
Neural latent differential equations (Chen et al. 2018;
Álvarez, Luengo, and Lawrence 2009; Hu et al. 2013;
Rackauckas et al. 2019) incorporate a neural network into
the ODE derivative function. Recent results have shown that
many deep learning architectures can be compacted and gen-
eralized through neural ODE descriptions (Chen et al. 2018;
He et al. 2016; Dupont, Doucet, and Whye Teh 2019; Grath-
wohl et al. 2018). Latent differential equations have also seen
use in time series extrapolation (Gao et al. 2008) and model
reduction (Ugalde et al. 2013; Hartman and Mestha 2017;
Bar-Sinai et al. 2018; Ordaz-Hernandez, Fischer, and Bennis
2008).



Figure 4: Optimization progress over steps of the
classical optimizer to ground state.

Here we demonstrate automatic construction of Langevin
equations from data using neural stochastic differential equa-
tions (SDE). Typically, Langevin equation models can be
written in the form:

dXt = f(Xt)dt+ g(Xt)dWt,

where f : Rn → Rn and g : Rn×m → Rn with Wt as the
m-dimensional Wiener process.

To automatically learn such a physical model, we can
replace the drift function f and the diffusion function g
with neural networks and train these against time series
data by repeatedly solving the differential equation 10
times and using the average gradient of the cost function
against the parameters of the neural network. Our simulator
utilizes a high strong order adaptive integration provided
by DifferentialEquations.jl (Rackauckas and Nie 2017a;
2017b). Figure 5 depicts a two-dimensional neural SDE
trained using the l2 normed distance between the solution
and the data points. Included is a forecast of the neural SDE
solution beyond the data to a final time of 1.2, showcasing a
potential use case for timeseries extrapolation from a learned
dynamical model.

The analytical formula for the adjoint of the strong solution
of a SDE is difficult to efficiently calculate due to the lack of
classical differentiability of the solution. However, Zygote
still manages to calculate a useful derivative for optimiza-
tion with respect to single solutions by treating the Brownian
process as fixed and applying forward-mode automatic differ-
entiation, showcasing Zygote’s ability to efficiently optimize
its AD through mixed-mode approaches (Rackauckas et al.
2018). Common numerical techniques require computing
the gradient with respect to a difference over thousands of
trajectories to receive an average cost, while our numerical
experiments suggest that it is sufficient with Zygote to per-
form gradient decent on a neural SDE using only single or
a few trajectories, reducing the overall computational cost
by this thousands. This methodological advance combined
with GPU-accelerated high order adaptive SDE integrators
in DifferentialEquations.jl makes a whole new field of study
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Figure 5: Neural SDE Training. For the SDE solution X(t),
the blue line shows X1(t) while the orange line shows X2(t).
The green points shows the fitting data for X1 while the
purple points show the fitting data for X2. The ribbons show
the 95 percentile bounds of the stochastic solutions.

computationally accessible.

Example Code A more extensive code listing for
these examples is available at the following URL:
https://github.com/MikeInnes/zygote-paper.
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