Symbolic Fault Injection

Daniel Larsson and Reiner Hahnle

Chalmers University of Technology, Department of Comp&eience and Engineering
S-412 96 Gothenburg, Sweddmeiner,danla }@chalmers.se

Abstract. Fault tolerance mechanisms are a key ingredient of depéndgstems. In particular,
software-implemented hardware fault tolerance (SIHFTQaming in popularity, because of its
cost efficiency and flexibility. Fault tolerance mechanismesoften validated using fault injection,
comprising a variety of techniques for introducing fauft®ia system. Traditional fault injection
techniques, however, lack coverage guarantees and may faitivate enough injected faults. In
this paper we present a new approach calgdbolic fault injectiowhich is targeted at validation
of SIHFT mechanisms and is based on the concept of symbaticudion of programs. It can be
seen as the extension of a formal technique for formal progrerification that makes it possible
to evaluate the consequencesbpossible faults (of a certain kind) in given memory locasiéor
all possible system inputs. This makes it possible to formaibye properties of fault tolerance
mechanisms.

1 Introduction

One of the most common and important ways to ensure the depgityl of com-
puter systems and to analyse their fault tolerance meamangfault injection This
includes a variety of techniques for deliberately intradgcfaults into a computer
system and monitoring the system’s behavior in the presefitese faults.

From a methodological point of view, fault injection is arpeximental technique
similar totesting individual runs of a system are executed with input tesa adtich
in the case of fault injection is additionally instrumenteith specific locations for
fault injection.

During the last decadimrmal methodsvere increasingly used to ensure the ab-
sence of (or to detect the presence of) permanent softwalts.f&ormal techniques
such as model checking [11], extended static checking |, deductive verifica-
tion [5] are able to find bugs or verify safety properties alustrial software. The
common advantage of these methods is that thegyargolicand work on a logic-
based representation of software properties. In conseguene single correctness
proof of a system property represents system runalf@dmissible inputs.

Formal methods are not a replacement, but a complement gEntianal soft-
ware testing, because they typically work on source or lmgtecand do not cover
faults in machine code, compilers, or runtime environmelmsorder to verify the
latter, testing is indispensable. Formal methods are atsexpensive (or unsuitable)
to cover all aspects of a system such as the user interfa¢® oFbor safety-critical
segments of source code, on the other hand, formal verditatian increasingly cost
efficient and extremely reliable alternative to testing, [24

86 Daniel Larsson, Reiner Hahnle

In the existing approaches to formal software verificatiprogram is proven to
have certain properties under the assumption that no haedaalts occur (that are
not detected and handled by the hardware or the operatitgnsyduring execution
of the program. In other words, nothing is proven about thst flerance of the
program. This is clearly a limitation of formal methods irethrea of safety-critical
systems.

The main contribution of this paper is to show that symbdaithiniques such as
formal software verification can be extended to symbolidyesis of fault injection
and to software fault tolerance mechanisms. In contrasbhventional fault injec-
tion, this establishes the possibility ppovethat a given fault tolerance mechanism
achieves the desired behaviour for all inputs alldnodeled faultsin particular, it
is possible to guarantee that all injected faults are agt@ativated. Even when a
fault tolerance mechanism fails to contain the injectedt$aand, therefore, a proof is
not possible, the verification system allows to investidglageeffects of the introduced
faults. The method presented in this paper is applicabi®tte-levefault tolerance
mechanisms, i.e., mechanisms for achieving fault tolexavithing a single node (or
in an non-distributed environment).

To the best of our knowledge, this is the first presentatioa @drmal verifica-
tion framework for software-implemented hardware fauktance (SIHFT). Related
work is discussed in Sect. 7. We call our approsygmbolic fault injectionlt is based
on symbolic executionf source code [8], a technique where program execution is
simulated using symbolic representations rather tharabealues for input data, and
the effect of program execution is expressed as logicalesgions over these sym-
bols.

The central idea is to inject symbolic faults (representirigple classes of con-
crete faults) during symbolic execution which then reflébts consequences of the
injected faults. This has been prototypically implemeraad evaluated in a tool for
formal verification of (dva) software, the KeY [1, 5] tool.

The paper is organized as follows: in the following sectianreaview SIHFT, our
main target application. We discuss our fault model in SécReaders unfamiliar
with formal verification find the necessary background intSécThe core of the
paper is Sect. 5, where we explain how symbolic fault ingecis modeled and im-
plemented in the logic of the verification system. In Sect.e6psesent a case study
showing the potential of symbolic fault injection. We closigh related work, a dis-
cussion of the achieved results and future work.

2 SIHFT

It is impossible to guarantee that a given computer systefrees of faults. Even
using the best available techniques for manufacturingvarel components, the best
available processes for the design of the hardware and fhwase, and the best
available techniques for testing a system, it may still aontlefects. Moreover, it is

Symbolic Fault Injection 87

impossible to guarantee that no transient faults occunduperation of the computer
system. Therefore, in order to construct dependable canpystems we need to
equip them with mechanisms for detecting and recovering ffaults. Faults can
be classified into hardware and software faults. An orthagolassification divides
faults into transient, intermittent, and permanent fadlighis paper the focus is on
transient hardware faultsspecifically, bit-flips in data memory locations.

Fault tolerance mechanisms can be based on hardware (fopéxaredundant
components) or on software. From a cost perspective it endfteneficial to use
software-implemented fault tolerance whenever possiideause (i) commercial,
standardized components can be used; (ii) hardware redoyndan be avoided; and
(iii) high flexibility can be obtained.

The scenario, where mechanisms for handling hardwaresfaudt implemented
in software, is called SIHFT (Software-Implemented HartwBault Tolerance) (for
example, [7]). Common SIHFT techniques include assertialgorithm-based fault
tolerance (ABFT), control-flow checking, and data duplimatnd comparison. Other
examples are checksum algorithms like CRC (Cyclic Reducyl@meck). We apply
our symbolic technique to the latter in Sect. 6 below.

