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Abstract. Optimization of two-dimensional convolution by means of 16-bit 

SIMD technologies (ARM-NEON) is considered. It is shown that utilizing 16-

bit SIMD NEON and built-in assembler one can achieve a significant increase 

in performance compared to the similar functions of OpenCV, ACL, and ARM 

Compute library. Throughout the research, ltercoefficients were quantized to 

match the 8-bit range. 
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1 Introduction 

The process of automatic program code vectorization is based on the SIMD instruc-

tions of CPU. It is utilized in modern compilers, e.g. GCC and Clang/LLVM. One can 

achieve automatic optimization/vectorization compiling the program with -O3 (or 

“aggressive” -O4/-Ofast) flag (actually, flag may differ depending on the platform 

and compiler). But as was shown in [1], we often need higher performance for digital 

image (DI) processing than we achieve automatically. Moreover, DI problems are of 

great importance due to the wide variety of applications in video-stream processing 

(stabilization, filtration, noise correction, etc.) and creating different effects for a sin-

gle image. Processing DI, one should always take into account the following features: 

1) computational complexity of the method chosen; 

2) whether the method is optimized; 

3) hardware resources of the target architecture. 

     One of the possible ways of computational complexity decrease is to develop a 

new particular method for a particular task, e.g. as in [2]. 

One can emphasize resource-demanding (but significant) operations of DI pro-

cessing: convolution, scaling (mostly achieved through convolution), and analysis (of 

color, brightness, contrast, etc.). Convolution operation (CO) (1) is the simplest but 

valuable and resource-demanding operation: 
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where , , ( ) 1i a W r a     , , , ( ) 1j a H c a       are indexing pixels of the 

destination image p ; W  and H  are width and height of the source P  and destina-

tion p  images (we neglect border effects in the destination at the moment),   is the 

kernel of the convolution (matrix r c ), and a , a - so-called “anchors” that define 

relative position of a filtered point within the kernel. 

Equation (1) is rather general and perfectly compatible with cv::filter2D(...) func-

tion of OpenCV library [3] and ARM Computer Library (ACL), but further we will 

give our attention to square kernels, i.e. c r , and thus from now on we presume 

kernel to be square-shaped without special mentioning. 

The good part is that every pixel of the destination, at least in principle, can be cal-

culated simultaneously - the task is parallelizable. Parallelizable problems are of such 

importance that hardware developers created a set of parallel computing platforms 

(PCP): Nvidia CUDA, ATI Stream Technology (ATI-ST), etc., all accessible through 

OpenCL API. Every PCP developer provides software toolkit to interact with the 

PCP: programming language with C-like syntax, additional modules, frameworks, etc. 

Basis for PCPs are modern GPUs that are able to perform in parallel nearly any par-

alellizable task. For example, at the moment GeForce GTX 1080 Ti is very popular 

for CNN learning and significantly accelerates the process. One should notice, shader 

blocks of GPU are similar to mobile CPUs with RISK architecture that are used in 

modern smartphones. 

In conclusion, improvement of CO performance positively affects nearly any soft-

ware on any platform due to the wide variety of tasks it is involved in: DI filtration 

(sharpening, edge detection, blurring, etc.), DI scaling, CNN learning, multimedia, 

etc. It is worth noting, that CO (1) is the basis for convolutional neural networks 

(CNN) functioning. Therefore, accelerating CO we achieve higher CNN performance 

and decrease its learning time. Moreover, in some sense CO and similar tasks have 

shaped modern approaches to GPU architecture, that emphasizes their importance.  

In current contribution we propose a new method of CO optimization that utilizes 

SIMD. Since SIMD can be applied to integer-valued kernels only, we will demon-

strate a reduction method for real-valued kernels that allows this technique to be im-

plied. Besides, we provide experimental comparison of a human-made code based on 

this approach with another recognized solutions (OpenCV library, AMD ACL, and 

ARM Compute library). The rest of the paper is organized as follows. First, we con-

sider SIMD pros and cons and in subsection II-B we introduce the reduction method 

itself. 

2 A brief overview of modern software optimization 

We will perform the overview in a “bottom to top” style - we consider hardware first, 

then software, and then algorithmic methods of performance enhancement. 

2.1 Acceleration by means of hardware 

Well chosen hardware architecture may significantly enhance software product per-

formance. A general perspective on possible options is given by the Flynn’s taxono-



 

 

my [4] and the first question to answer is whether the task (e.g. CO) allows parallel-

ization of data flow or instructions flow. Today SIMD principles are implemented in 

both RISC (e.g. Cortex-A8-23 and Cortex-A53-72 ARM CPUs) [5] and CISC (e.g. 

