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Abstract. We show how theorem proving and methods for handling real algebraic
constraints can be combined for hybrid system verification. In particular, we highlight
the interaction of deductive and algebraic reasoning that is used for handling the joint
discrete and continuous behaviour of hybrid systems. We illustrate proof tasks that oc-
cur when verifying scenarios with cooperative traffic agents. From the experience with
these examples, we analyse proof strategies for dealing with the practical challenges for
integrated algebraic and deductive verification of hybrid systems, and we propose an
iterative background closure strategy.
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1 Introduction

Safety-critical systems occurring in traffic scenarios [9, 27] often are hybrid sys-
tems [17, 11], i.e., they combine discrete and continuous behaviour. Discrete
behaviour typically originates from a digital controller, which regulates driving
and switches to various modes in order to react to changes in the traffic situ-
ation. Continuous behaviour is more inherent in the physical process dynamics
and results from continuous changes of quantities such as positions over time.
Models to describe interacting dynamics use differential equations for continuous
evolution and use discrete jumps for discrete state changes [17, 24, 20].

Most verification tools for hybrid systems such as HyTech [3], CheckMate [25],
or PHAVer [14], follow the model checking paradigm [7] and work by successive
computation of images under hybrid transitions [23].

Because of intricacies of complex continuous dynamics, numerical issues dur-
ing computations, and general limits of numerical approximation [23], hybrid
system model checkers are still much more successful in falsification than in ver-
ification. In this work, we are primarily interested in verifying hybrid systems
rather than finding bugs. Consequently, we favour a fully symbolic technique,
and we follow a deductive approach. Further, unlike model checking, deductive
techniques support free parameters [11, 20], which occur in our applications.

We have introduced a family of logics for deductive verification of hybrid
systems [20, 22, 21]. We have introduced [20] a dynamic logic dL and a calculus
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for verifying hybrid systems. We have also presented [22] an extension with
nominals to investigate compositionality. Moreover, we have introduced [21] a
temporal extension for verifying correct behaviour at intermediate states.

While the theoretical background and technical details of our approach can
be found in [20, 22, 21], here we discuss the practical aspects of combining de-
duction and algebraic constraints techniques. In particular, we highlight the
principles how both techniques interact for verifying hybrid systems. For this,
we analyse the degrees of freedom in implementing our calculus in terms of the
nondeterminisms of our proof procedure. We illustrate the impact that various
choices of proof strategies have on the overall performance. For hybrid system
verification, we observe that the nondeterminisms in the interaction between de-
ductive and real algebraic reasoning have considerable impact on the practical
feasibility. In this paper, we analyse and explain the causes and consequences of
this effect and propose a proof strategy that avoids these complexity pitfalls.

In this paper, we study the modular combination in the dL calculus. Our
observations are of more general interest, though, and we conjecture that similar
results hold for other tableaux prover combinations of logics with interpreted
function symbols that are handled using background decision procedures for
computationally expensive theories including real arithmetic, approximations of
natural arithmetic, or arrays.

Related Work. There are a selected number of logics dedicated to hybrid sys-
tems [24, 11, 28]. They focus on other aspects like topological aspects [11] or
parallel composition [24], and they do not provide calculi with a constructive
integration of arithmetic reasoning that can be used easily for practical verifica-
tion. Our calculus, however, can be used for verifying actual operational hybrid
system models [20, 21], which is of considerable practical interest [9, 27, 17, 11].

A few other approaches [19, 1] use deduction for verifying hybrid systems
and actually integrate arithmetic reasoning in STeP [19] or in PVS [1], respec-
tively. Their working principle is, however, quite different from ours. Given a
hybrid automaton [17] and a global system invariant, they compile, in a single
step, a verification condition expressing that the invariant is preserved under all
transitions of the hybrid automaton. Hence, the hybrid aspects and transition
structure vanish completely before the deduction even start. All that remains
is a quantified mathematical formula. In contrast, our dynamic logic works by
symbolic decomposition and preserves the transition structure during the proof,
which simplifies traceability of results considerably. The structure in this sym-
bolic decomposition can be exploited for deriving invariants or parametric con-
straints [20, 21]. Consequently, in dL, invariants do not necessarily need to be
given beforehand.