Our method for formal verification in the presence of faufisrates on the source
code level of high-level programming languages and hencesisicted to software
mechanisms. The type of faults we tried to emulate so far ramsient hardware
faults, specifically, bit-flips in the data area of memoryigtis not an inherent limi-
tation: other kinds of faults could be modelled, see SectS8)FT is a natural tar-
get application for our method. The fact that hardware-annted fault detection
mechanisms rarely detect faults in the data area of the mephpiurther motivates
the choice of our fault model which is described in detaiha following section.

3 Fault Injection and Fault Model

The purpose of using fault injection is to provoke the ocence of errors in a system
in order to validate the system’s dependability. Errorsuod¢oo infrequently during
normal operation of a computer system to be able to perfooh awalidation within
reasonable time.

Existing fault injection approaches can be classified irsmtvare-implemented
and software-implemented fault injection (SWIFI). Exaegpbf the first are tech-
niques, where integrated circuits are exposed to heavyadiation [16] or electro-
magnetic interference [15], and the injection of faultsdily on the pins of an inte-
grated circuit [3]. Software-implemented fault injectican be further classified into
prototype-based [9] and simulation-based [14] fault iiggt In the first case the ac-
tual computer system to be validated (or a prototype thgisatinning while faults
are introduced into the system through software. In thermcase a simulation of
the system is used when the faults are introduced.

88 Daniel Larsson, Reiner Hahnle

A fault injection approach is based onfault modelwhich specifies the exact
kind of faults to be injected or emulated. In many fault itijee approaches/tools
only single bit-flips are used since they are considered teffigient in revealing
dependability weaknesses.

The next question to considerwhereandwhenthe faults are to be injected. For
the purpose of evaluating the relative effectiveness df talerance mechanisms on
different levels (hardware level, operating system legalj application level), it is
useful to be able to inject faults, with high precision, irsiic parts of the hardware.
For example, faults might be injected into the MMU (Memory Mdgement Unit)
to evaluate a system’s robustness against this kind ofstalhen one is mainly in-
terested in evaluating the mechanisms on the applicatie, l# is often sufficient
to inject faults in memory. It is also useful to be able to cohtvhen faults are in-
jected, i.e., how the faults ateggered Fault injections can be related to a certain
instruction being executed or a memory location being maatpd, or a fault can be
injected after a specified time.

The major weakness of conventional fault injection techegjis their lack of
coverage. For example, to evaluate the effect of a fault iivangmemory location,
typically one bit or a few bits are flipped. But there is no gudee that these partic-
ular faults will actually exhibit any defects present in faalt handling hardware or
software. In other words, using fault injection nothingprevedabout the fault toler-
ance property of a system. Similar to ordinary testing,tfangection can only show
the presence of defects, not their absence.

Conventional fault injection techniques also suffer fraitmes problems. Hardware-
implemented techniques require special hardware whicargsdifficult—sometimes
even impossible—to design for modern processors [9]. Tted®miques are also not
easily ported to other platforms or expanded to new clask&silts. In the case of
techniques using heavy-ion radiation or electromagnetarference it is difficult to
exactly trigger the time and location of a fault injectio3]10One source of problems
with existing SWIFI tools is the target system monitoring detecting the activation
of faults and for investigating the exact effects of thetf®{®]. Software solutions for
monitoring have an undesired impact on the target systeravimh Moreover, the
analysis of the huge amounts of monitor data is both diffiand time-consuming.
Another problem with existing SWIFI techniques is that agé&aproportion of the
injected faults are not activated, for example, faultsdtgd into unused memory lo-
cations or faults placed in registers before the registersvatten to [4].

The approach presented in this paper can be characterizeftware-implemented,
simulation-based fault injection. In the experiments perfed, the simulation con-
sists of the machinery available in the KeY tool for perfangisymbolic program
execution. The fault model so far consists of bit-flips. Ehare no inherent restric-
tions on the types of faults we can emulate; if a certain hardvpart is explicitly
simulated as part of the verification, it is possible to errauthe effects of faults in
that part. It would also be quite easy to emulate softwarkda@ur approach works

Symbolic Fault Injection 89

on the source code level. We emulate transient bit-levdidani the data segment of
memory by manipulating the variables in the program, andelae fault injection to

pseudo-statements instrumented into the source codeiggdried during symbolic
execution.

4 Formal Methods

Formal methods comprise a wide range of techniques inajalacck box approaches
such as specification-only or specification-based testgeseration. Here we con-
centrate orformal verificationof software. Among the various approaches to formal
software verification [1, 10, 11] we single out verificatiop $ymbolic program exe-
cution [8], because of its compatibility with the analysfspoopagation of injected
faults through a program.

Our implementation platform is the formal software verifica tool KeY [1, 5].
In its current version it can handle most of sequentiaJand there is ongoing
work to deal with concurrency [18] and for support of the Cgaage. KeY takes as
input a AVA program (source code) and a formal specification of thatnarag The
combination of the program and the specification is combingdaproof obligation
expressed inAVA Dynamic Logic (AvADL). JAVADL is a typed first-order logic
(FOL) extended with a dynamic part that can handiexJprograms.

The idea of verification by symbolic program execution is$e logic in order to
represent all possible values of locations in a program atétk their value updates
during execution. We illustrate the main ideas by an example

public class C {
static int a,b;

public static void swap()

{
b =a - b;
a=a - b;
b =a+ b;
|8

Fig. 1. Theswap() method.