Intel x86 series) CPUs. One can access this feature with specific extensions of assem-

bly language - NEON for RISC architecture, while CISC architecture implies SSEn
 

and 
1/2AVX  usage. In contrast, MIMD principles are not implemented in modern 

CPUs, but partially supported by GPUs. 

Modern GPUs provide parallel computing features by means of shader blocks-CPU 

(SCPU), based on RISC architecture, that are used in parallel. Principles of MIMD 

are achieved by SIMD/MIMD-like instructions for SCPU --- vector instructions for 

numerous 128/256/...-bit registers (there are 32 or more registers, that is above the 

number that modern CPUs have). The bad part is you cannot access SIMD/MIMD 

instructions directly only a small number of intrinsics and pre-implemented opera-

tions are accessible: bit shifts, binary logic, etc. Most cases programmers use specific 

frameworks to access mentioned features, e.g. CUDA and OpenCl for GPU, or 

OpenCl for CPU/DSP/FPGU. Prevalence of mentioned frameworks led to most GPU 

manufacturers get certified by AMD/ATI (compatibility with OpenCl) or Intel/NVidia 

(compatibility with CUDA). 

Except using GPU, one can employ co-processor units, e.g. Digital Signal Proces-

sor (DSP). For example, Qualcom has developed DSP-Hexagon for embedding into 

Snapdragon-625/635/835/825 CPUs. This DSP provides very long instruction word 

(VLIW), which means multithreading at the assembler level - during one interruption 

3 assembly instructions with different inputs are processed. Compared to simple 

SIMD (NEON32 or NEON64) its performance is 4 times higher. Algorithms, opti-

mized for DSP, reduce CPU load up to ∼ 75% and improve audio/video encod-

ing/decoding performance up to ∼ 18 times [6], [7]. 

 

2.2 Optimization by means of software 

Software we use to produce binary code (e.g. compiler itself, additional libraries, 

frameworks) highly influences program performance by employing different optimi-

zations and hardware platform capabilities. In scope of current article we are mostly 

concerned with their ability to perform vectorization without significant loss in preci-

sion. Let's consider three well-known compilers: GNU Compiler Collection 

(GCC/G++) [8], Clang [9], and nvcc (compiles cu-files for CUDA). 

Probably, the most popular nowadays is GCC developed and supported by FSF 

community. Actually, GCC, first developed by Richard Stallman, is a whole collec-

tion of compilers suitable for different programming languages and architectures. Its 

main competitor is the ``rising star'' of compilers - Clang. For example, Apple already 

uses it as the basic compiler for its products. Clang itself is a frontend for different 

programming languages, e.g. C, C++, Objective-C, Objective-C++, and OpenCL. The 

actual generation of binary code and vectorization is performed by the LLVM frame-

work. Both Gcc and Clang are performance-oriented, but still they fail compared to 

human-made assembly code (see comparison [1] Clang ndk-r14b vs Inline Assembly 

on Android 5.5.1 (x64) phone with CPU-MT6752). 



 

 

The last compiler we want to mention is nvcc. It utilizes CUDA and thus allows 

significant improvement of performance on platforms with NVidia GPU. But as we 

can see, mentioned compilers and technologies introduce large heterogeneity to the 

field of program optimization. In a responce OpenCl standard was developed (The 

Khronos Group Inc.) that is supported by all mentioned hardware developers and 

provides access to parallel computations on GPU/DSP/CPU. 

Except all the advantages of PCPs, they have a drawback - big overhead on trans-

ferring data. To avoid the problem, programmers organize data into pools 100 ∼ 200, 

that allows to achieve 20-fold increase in performance compared to CPU. But using 

big pools is not always the solution - while CNN learning perfectly fits in this model, 

processing stream from video-camera does not at all. 

Except for good choice of compiler, one can achieve performance enhancement us-

ing optimized binary code of frequently used functions like CO, scaling, etc. supplied 

by different libraries. Many of them contain SIMD-optimized code for armeaby-v7a 

and arm64-v8a. Besides, a collection of libraries can be combined into a single 

framework in such a way, that advantages of one library compensate drawbacks of the 

others. OpenCV and ACL [10], [11] are good examples of libraries comprising a wide 

variety of algorithms, including DI processing, DI analysis, and even module for 

CNN learning, that are optimized for different CPU architectures and their SIMD: 

1/2AVX , 
4.4SSE , 

x32/x64ARM NEON . OpenCV is well-known and of a high quality, 

but ACL has better extensibility due to modular architecture and seems to perform 

better on CO-like tasks (e.g. it is up to ×14 times faster compared to OpenCV on CO 

for CNN in one thread [10], [11]). Thus, further we will use both of them as a refer-

ence for comparison. 