Several other approaches combine deductive and arithmetic reasoning, e.g. [6,
2]. Their focus, however, is on general mathematical reasoning in classes of
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higher-order logic and is not tailored to verify hybrid systems. Our work, in-
stead, is intended to make practical verification of hybrid systems possible. For
a discussion of work related to the logic dL itself, we refer to [20].

Structure of this Paper. In Section 2, we summarise the syntax, semantics,
and calculus of the differential logic dL, that we introduced [20]. In Section 3,
we report on the kind of applications that we are interested in, and we illustrate
typical proof tasks. In Section 4, we analyse the principles how the dL calculus
combines deductive with algebraic reasoning and illustrate the consequences of
various proof strategies in our applications from Section 3. Finally, we draw
conclusions and discuss future work in Section 5.

2 Differential Logic

In this section, we briefly recapitulate the differential logic dL that we have
introduced [20] and point out the characteristic traits of dL. We only develop
the theory as far as necessary and refer to [21, 20, 22] for more background. The
logic dL is a dynamic logic [16] with programs extended to hybrid programs [20].

The principle of dynamic logic [16] is to combine system operations and cor-
rectness statements about system states within a single specification language.
By permitting system operations α as actions of a labelled multi-modal logic,
dynamic logic provides formulas of the form [α]φ and 〈α〉φ, where [α]φ expresses
that all (terminating) runs of system α lead to states in which condition φ holds.
Likewise, 〈α〉φ expresses that there is at least one (terminating) run of α after
which φ holds. In dL, hybrid programs play the role of α.

Hybrid programs generalise discrete programs to hybrid change. In addition
to the operations of discrete while programs, they have continuous evolution
along differential equations as a fundamental operation. For example, the evo-
lution of a train with constant braking can be expressed with a system action
for the differential equation z̈ = −b with second time-derivative z̈ of z.

2.1 Syntax of Differential Logic

Terms and Formulas. The formulas of dL are built over a finite set V of real-
valued variables and a signature Σ containing the usual function and predicate
symbols for real arithmetic, such as 0, 1,+, ·,=,≤, <,≥, >. Observe that there
is no need to distinguish between discrete and continuous variables in dL.

The set Trm(V ) of terms is defined as in classical first-order logic yield-
ing polynomial expressions. The set Fml(V ) of formulas of dL is defined as in
first-order dynamic logic [16]. That is, they are built using propositional connec-
tives ∧,∨,→,¬ and quantifiers ∀,∃ (first-order part). In addition, if φ is a dL
formula and α a hybrid program, then [α]φ, 〈α〉φ are formulas (dynamic part).
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Hybrid Programs. In dL elementary discrete jumps and continuous evolutions
interact using regular control structure to form hybrid programs.

Definition 1 (Hybrid programs). The set HP(V ) of hybrid programs is
inductively defined as the smallest set such that

– If x ∈ V and θ ∈ Trm(V ), then (x := θ) ∈ HP(V ).
– If x ∈ V , θ ∈ Trm(V ), then (ẋ = θ) ∈ HP(V ).
– If χ ∈ Fml(V ) is a quantifier-free first-order formula, then (?χ) ∈ HP(V ).
– If α, β ∈ HP(V ) then (α; β) ∈ HP(V ).
– If α, β ∈ HP(V ) then (α ∪ β) ∈ HP(V ).
– If α ∈ HP(V ) then (α∗) ∈ HP(V ).

The effect of x := θ is a discrete jump in state space by an instantaneous assign-
ment. That of ẋ = θ is an ongoing continuous evolution controlled by the differ-
ential equation ẋ = θ. Systems of differential equations, higher-order derivatives,
and evolution invariant regions [20] are defined accordingly.