Theswap() method in Fig. 1 exchanges the values of the fielégsdb of class
Cwithout the need for a temporary variable. Symbolic executif the method would
start by assigning symbolic integer valuesd; to fieldsC.a andC.b , respectively.
Since we want to analyssvap() for arbitrary values and; we quantify universally

90 Daniel Larsson, Reiner Hahnle

over them. A total correctness assertion in the prograntloged in the KeY system
[1] looks then as follows:

vint 4; Vint j; ({C.a :=i}{C.b :=j}
(C.swap();)(C.a =j&C.b =1)) (1)

The universal quantifiers range over integer variablasd j that are assigned to
the fieldsC.a andC.b as symbolic initial values. Variablesand j are so-called
rigid variables whose value cannot be changed during the exacotia program
(roughly corresponding tdinal locations in 4vA). For a compilableAvA program
p, a formula of the form {p)post” expresses that every run pfwith the current
initial values terminates normally and afterwards the pasdition “post” is true.
In other wordsp is totally correctwith respect to the given postcondition. If one is
merely interested ipartial correctnessthe|[|-operator can be used insteafh|post”
expresses that p terminates normallyhen“post” will be true in the end state. In
formula (1) the postcondition expresses that the initidles of the field€.a and
C.b have been swapped by stating that the valug€.af now is equal to initial value
jandC.b is equal toi (we use the symbof to distinguish between equality in
formulas and assignment statements). In this way it is ptessd formally specify
the functionality of a given method.

The translation into a logical framework makes it possildedason formally
about a program. A universally quantified formula such asqialid if and only if
the formula

{C.a :=i}{C.b :=j}(C.swap();)(C.a =;&C.b =1) (2)

is true for any possible interpretationidnd;. The expressions in curly brackets are
called stataipdate Let!/ = {loc := val} be such an update, whele: is a location
(program variable, field or array access) antlis a side-effect free expression. The
semantics of an updated formul@ is to change the environment relative to which
¢ is evaluated in such a way that the valuel@f becomesval and everything else
is unchanged. Hence, the meaning of formula (2) is: wheravap() is started in
an initial state wher€.a has value andC.b has valuej, thenswap() terminates
normally and afterwards the contents of the figlda andC.b is swapped.

The logic AvA DL used in the KeY system provides symbolic execution rubes f
any formula of the form &{(¢; w)post”, where¢ is a single 3va statement and
the remaining progrant. is called the firsactive statemeraf the program, i.e., the
statement the rule operates oavAlDL rules such as (3) can be seen as an opera-
tional semantics of theayA language. Application of rules can then be thought of as
symbolic code execution. A program is verified by executisgcode symbolically
and then checking that the FOL conditions after executidimished are valid. Dur-
ing proof search rules are applied from bottom to top. Froendtla proof obligation
(conclusion), new proof obligations are derived (prens¥se

Symbolic Fault Injection 91

We give some examples oAvA DL symbolic execution rules. Updates are used
to record the effect of assignment statements during syimeeécution:

F{v:=e}w)o
v = e wpo 3)

The symbol- stands for derivability. The rule says that in order to dethve formula
in theconclusion(on bottom) it is sufficient to derive the formula in the siagtemiss
(on top). The idea is to simply replace an assignment witlage stpdate. This rule
can only be used ié is a side-effect freeAVA expression. Otherwise, other rules
have to be applied first to evaluaend the resulting state changes must be added to
the update.

The effect of an update is not computed until a program has beepletely
(symbolically) executed. For example, after expandingiieéhod body o€.swap()
and symbolic execution of the first two statements we obtaerfellowing interme-
diate result:

F {C.a :=j}{C.b :=i — j}(method-frame(C()): b = a + b;)
(Ca =35&C.b =9)

During method expansion method framewhich records the receiver of the invo-
cation result and marks the boundaries of the inlined implaation, was created.
The updates o€.a andC.b reflect the assignment statements that have been ex-
ecuted already. After executing the last statement andmiet from the method
call the code has been fully executed. The subgoal reachgdsagboint is similar
tor- {C.a = j}{C.b :=i}()(C.a = j&C.b = i), where the updates are fol-
lowed by the empty program. Only now updates are applied eopthstcondition
which results in the trivial subgoal j = j & i = i.

Below is another rule example, namely the rule for theelsestatement which
has two premisses. The rule is slightly simplified.

b=TRUEF (puw) b= FALSE+ (qu)¢
F(if (b)p elseq; w)o

This rule shows that in contrast to normal program executioeymbolic execution
even of sequential programs it is sometimes necessary malotae execution path.
This happens whenever it is impossible to determine theevalan expression that
has an influence on the control flow. This is the case for cmndits, switch state-
ments, and polymorphic method calls, among others. Theatubee is applicable if
b is an expression without side effects, otherwise othesmé=ad to be applied first.

A problem occurs with loops and recursive method calls. ¢ libop bound is
finite and known, then one can simply unwind the loop a sugtabimber of times.
But in general one needs to apply an induction argument amaamiant rule to prove
properties about programs that contain unbounded loopth &aproaches tend to
be expensive, because they require human interaction. Otbenation of induction
proofs for imperative programs is an area of active rese@@h

92 Daniel Larsson, Reiner Hahnle

5 Symbolic Fault Analysis

5.1 General ldea

Our plan is to extend the approach to formal verification dfvgare sketched in the
previous section with the concept of symbolic fault injentiThis makes it possible to
prove that a program with software-based fault tolerancehaeisms ensures certain
properties even in the presence of faults. Alternativelg may calculate the conse-
guences of the introduced faults in terms of strongest paslitions. The realization
is based on the following two ideas:

— The source code is instrumented with pseudo-instructibtieedorm “inject(
location); ” that are placed where the faults are to be injected. Thenaegt
location is the name of a memory location (local variable, field accesmal
parameter, etc.) visible at this point in the program. Thekes it possible to
handle (symbolic) fault injectionniformlyby symbolic code execution.

— Symbolic fault injection is realized by extending the synibexecution mecha-
nism with suitable rules for thmject pseudo-instructions.