At the moment SIMD optimization has spread over the wide range of programming 

products, both proprietary and open-source. For example, kernel of Windows 10 uses 

1/2AVX to achieve better performance (obviously, this influences the whole system), 

while Oracle Java VM utilizes 
1/2AVX /3DNow and thus any Java application runs 

faster. Game engines of id Tech 2-4 (e.g. the one used in Quake III Arena) are good 

example of open-source projects with SIMD optimization. But, using SIMD, they all 

face the issue of translating floating-point code to fixed-point with acceptable loss in 

precision. This can be quite complicated, thus SIMD optimizations used in proprietary 

software are mostly non disclosable. 

One more technique to mention is so-called loop unrolling and tiling [12], [13], 

[14], [15] that allows avoidance of redundant comparison operations (e.g. <,>) in cost 

of slightly enlargening the code. It is mostly performed by means of compiler or by 

introducing appropriate assembly inline-code into the application. Some libraries like 

ACL may take advantage of high-level programming language features (e.g. tem-

plates in C++) to perform loop unrolling. A simplified ACL-style code is provided in 

listing to demonstrate example implementation (see Помилка! Джерело посилан-

ня не знайдено.). 



 

 

 

Fig. 1. Loop unrolling with C++ templates. 

Passing appropriate parameters to do_unroll<...>::run(...) from (see Fig. 1), one may 

call function f(...) baseStep×unrollDelta+restSteps times avoiding unrollDelta−1 

counter comparisons and decrementations. Achieved performance improvement is 

discussed in more details in [15]. 

 

 

Fig. 2. CO optimization with SIMD NEON32 

2.3 Optimization by means of special algorithms 

Instead of rather general consideration as we did previously, let us focus on CO. The 

main obstruction for SIMD optimization is translating floating point CO to fixed-

point with acceptable loss of precision. First of all, SIMD operations are performed on 

integers only. 

Thus we should represent elements of kernel   from (1) in a suitable form: 

  , , ,, ,i j i j i j        (2) 

where    is a coefficient for normalization. Now we can perform the most resource-

demanding part (additions and multiplications) in a SIMD-style and afterwards nor-

malize the result. 



 

 

Any kernel can be represented in form (2), but the more precise result we want the 

more digits should ,i j  have. At this point we meet limitations of platform on which 

we intend to run the program. Thus, we should set some constraints on   to avoid 

overflow when doing CO. 

Suppose, every pixel in original image is represented as byte and thus possesses 8-

bit values 0, ,255 . The same range is possessed by kernel elements ,i j . Intermedi-

ate results are stored as 16-bit signed or unsigned values. To warranty that no over-

flow occurs, we should make sure that it does not occur on any step of the algorithm. 

If kernel has positive elements only, condition we need looks as follows 
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Substantially, this means that even the largest possible inputs from image do not lead 

to overflow. 

If kernel contains negative elements, condition should be much more complicated 

and depends on the order of additions when doing CO. Instead, we will use much 

stronger but easier to check condition 

 8 16 1

,

0 0

(2 1) | | 2 1,
r r

i j

i j

 

 

      (4) 

that is independent on the operations order. This condition can be slightly relaxed - 

we can use it for positive and negative entries of the kernel   separately. And last 

thing to mention: one can easily obtain similar results for signed/unsigned 32-bit in-

termediate values by substituting 16 → 32 in (3) and (4). 

What we propose is selecting for given   the biggest  possible, such that  still 

satisfies (3) or (4) (which one depends on whether kernel is purely positive or not). Of 

coarse, we should be concerned, whether there exist any useful kernels that can be 

reduced to a suitable form. And it seems there are plenty of them. 

In conclusion, modern hardware provides mechanisms for vectorization, i.e. SIMD 

technologies, that can be used by programmers to enhance performance of the appli-

cation. Most cases this technology is utilized by compiler to generate binary code 

without participation of programmer. Suitable choose of library may be handy as well 

- many libraries contain SIMD-optimized code. But in some cases human intervention 

is needed to get the most optimal result. Developing assembly code, one should repre-

sent the function in suitable for SIMD optimization form. It is not always possible and 

often restrictions (3,4) should be satisfied. In the next section we will provide new 

method of CO optimization and then compare it with existing results, e.g. OpenCV 

and ARM CL. 