The test action ?χ is used to define conditions. Its semantics is that of a
no-op if χ is true in the current state, and that of a failure divergence blocking
all further evolution, otherwise. The non-deterministic choice α ∪ β, sequential
composition α; β and non-deterministic repetition α∗ of hybrid programs are as
usual. They can be combined with ?χ to form other control structures, see [16].

2.2 Semantics of Differential Logic

The interpretations of dL consist of states assigning real values to state vari-
ables, which progress along a sequence of states. A potential behaviour of a
hybrid system corresponds to a sequence of states that contain the observable
values of system variables during its hybrid evolution. The semantics of a hybrid
program α is captured by the state transitions that are possible by running α.

A state is a map ν : V → R; the set of all states is denoted by Sta(V ).
Further, we use ν[x 7→ d] to denote the modification of a state ν that is identical
to ν except for the interpretation of the symbol x, which is d ∈ R.

For discrete operations, the semantics, ρ(α), of hybrid program α as a state
transition relation in dL is as customary in dynamic logic (Def. 3). For con-
tinuous evolutions, the transition relation holds for pairs of states that can be
interconnected by a continuous system flow respecting the differential equation.

Definition 2 (Valuation of terms and formulas). For terms and formulas,
the valuation val(ν, ·) with respect to state ν is defined as usual for first-order
modal logic (e.g. [16]), i.e., using the following definitions for modal operators

1. val(ν, [α]φ) = true :⇐⇒ val(ω, φ) = true for all ω with (ν, ω) ∈ ρ(α)
2. val(ν, 〈α〉φ) = true :⇐⇒ val(ω, φ) = true for some ω with (ν, ω) ∈ ρ(α)
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Definition 3 (Semantics of hybrid programs). The valuation, ρ(α), of a
hybrid program α, is a transition relation on states. It specifies which state ω is
reachable from a state ν by operations of the hybrid system α and is defined as

1. (ν, ω) ∈ ρ(x := θ) :⇐⇒ ω = ν[x 7→ val(ν, θ)]
2. (ν, ω) ∈ ρ(ẋ = θ) :⇐⇒ there is a function f : [0, r] → Sta(V ) with r ≥ 0 such

that f(0) = ν, f(r) = ω, and val(f(ζ), x) is continuous in ζ on [0, r] and
has a derivative of value val(f(ζ), θ) at each time ζ ∈ (0, r). For y 6= x
and ζ ∈ [0, r], val(f(ζ), y) = val(ν, y). Systems of differential equations are
defined accordingly.

3. ρ(?χ) = {(ν, ν) : val(ν, χ) = true}
4. ρ(α; β) = ρ(α)◦ρ(β) = {(ν, ω) : (ν, z) ∈ ρ(α), (z, ω) ∈ ρ(β) for some state z}
5. ρ(α ∪ β) = ρ(α) ∪ ρ(β)
6. (ν, ω) ∈ ρ(α∗) iff there are n ∈ N and ν=ν0, . . . , νn=ω with (νi, νi+1) ∈ ρ(α)

for all 0 ≤ i < n.

2.3 A Calculus for Differential Logic

In this section, we briefly review the dL sequent calculus that we introduced [20].
It can be used for verifying hybrid systems in dL. With the basic idea being to
perform a symbolic evaluation, it successively transforms hybrid programs into
logical formulas describing their effects.

The dL calculus combines deduction and handling of real algebraic con-
straints modularly. Simply speaking, the purely deductive part of the dL calculus
handles the discrete part, whereas the continuous part is tackled by real alge-
braic constraint techniques. On this basis, hybrid system behaviour of interacting
discrete-continuous dynamics is handled by a modular calculus combination [20].

The dL sequent calculus is summarised in Fig. 1. A sequent is of the form
Γ ` ∆, where Γ and ∆ are finite sets of formulas. Its semantics is that of the
formula

∧
φ∈Γ φ →

∨
ψ∈∆ ψ. Sequents will be treated as an abbreviation. As

usual in sequent calculus—although the direction of entailment is from premisses
(above rule bar) to conclusion (below)—the order of reasoning is goal-directed :
Rules are applied in tableau-style, that is, starting from the desired conclusion
at the bottom (goal) to the premisses (sub-goals).