The examples given below are invA since the current version of KeY handles
Java, but the principles given hold for any imperative language.

An injection of a symbolic fault causes a change in the Javedpkesentation of
the symbolic program state, and this state change corrdspornhe consequences of
all the concrete faults that can appear during program execaiid that are instances
of the symbolic fault.

Assume that we want to emulate the effecatdfpossiblebit-flips in the memory
location that corresponds to a given variable. First we nieatarify what is meant
by “all possible” bit-flips. Is it the effect of all possibinglebit-flips or all possible
combinations of an arbitrary number of bit-flips (in the sarmm@mory location)? Con-
sidering a AvA int (represented by 32 bits): there &edifferent possible outcomes
in the first case, bu23? in the second. Obviously, when trying to prove properties
about algorithms that can detect bit-flips, it is essentiaistinguish between single
bit-flips (or, perhaps, a fixed, small number) and an arhyjitrarmber of bit-flips. For
example, the CRC algorithm discussed in Sect. 6 can deteetisins where one or
a few bits are flipped. Trying to prove the fault detectionadaty of such an algo-
rithm using the “arbitrary number of bit-flips” semanticstbeinject statement
will not succeed. However, in other situations it might bsidible and possible to
prove properties for an arbitrary number of bit-flips. Oulusion is to use two differ-
ent inject statementmject(location) means that an arbitrary number of bits
in the memory location will be flipped, whil@jectl(location) means that a
single bit is flipped. To model a situation where a fixed numbef bits in a location
is flipped,injectl s simply applied at that locatiomtimes.

Symbolic Fault Injection 93

Another important question is whether the “no change” casadluded in the
meaning of thenject /injectl statements, i.e. whether the property we are try-
ing to prove should also hold for the case where no bits arpdtip As will be-
come apparent in Sect. 6, sometimes a semantitisicluding the “no change” case
is needed. Below we introduce different flavours of ruleshfandling theinject
/injectl statements covering both cases: one including the “no d@iazage and
the other one excluding it.

5.2 Rules

We need to add new rules to thevd DL calculus that handle th@ject pseudo-
instructions. The rules for the cases whenltgeation argument oinject has
type booleanor byte are below. In the case diooleantyped variables there is no
need to distinguish between single bit-flips and an arlyitrarmber of bit-flips as
they hold only one bit, however, the distinction betweerusion and exclusion of
the “no change” case is relevant, and the two rules are pregsé@elow (inclusion of
the “no change” case is indicated by appendi@to the rule name).

{b:=true}(w)¢ + {b:=false}{w)o
F (inject(b); w)o

F{b:=1b Hw)p

(inject(b); w)o

l_
booleanNG

(4)

boolear'.F

The first rule splits symbolic execution into two paths, vehierexactly one of therb

is unchanged and in the other it is complemented. The sect&daontinues symbolic
execution with the value di complemented. Next we show the rule for an arbitrary
number of bit-flips in éyte variable. Only the “no change” version is shown.

- Vbyte i; {b == i} {w)¢ (5)
- (inject(b); w)¢

In this case the memory location can contain agite value after the injection. This
means that whatever program property that should be proagtbhbe proved for all
values of this variable. In logical terms it means that a ergal quantification has to
be introduced. We do this by quantifying over a new logicaialale: followed by an
update that assigns the value:d@b the locatiorb.

Finally, the rules for thenjectl statement orbytes and arrays obytes are
presented. Only the rules excluding the “no change” cadeows.

Fvint j;0<;7<7—={b:=b"(1 < j)}Hw)e
- (inject1(b); w)o
After injection, the memory location can contain any valasulting from flipping

exactly one bitirb. The intuition behind the rule is that the variable:is-ed with the
masks 0000001, 00000010,...,10000000 respectively. The rule for arrays bytes,

byteNC

bytel (6)

94 Daniel Larsson, Reiner Hahnle

F Vinté; Vintj; 0 <i < alength& 0 < j <7 — {afil:=afi]"(1 <« j)}Hw)eo

byteArr1 k (injectl(a); w)¢

Fig. 2. Theinjectl rule for byte arrays.

pictured in Fig. 2, is similar but includes universal quaadition over the array ele-
ments. The rule shown is a bit simplified since the real ruketbdake the possibility
of a null reference into account. We created analogous rules fortties primitive
JAVA types, which are not presented here.

5.3 Example: Verification

We proceed to show by example how the rules for the pseudttt®n inject
are used in practice. The examples are based on a simpleclass shown below.

class MyBoolean {
boolean v;
boolean myOr(boolean b) {
boolean t=b;
inject(t);
return t||v;

}

MyBoolean can be viewed as a wrapper foooleanprimitive valuess. It contains a
booleanfield v that holds the value of BlyBoolean instance. It also has a method,
myOr, with obvious meaning. (The temporary variablés unnecessary for the be-
havior of myOr. It is added for the presentations of the proofs below, asaites it
possible to refer to the original value of the paramétén an easy way.) The inter-
esting point is thenject statement that injects a fault into theoleanargument
before the return value is computed. Attempts to proverthdadr has certain correct-
ness properties even in the presence of faults are showw.belo

Symbolic execution and first-order logic reasoning as irmgleted in KeY is used
in the proof attempts. Note the use of rule (4)ifgect(t) (marked with an aster-
isk on the right in Fig. 3 and Fig. 4). In the first example, showFig. 3, an attempt
is made to prove that the method still has the semantics eeghéom logical or (the
variableresult in the proof stands for the return valueraf/Or): the postcondition
states that the return value miyOr is true if and only if one of the arguments is true.
This is impossible to prove due to the injected fault. We gat tifferent branches in
the proof, one for each combination of values in fieldnd parametds. All branches
must be proven in order to show the property. Due to spaceatsshs we only show
one of the branches that are impossible to prove, indicagel bn the antecedent
which abbreviatesv' = false& b = true”. The proof tree is shown in Fig. 3. As
expected, we end up with a sequent which is impossible togovalid.