 



 

 

 

Fig. 3. Normalization procedure with SIMD NEON32 

3 Optimization of Convolution Operation by means of SIMD 

In current contribution we propose a new method of Convolution Operation (CO) 

optimization based on SIMD technique. We presume target kernel to satisfy condition 

(3). In this section we will provide all necessary considerations and assembly code 

that illustrates proposed approach. Next section will be devoted to experimental com-

parison of this method's performance to known CO implementations (OpenCV and 

ARM CL). 

Regarding condition (4), provided code should be just slightly modified. We will 

avoid redundant listings and provide code considering only condition (3), while at the 

end of the section all necessary modification for condition (4) will be described. 

We start with basic implementation of CO, (see Fig. 2). It contains no specific optimi-

zations, but still is a good point to start our considerations. 

Here 
nq  are ARM-NEON registers, regarding syntax and instructions order we will 

strictly follow ARM reference manuals. For the sake of simplicity we avoided nor-

malization by coefficient   in (see Fig. 2), but for completeness let us provide it as a 

separate (see Fig. 3). 

In (see Fig. 3) we suppose data for normalization to be stored in registers q12 … 

q15, while d3 contains normalization coefficient  . Presented code is in some sense 

multipurpose and may be used with different CO implementations. 

Now we switch gears to the CO optimization itself. In (see Fig. 2) we provided 

some initial version of this operation in assembly code. But it has one significant 



 

 

drawback - slow data loading. Following (see Fig. 4) avoids this problem by using 

one of the registers as buffer. It is known, that simultaneous loading of 16 bytes is 

quicker than loading them one-by-one (approximately 10 and 40 cycles respectively). 

Thus we use one register for preloading extra data and then use this data byte-by-byte 

without redundant load operations. 

 

 

Fig. 4. CO optimization with SIMD ARM-NEON 

The main feature of the presented approach (see Fig. 4) is usage of cyclic shift (i.e. 

vext.8 q0,q0,q1,\#1) that allows kernel buffering and thus we need less ''loading oper-

ations'' (for more details please see comments in (see Fig. 4). Worth noting, that pro-

vided (see Fig. 4) demands kernel containing not more than 16 elements in one row. If 

we need kernels with more than 16 elements in a row, the listing should be just slight-

ly modified. 

As we mentioned earlier, this code works for kernels satisfying condition (3). To 

make it applicable to kernels satisfying (4) we need to change all vmlal.u8/u16 opera-

tions to vmlal.s8/s16. This small but crucial changes transform (see Fig. 4) into code 

capable of working with signed integer kernels. Depending on given kernel, one can 

choose between this two options. 

In conclusion, we found a class of kernels that allow significant optimization of CO 

by means of SIMD and were able to implement appropriate code combining ap-

proaches of loop unrolling and method from [13]. Exploiting significant difference in 

time for simultaneous 16 byte loading compared to one-by-one loading, we were able 



 

 

to achieve significant speedup of CO. More detailed results and consideration of 

measurement procedure will be presented in the following section. 

 

4 Experimental setup and Results 

Ground truth. To evaluate our results certain reference is needed. As the one we chose 

functions cv::filter2d(...) from OpenCV library and NEConvolution{N}x{N}::run() 

from ACL library. The latter is well-known among AI and DIP researchers due to its 

high-quality and optimized code. 

For comparison we used latest stable tags available at the moment we started re-

search, release tags are 4.0.0 (2018-11-18 [11:08:36]) for OpenCV and v19.02 (2019-

02-28 [14:25:18]) for ACL. Compilation was performed with NDK-r18b - latest sta-

ble NDK at that moment for to achieve API capability between them. We ensured that 

libraries utilize vectorization compiling them with flags ANDROID_ABI=armeabi-

v7a with NEON ANDROID_NATIVE_API_LEVEL=22 

CPU_BASELINE/CPU_BASELINE_FINAL=NEON CPU_BASELINE_FLAGS=-

mfpu=neon -O3 -DNDEBUG. Both OpenCV and ACL were linked as static libraries. 

Devices. To make our measurements more relevant we used a set of different devices. 

This helps us to understand the influence of architecture, CPU series, and other pa-

rameters on the execution time. Following table lists devices we have used and pa-

rameters of their CPUs. 

Table 1. Devices that participated in the experiment. 