The rule schemata in Fig. 1 can be applied anywhere in the sequent, in
particular after adding an arbitrary context Γ,∆, see [20] for details. Moreover,
the symmetric schemata D1–D10 can be applied on either side of the sequent.
Finally, in D7 and D8, the schematic modality 〈[·]〉 stands for either [·] or 〈·〉.

For propositional logic, standard rules P1–P9 are listed in Fig. 1. The other
rules transform hybrid programs into simpler logical formulas, thereby relating
the meaning of programs and formulas. Rules D1–D7 are as in discrete dynamic
logic [16, 5]. D8 uses generalised substitutions [5] for handling discrete change.
Unlike in uninterpreted first-order logic [13], quantifiers are dealt with using
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(P1)
` φ
¬φ `

(P2)
φ `
` ¬φ

(P3)
φ ` ψ
` φ→ ψ

(P4)
φ, ψ `
φ ∧ ψ `

(P5)
` φ ` ψ
` φ ∧ ψ

(P6)
` φ ψ `
φ→ ψ `

(P7)
φ ` ψ `
φ ∨ ψ `

(P8)
` φ, ψ
` φ ∨ ψ

(P9)
φ ` φ

(D1)
φ ∧ ψ
〈?φ〉ψ

(D2)
φ→ ψ

[?φ]ψ

(D3)
〈α〉φ ∨ 〈γ〉φ
〈α ∪ γ〉φ

(D4)
[α]φ ∧ [γ]φ

[α ∪ γ]φ

(D5)
φ ∨ 〈α;α∗〉φ

〈α∗〉φ

(D6)
φ ∧ [α;α∗]φ

[α∗]φ

(D7)
〈[α]〉〈[γ]〉φ
〈[α; γ]〉φ

(D8)
φθ

x

〈[x := θ]〉φ

(D9)
∃t≥0 〈x := yx(t)〉φ

〈ẋ = θ〉φ

(D10)
∀t≥0 [x := yx(t)]φ

[ẋ = θ]φ

(D11)
` p ` [α∗](p→ [α]p)

` [α∗]p

(F1)
QE(∀x

V
i(Γi ` ∆i))

Γ ` ∆, ∀xφ

(F2)
QE(∀x

V
i(Γi ` ∆i))

Γ, ∃xφ ` ∆

(F3)
QE(∃x

V
i(Γi ` ∆i))

Γ ` ∆, ∃xφ

(F4)
QE(∃x

V
i(Γi ` ∆i))

Γ, ∀xφ ` ∆

Rule D8 is only applicable if the substitution of x by θ in φθ
x introduces no new bindings. In D9–D10, t

is a fresh variable, and, for any v, yv is the solution of the initial value problem (ẋ = θ, x(0) = v).
In F1–F4, x does not occur in Γ,∆. Further, the Γi ` ∆i are obtained from the resulting sub-goals of
a side deduction. The side deduction is started from the goal Γ ` ∆,φ at the bottom (or Γ, φ ` ∆ for
F2 and F4). In the resulting sub-goals Γi ` ∆i, variable x is assumed to occur in first-order formulas
only, as quantifier elimination (QE) is then applicable.

Fig. 1: Rule schemata of the dL verification calculus.

quantifier elimination [8] over the reals (QE in F1–F4) in a way that is compatible
with dynamic modalities. D9–D10 handle continuous evolution given a first-order
definable flow yx for the differential equation ẋ = θ with symbolic initial value x.
D11 is an induction schema with inductive invariant p.