Symbolic Fault Injection 95

I' - false
I' + false < true
I' - false = true « (false = true V true = true)

I - false = true < (v =true V b = true)

I' + {result= false}()(result= true « (v =true V b =true))

I' F {result= v}()(result=true < (v =true vV b =true))

I' + (returnv;)(result= true «— (v =true V b = true))

I' + {t:=false}(returnt ? true : v;)(result=true < (v =true Vv b = true))

I' + {t:=false}(returnt || v;)(result=true « (v =true Vv b = true))

I' + {t:= true}(inject(t); return t || v;)(result=true < (v =true Vv b = true))
I' + {t:= b}(inject(t); return t || v;)(result= true — (v =true vV b = true))
I' + (boolean t=b; inject(t); return t || v;)(result=true < (v =true V b =true))

Fig. 3. Failed proof attempt: correctness propertyMyfBoolean::myOr(). One of four branches in the proaf:
stands for V = false & b = true”.

Now consider an attempt to prove something weaker, namalynlgOr() re-
turnstrue whenever the field wastrue. Again, only one of the four proof branches
is shown, but all are provable. We usen the same way as above. The proof tree is
in Fig. 4. We end up with a sequent that is valid indicatingvpimlity. We showed the

[I" F true]
I' + false — false
I' | false = true — false = true
I' b v=true — false = true
I' + {result= false}()(v = true — result= true)

I' F {result= v}()(v = true — result= true)

I' + (returnv;)(v = true — result= true)

I' + {t:=false}(returnt ? true : v;)(v = true — result= true)

I' + {t:=false}{returnt || v;)(v = true — result= true)

I' + {t:= true}(inject(t); return t || v;)(v = true — result= true)

I' + {t:= b}(inject(t); returnt || v;)(v = true — result= true)

I" + (boolean t=b; inject(t); return t || v;)(v = true — result= true)

Fig. 4. Successful proof: weakened correctness propertylyBBoolean::myOr(). One of four branches in the
proof: I" stands for ¥ = false & b = true”.

formal proofs in some detail in order to give an impressiow lsgmbolic execution
of code and injected faults works. All proofs, respectiyplpof attempts are created
by the KeY prover within fractions of a second and fully autdially.

96 Daniel Larsson, Reiner Hahnle

5.4 Example: Calculating Strongest Postcondition

Besides proving that a program has certain properties ipithgence of faults it is

possible to calculate the consequences of a fault in terregsaigest postconditions.
Below is a simple program containing arfject statement for which we calculate
the strongest postcondition.

int aMethod()
int i =0;
inject(i);
return i

}

The calculation of the strongest postcondition of the progrs shown below. Note
that aninject rule for int type variables similar to (5) is used.
F3int k;result =k
FYint j; {result:=5}()?
FYint j;{i:=jH{result:=i}()?
FVYint j;{i:=j}(return i;)?
Fvint j; {i:=0}{i:=j}(return i;)7
F {i:=0}(inject(i); return i;)7
F (int i=0; inject(i); return i;)7

The symbolic execution tells us that after a fault injectiorvariablei the return
value can be anynt value. The example is trivial and not very interesting irlits
but illustrates the idea: the symbolic execution makes ssfile to analyse the con-
sequences of faults for all admissible inputs.

6 Case Study

We illustrate the application of symbolic fault injectiom & realistic fault handling
mechanism: an implementation of the widely used CRC (Cyrédundancy Check)
algorithm. CRC is a fault detection algorithm: it calcutechecksum on a block of
data. This checksum is typically appended to the data blettre it is transmitted
and the receiver is then able to determine whether the dataden corrupted. The
basic idea behind CRC is to treat the block of data as a biregsesentation of an
integer and then to divide this integer with a predetermufigor. The remainder of
the division becomes the checksum. The kind of division usedt the one found in
standard arithmetic but in so-called polynomial arithmefihe property that makes
CRC so useful is that it minimizes the possibility that savéit-flips “even out” with
respect to the checksum and therefore go undetected. Tinetlaig fully utilizes the
number of bits used to represent the checksum. By choosenditiisor (also called
poly) carefully, the algorithm can detect all single bit-flip8,tevo-bit errors (up to a

Symbolic Fault Injection 97

certain size of the block of data), all errors where an odd lemof bits are flipped,
and so-called burst errors (where a number of adjacentreittigped) up to a certain
number of bits depending on the size of the divisor.

We describe briefly the implementation of the algorithm. Vearmt use AVA’s
built-in division operation, because the block of dataywad as an integer, in general
is far too big to store in a register; also, we need to use oiyal arithmetic. There-
fore, the data is fed step by step to a division register wihiderequired operations
are applied to its content. In its simplest and least effiai@plementation of the al-
gorithm the data is shifted bit by bit, while the most comnyamded implementation
shifts the data one “register length” at a time and uses aulpdéble. Below is an
example of a table-driven implementation invd generated by the “CRC genera-
tor”.2 The block of data is here represented by an arralgytés, which is given as
parametebuf to the program. The method returns the computed CRC value.

static byte compute(byte[] buf) {
int count = buf.length;
byte reg = (byte)0Ox0;
while (count > 0) {
byte elem = buf[buf.length-count];
int t = ((int)(reg’elem)&0xff);

reg <<= 8;
reg "= table[t];
count--;

}

return reg;

}

The arraytable in the program above refers to an array266 precomputedbytes
that allows to perform the division, shifting the block oftdanebyte at the time
(instead of ondit at the time). It would be useful to prove formally that thisthu
has certain properties. Even though the theory behind th€ @gorithm is well
known, there is no guarantee that this particutaplementatiorof the algorithm is
free from errors, in particular, since concrete algorittamessynthesized by a program
generator based on several parameters.