CPU Architecture Series∗ Device 

Exynos 4 armeaby-v7a Cortex-A9 x 4 Samsung GS III 

MT6752 arm64-v8a Cortex-A53 x 8 Lenovo P70A 

 

Measurement procedure. The pivoting parameter we need to measure is the execution 

time of each function. Such measurement might be tricky, since it is highly suscepti-

ble to transition processes in Android OS. To avoid this problem we used the follow-

ing procedure: each function (cv::filter2d(...), NEConvolution{N}x{N}::run(), and 

newCO(...)) was successively called 3 times (for robustness and to simulate RGB 

processing) and result was stored to array. After collecting 35 data-points we calculat-

ed median value and treated it as trice the execution time of the function under con-

sideration. 

Kernel sizes varied 2×2, 3×3, … , 15×15 for experiments with our implementation 

and cv::filter2d(...), while implementation of NEConvolution{N}x{N}::run() necessi-

tates usage of odd-sized kernels only, e.g. 3×3, 5×5, etc. Digital images (DIs) were 

generated with equal width and height, corresponding formula follows

image image kernel

125
32 1,

8

n
W H W

 
     

 
 where square brackets […] denote integer 



 

 

part of the number. Results are further presented in form of fractions cv::filter2d(...) 

execution time divided by execution time of our implementation and NEConvolu-

tion{N}x{N}::run() execution time divided by execution time of our implementation. 

Results. First we compared time consumption of the code (see Fig. 4) and reference 

function cv::filter2d(...), result is presented in figures 5a and 5b.  

 

 

Fig. 5. Performance comparison for different devices and reference functions. Color intensity 

designates relative time consumption for reference function with regard to proposed method, 

e.g. acceleration one may achieve by using presented approach instead of the reference function 

(the brighter is color - the greater is acceleration). Legends on each plot designate how to trans-

late color to acceleration; if this number is greater than 1, it is profitable to use proposed meth-

od. 

 



 

 

As coordinates we use sizes of kernel and image, while color intensity designates 

acceleration, one may achieve using proposed method instead of the reference method 

(e.g. fraction of execution times: reference function to proposed). 

Despite presented results demonstrate advantage of the proposed method, there is 

still room for improvement. It seems, compiler is unable to unroll cycles effectively 

on its own,- one may check this by compiling presented code and exploring binary 

with any suitable disassembler (e.g. IDA or objdump tool). Thus, we may achieve 

additional 30%-40% of acceleration by utilizing techniques [12-13]. 

Results for the modified code are shown in figures 5c-5f. We compared time con-

sumption of the (see Fig. 4), modified with approaches [12-13], and both reference 

functions (cv::filter2d(...) and NEConvolution{N}x{N}::run()). Besides, we varied 

image sizes up to 4500×4500 (~20 [MP]) to emulate modern cameras. 

As (fig. 5) suggests, acceleration is independent (almost) on input size, e.g. com-

plexity (big-O) of our solution and reference solutions coincide. Some small decline 

in acceleration (but it is still greater than 1) may be noted for big kernels (9×9 to 15 

×15). Regarding mean acceleration, it is estimated as approximately 1.7 times. 

It is worth noting, we did not use parallelism for acceleration. Employing OpenMp 

or implementing parallelism by any other means may improve presented results twice 

or even more. Moreover, no preprocessing, e.g. image tiling, was performed. Proba-

bly, this technique may increase performance of the approach as well [16-17]. 

5 Conclusion 

In conclusion, we propose a method of convolution operation (CO) acceleration. We 

show that many kernels utilized for practical applications can be reduced to integer 

form (table I) that allows for SIMD optimization usage. Despite SIMD itself leads to a 

significant boost of performance, we were able to push the frontiers even further by 

exploiting significant difference in time for simultaneous 16 byte loading (approxi-

mately 10 cycles) compared to their one-by-one loading (approximately 40 cycles) - 

q2 register is used as a buffer and loading operations are partially substituted with 

cyclic shift (see Fig. 4). 

To test the approach we performed comparison with cv::filter2D(...) function from 

OpenCV library and with NEConvolution{N}x{N}::run() from ACL library (fig. 5). 

Our results suggest, the current approach leads to significant speedup (mean values: 

~1.7× compared to OpenCV and ~1.5× compared to ACL). Measuring acceleration 

for different kernels and images we observed no dependence on image size, but kernel 

size may influence the result - for kernels smaller than 9×9 we were able to achieve 

×4.5 acceleration (compared to cv::filter2D(...) function from OpenCV), while for 

larger kernels presented approach allows only ×1.5 speedup. We did not use parallel-

ism in our code, thus additional ×2 or more acceleration is possible by employing 

appropriate techniques, e.g. OpenMp library.  

We expect current approach to be useful for real-time image processing and convo-

lutional neural networks training as it significantly reduces processing time. 
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