In the following we document an attempt to formally provetttie implementa-
tion above detects all single bit-flips. Detecting singleflyps is something we expect
even the most simple checksum algorithms to manage, buttheless it is valuable
to formally prove that a given CRC implementation actuabigslthis. More precisely,
the following should be proved. Assume one arbitdayye array of arbitrary length.
This array is duplicated, an arbitrary single bit-flipaneof the arrays is performed,
and then CRC checksums for both arrays are computed. Thehgaksums should

! For the algorithm and possible implementations see hitww.repairfag.org/filipg/LINK/Ecrc.v3.html.
2 http://members.cox.net/tonedef71/bodycgen. htm#output

98 Daniel Larsson, Reiner Hahnle

differ and the first step to prove this property is to creagetdst harness below. It is a
modified version of the CRC implementation with the follogrichanges.

— All variables (exceptount), including thebyte array constituting the input to
the algorithm, are duplicated. All statements acting orseheariables are also
duplicated.

— An injectl statement (described in Sect. 5.2) is added that injects-fioi
fault in one of the input arrays.

— Instead of returning the CRC checksum, this modified versstarns the com-
parison of the two computed CRC checksums in form lbbaleanvalue. That is,
the method returngue if the two checksums are equal (the faulbist detected)
and false otherwise.

static byte crcTest(byte[] bufl, byte[] buf2) {

inject1l(buf2);

int count = bufl.length;

byte regl = (byte)OxO0;

byte reg2 = (byte)0xO0;

while (count > 0) {
byte el = bufl[bufl.length-count];
byte e2 = buf2[buf2.length-count];

int t1 = ((int)(regl’el)&0xff);
int t2 = ((int)(reg2 e2)&0xff);
regl <<= §;
reg2 <<= 8§,
regl "= table[tl];
reg2 "= table[t2];
count--;
}
return (regl == reg2);,

}

The reason for modifying the original program is to factitahe proving process.
It could be argued that this modification might change thealsem of the original

program in an unintended way, e.g., that the checksum eaémifor the non-faulty
array is not equal to the checksum calculated for the sanag asing the original
program. For this program, however, it is fairly easy to $e¢ this is not the case. In
case of doubt, it is possible to formally prove this.

The next step is to express formally the property this pnogsaould have. The
proof obligation expressed imA DL is presented below (7). The variahiesult
stands for the return value of the method. For sake of cladiye parts dealing
with potentialNullPointerException s and similar are omitted. The variables
msgllv andmsg2lv are used to quantify over all possible values of the inputsags

Symbolic Fault Injection 99

blocksmsgl andmsg2. The precondition states that (the reference varialohesg)l
andmsg?2 do not refer to the same array, but that the arrays are idénhiote that
the[|-operator is used, i.e., proving termination is not parhefproof obligation (see
Sect. 4). The reason is that this makes it possible to appdpp ihvariant rule; see
discussion below. Termination has been proven separately.

Vbyte[] msgliv; Vbyte[]] msg2lv;
(msgllv # msg2lv & msgllv.length = msg2lv.length
&vint j: (57 > 0& j < msgliv.length — msgllv[j] = msg2lv[j])
— {msgl := msgliv} {msg2 := msg2lv}
[Crc.crcTest(msgl,msg2); |(result = false))

(7)

When trying to prove properties about programs containimigounded loops (like
thecrcTest() method), then either a loop invariant or induction must bedusVe
chose to use an invariant of which a simplified version is shbalow (8). The part of
the program preceding the while statement was symboliexicuted. Then a loop
invariant rule was applied, which includes providing theuatinvariant.

(inject_ar_elem < msgl.length —count — regl #reg2)
& (inject_ar_elem > msgl.length —count —regl =reg2) (8)

The integerinject_ar_elem results from the execution of thajectl statement
and refers to the element in thesg2 array where the fault is injected. It is a skolem
constant originating from the universal quantificationrae array elements used in
the rule forinjectl (see Fig. 2). In other words, the invariant has to hold for all
possible values afnject_ar_elem.

After application of the loop invariant rule, the proof ¢plinto three branches:
one where it must be proven that the invariant holds befaewhile statement starts
to execute, one where one needs to prove that (8) is indeat/anant of the loop
body provided that the guard holds, and one where it must berslthat the proof
obligation (7) follows from the invariant and the negateddaondition. We proved
all three cases using KeY. Here is the summary of the ovemadifghat (7) holds after
execution ofcrcTest()

1. The part of the program preceding the while statement wabglically executed.
This is automatic.

2. The loop invariant rule was applied and the loop invar{8htmanually provided.

3. KeY'’s automatic application of rules was restarted whiesulted in abou2500
rule applications in less tha&dminutes. The result was} open goals, i.e., branches
of the proof that could not be proved automatically. In akogoals, the program
part of the proof obligation was completely (symbolicalg®ecuted, i.e., only
program-free FOL formulas remained.

100 Daniel Larsson, Reiner Hahnle

4. Thel3 open goals were proved by manual rule application. Thisd®tes, but
straightforward.

In summary, we proved formally that a certain implementatbthe CRC fault
detection algorithm discovesd| possiblesingle bit-flips in an arbitrarypyte array.
The proving activity was to a large extent automatic. It raightforward to apply the
same methodology to related algorithms, now that a valitepabf loop invariants
has been established.

7 Related Work

In [19] an approach for evaluating the system reliabilitghaiespect to bit-flip er-
rors using model-checking principles is presented. Thiapglied to a software-
implemented mechanism that detect errors corrupting tidraloflow, a signature
analysis technique. A control flow graph of the consideregiege target program,
which is a representative model over a general class of alipte applications (i.e.,
it covers all possible fault scenarios with respect to thdtfiamodel) is created. The
model checker SPIN is applied to the model and the fault tieteecnechanism in
order to investigate whether the detection mechanism tttdaults. Since the de-
scription of the approach in the paper is highly dependerthersignature analysis
technique, it is hard to see to which degree it is possibleteplize it to other kinds
of fault tolerance mechanisms. Clearly, a necessary rexpant is the ability to con-
struct an abstract model of an imagined target program thadrs all possible fault
scenarios with respect to a considered fault model.

In several papers one specific fault tolerance mechanisornsally verified. In
most cases these are system-level (in contrast to nodB-feeehanisms for dis-
tributed systems, e.g., the TTP Group Membership Algoritiome examples of this
line of work follow: in a paper by Bernardeschi et al. [6], alteolerance mechanism
called “inter-consistency mechanism”, a component of ahitecture for embedded
safety-critical systems, was formally specified and vetifising the model checker
JACK. The properties the mechanism should satisfy weressged as temporal logic
formulas and the model of the mechanism was given as a LabEi#nsition System
(LTS) which included faults that could affect the behavibtthee mechanism itself. In
[25], a model of a startup algorithm for the Time-Triggereatiiitecture was proven
to have certain safety, liveness, and timeliness proeuséng model checking (the
SAL toolset from SRI). Itis claimed that all possible faBunodes were examined, an
approach the authors call “exhaustive fault simulationfaAlt-tolerant group mem-
bership algorithm of TTP was formally specified and verifisthg a diagrammatic
representation of the algorithm. The work is described it).[dhe PVS theorem
prover was used for the verification. Clock synchronizatdgorithms are an im-
portant part of distributed dependable real-time systérhs. paper [23] describes
a formal generic theory of clock synchronization algorith(that extracts the com-
monalities of specific algorithms) in the form of parameted PVS theories. Several

Symbolic Fault Injection 101

concrete algorithms are formally verified with PVS usingtinamework. In [22], dif-
ferent aspects of formal verification of algorithms for ical systems are discussed.
As an example, the Interactive Convergence Algorithm (I&4)roved to have cer-
tain properties using the EHDM system.

What distinguishes our approach from the mentioned papehsat we preserd
general frameworkor analysis and formal verification ekecutable implementations
(in contrast to abstract models) of fault tolerance medrani

Finally, it should be mentioned that symbolic fault injectihas been used in
a method for calculating theoverage factari.e., the proportion of faults that are
actually handled by a system [17].

8 Discussion and Future Work

Traditional fault injection techniques suffer from a numlo¢ drawbacks, notably
lack of coverage and failure to activate injected faultsthiis paper we presented a
new approach called symbolic fault injection which is taegeat validation of SIHFT
mechanisms and is based on the concept of symbolic exeaftppograms.

It is an analytic approach in contrast to experimental eatédnn done in conven-
tional fault injection. With symbolic fault injection it m®mes possible to emulate the
consequences @l possiblefaults in a certain memory location. All injected faults
are also activated, which is in general not the case with@uatmnal fault injection.
Symbolic fault injection based on formal verification canéx@ensive and requires
some expertise, but this is also the case with conventi@ngd injection. In particu-
lar, to investigate the consequences of an injected fadiffisult and time consuming
when using conventional methods.

Our fault model so far consists of single bit-flips in memaogdtions. This is
achieved through pseudo-instructions added to the sowde twgether with rules
for handling these pseudo-instructions during symbolecexion. We implemented
a prototype of our method based on the formal software vatifio tool KeY. We
showed the viability of the approach by proving that a CRClengentation detects all
possible single bit-flips. Clearly, this is only a proof ohopt and a proper evaluation
with realistic industrial software needs to be done.

An argument that is often raised against the usage of forratiiodls is that formal
specifications of systems are normally not available andia@ngtime consuming to
create. Note that our approach is useful even without thdadigty of a formal
specification, because it can be used to compute the syndftéict of faults in the
form of strongest postconditions (Sect. 5.4).

Limitations Our current implementation suffers from a number of limaas: since

our fault injection technique is simulation-based, no-téak properties can be eval-
uated with it. Formal verification of real-time systems il an area of research. So
far we have not considered the injection of faults in pomnterreference-variables,

102 Daniel Larsson, Reiner Hahnle

and we have only looked at faults in the data area of the memotythe code area.
We also inherit a number of limitations from the underlyirggification system. The
most important are that the program logic of the KeY systeth@imoment cannot
handle multi-threaded programs or floating point data tyResearch that overcomes
the first of these is under way [18]. A practical limitatiortigt full automation can
only be achieved when bounds on loops and recursion are diniteoncrete. Other-
wise, induction or invariant rules with expensive userrat#ion is required. Again,
research to improve this situation is under way [20].

Future Work It would be interesting to generalize our approach to dafferfault
models and fault trigger mechanisms. This is principallggble by parameterizing
the total correctness modalitp)¢ with additional parameters for a trigger condition
t, a symbolic faultinject , and a reset expressida, wheret is a FOL formula,
inject is an inject pseudo-statement, @Rds a state update (Sect. 4). The seman-
tics of the formula(p | ¢ |inject | R)¢ is the same agp)¢, but before symbolic
execution of the next active statement it is checked whethetds andnject is
inserted whenever it does. In addition, after symbolic akea of each statement the
updateR is added to the current environmentRfis something like{b := false},
then it easy to emulate a stuck-at-zero fault.

We think that it is attractive to integrate our technigueiatframework for de-
sign and assessment of dependable software such as Hillrsfl12]. Part of this
framework uses fault injection for error propagation asayo find the locations in
the software where it is most effective to place fault harglinechanisms. We think
that our technique could be very useful in the error propagatnalysis.

References

1. W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. hléhW. Menzel, W. Mostowski, A. Roth,
S. Schlager, and P. H. Schmitt. The KeY toB8bftware and Systems Modeljf1):32—-54, 2005.

2. P. Amey. Correctness by construction: Better can alsohkeaper. CrossTalk Magazine, The Journal of
Defense Software Engineeringages 24-28, March 2002.

3. J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, Jl-@prie, E. Martins, and D. Powell. Fault injection
for dependability validation: A methodology and some agations.|EEE Trans. Softw. Engl6(2):166—182,
1990.

4. J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuahs, G. H. Leber. Comparison of physical and
software-implemented fault injection techniquéSEE Trans. Comput52(9):1115-1133, 2003.

5. B. Beckert, R. Hahnle, and P. Schmitt, editdferification of Object-Oriented Software: The KeY Apprgach
volume 4334 oLNCS Springer, 2006.

6. C.Bernardeschi, A. Fantechi, and S. Gnesi. Formal viidaf the GUARDS inter-consistency mechanism.
In M. Felici, K. Kanoun, and A. Pasquini, editoigtl. Conf. on Computer Safety, Security and Reliability
(SAFECOMP)pages 420-430, 1999.

7. P.Bernardi, L. Bolzani, M. S. Rebaudengo, M. S. Reordd,MnViolante. An integrated approach for in-
creasing the soft-error detection capabilities in SoCsgssors. Iintl. Symp. on Defect and Fault Tolerance
in VLSI Systems (DFTpages 445-453, 2005.

8. R. M. Burstall. Program proving as hand simulation witittéelinduction. Ininformation Processing '74
pages 308-312. Elsevier/North-Holland, 1974.

9. J. Carreira, H. Madeira, and J. G. Silva. Xception: A téghe for the experimental evaluation of depend-
ability in modern computersSoftware Engineerind?4(2):125-136, 1998.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Symbolic Fault Injection 103

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. NelsonBl.Saxe, and R. Stata. Extended static checking for
Java. InProc. ACM SIGPLAN Conf. on Progr. Language Design and Implaation, Berlin pages 234-245.
ACM Press, 2002.

K. Havelund and T. Pressburger. Model checking JAVA mots using JAVA pathfinderint. Journal on
Software Tools for Technology Transfg(4):366—381, 2000.

M. Hiller, A. Jhumka, and N. Suri. PROPANE: an environinfem examining the propagation of errors in
software. InProc. ACM SIGSOFT Intl. Symp. on Software Testing and Aisalyages 81-85. ACM Press,
2002.

M.-C. Hsueh, T. K. Tsai, and R. K. lyer. Fault injectiochaiques and tooldEEE Computer30(4):75-82,
1997.

E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlssanlt fhjection into VHDL models: The MEFISTO
tool. InProc. 24th Intl. Symp. on Fault Tolerant Computing, (FTCS;2EEE, Austin/TX, US/ages 66-75,
1994.

J. Karlsson, P. Folkesson, J. Arlat, Y. Crouzet, G. Lehed J. Reisinger. Application of three physical
fault injection techniques to the experimental assesswofghe MARS architecture. IH-IP Working Conf.

on Dependable Computing for Critical Applications (DCCA4pages 267-287, Urbana-Champaign, USA,
September 1995. IEEE Computer Society.

J. Karlsson, P. Liden, P. Dahigren, R. Johansson, andudnélo. Using heavy-ion radiation to validate
fault-handling mechanism$EEE Micro, 14(1):8-23, 1994.

L. T. Klauwer. Application of Formal Methods to Faultécfion and Coverage Factor Calculation. Master’s
thesis, Chalmers University of Technology, Department ofnButer Science and Engineering, Goteborg,
Sweden, 2006.

V. Klebanov, P. Rummer, S. Schlager, and P. H. Schméttifigation of JCSP program€&oncurrent Systems
Engineering 63:203-218, 2005.

B. Nicolescu, Y. Savaria, E. Aboulhamid, and R. Velazoo.the use of model checking for the verification
of a dynamic signature monitoring approadiEEE Transactions on Nuclear Sciend&®:1555-1561, Oct.
2005.

0. Olsson and A. Wallenburg. Customised induction rideproving correctness of imperative programs. In
B. Beckert and B. Aichernig, editorBroc. Software Engineering and Formal Methods, Koblenzn@ay;
pages 180-189. IEEE Press, 2005.

H. Pfeifer. Formal verification of the TTP Group Membépsilgorithm. InProc. FIP TC6 WG6.1 Joint Intl.
Conf. on Formal Description Techniques for Distributed t8yss and Communication Protocols (FORTE
XIIl) and Protocol Specification, Testing and Verificatid?STV XX)pages 3—18. Kluwer, 2000.

J. M. Rushby and F. von Henke. Formal verification of atbors for critical systemsIEEE Trans. Softw.
Eng, 19(1):13-23, 1993.

D. Schwier and F. W. von Henke. Mechanical verificationlotk synchronization algorithms. Proc. 5th
Intl. Symp. on Formal Techniques in Real-Time and FaulefBoit System4d. NCS, pages 262-271. Springer-
Verlag, 1998.

A. E. K. Sobel and M. R. Clarkson. Formal methods appbcatAn empirical tale of software development.
IEEE Transactions on Software Engineeri2$(3):308—-320, 2002.

W. Steiner, J. Rushby, M. Sorea, and H. Pfeifer. Modetking a fault-tolerant startup algorithm: From
design exploration to exhaustive fault simulation.Time Intl. Conf. on Dependable Systems and Networks
pages 189-198, Florence, Italy, June 2004. IEEE Computgetyo

A. Wallenburg. Proving by induction. In B. Beckert, Ralttile, and P. Schmitt, editoigrification of Object-
Oriented Software: The KeY Approastolume 4334 of NCS pages 453—-480. Springer-Verlag, 2006.