At this point, the full details of how F1–F4 use side deductions to lift quan-
tifier elimination to dynamic logic are not important (they can be found in [20]).
What is important to note, however, is that quantifier rules and rules for han-
dling modalities need to interact because the actual constraints on quantified
symbols depend on the effect of the hybrid programs within modalities [20].
Thus, at some point, after a number of rule applications that handle the dy-
namic part, rules F1–F4 will be used to discharge (or at least simplify) a proof
obligation over real algebraic or semialgebraic constraints by quantifier elimina-
tion [8]. The remaining sub-goals will be analysed further again using dynamic
rules. The rules F1–F4 constitute the modular interface that combines deduc-
tion for handling dynamic reasoning with algebraic constraint techniques for
handling continuous reasoning about R. We discuss the consequences and prin-
ciples of this combination in Section 4 and analyse proof strategies.
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3 Analysis of the European Train Control System

In this section, we report on the applications in safety-critical system verification
that we verify in the dL calculus, see [21, 20]. We illustrate the typical kinds
of proof obligations that occur during our deductive analysis of such hybrid
systems. Our experience with verifying these applications forms the basis for our
analysis of prover combinations and will be used for illustration in Section 4.

Train Control Applications. In the European Train Control System (ETCS) [9,
20], trains are only allowed to move within their current movement authority
block (MA). When their MA is not extended before reaching its end, trains al-
ways have to stop within the MA because there can be open gates or other trains
beyond. Here, we identify a single component which is most responsible for the
hybrid characteristics of safe driving. The speed supervision is responsible for
locally controlling the movement of a train such that it always remains within
its MA. Depending on the current driving situation, the speed supervision de-
termines a safety envelope s around the train, within which driving is safe, and
adjusts its acceleration a in accordance with s (called correction in [9]).

We assume that an MA has been granted up to track position m and the
train is located at position z, heading with initial speed v towards m. In this
situation, dL can verify safety properties of speed supervision of the form

ψ → [(corr ; drive)∗]z ≤ m (1)

where corr ≡ (?m− z < s; a :=−b) ∪ (?m− z ≥ s; a := . . . )

drive ≡ τ := 0; (ż = v, v̇ = a, τ̇ = 1; ?v ≥ 0 ∧ τ ≤ ε)

ψ ≡ v2 ≤ 2b(m− z) ∧ b > 0 ∧ ε > 0 . (2)

It expresses that a train will always remain within its MA m, assuming a con-
straint ψ for the parameters. In corr , the train corrects its acceleration or brakes
with force b (as a failsafe recovery manoeuvre [9]) on the basis of the remaining
distance (m−z). Then, the train continues moving according to drive. There, the
position z of the train evolves according to the system ż = v, v̇ = a (i.e., z̈ = a).
The evolution stops when the speed v drops below zero (or earlier). Simulta-
neously, clock τ measures the duration of the current drive phase before the
controllers react to situation changes (we model this to bridge the gap of con-
tinuous-time models and discrete-time control design). Clock τ is reset to zero
when entering drive, constantly evolves along τ̇ = 1, and is bound by the invari-
ant region τ ≤ ε. The effect is that a drive phase is interrupted for reassessing
the driving situation after at most ε seconds, and the corr; drive loop repeats.

Parameter Constraint Discovery. In addition to proof tasks for safety verifica-
tion, the dL approach is also useful for parameter constraint discovery. That is,
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ψ ` [α]φ

Deductive
Prover

QE(Φ)

Φ

R-Algebraic
Elimination

key

QE(key)

Fig. 2: Prover combination of deduction and algebraic constraint elimination.

instead of starting with a concrete instantiation for ψ in formula (1), the dL cal-
culus can be used to identify the required constraints ψ on the free parameters
of (1) during the proof. In particular, the constraint ψ in (2) has been discovered
by a (semi)automatic discovery process with the dL calculus [20].

Finding Inductive Invariants. As a related proof task, the dL calculus can be
useful for identifying inductive invariants that D11 needs during a proof [20] by
analysing partial proofs of individual cases.

4 Combining Deduction and Algebraic Constraints

4.1 Modular Combination of Provers

The principle how the dL calculus in Fig. 1 combines deduction technology
with methods for handling real algebraic constraints complies with the general
background reasoning principles [4, 26, 12]. Unlike in the approaches of Dowek
et al. [12] and Tinelli [26], the information given to the background prover is
not restricted to ground formulas [26] or to atomic formulas as in [12]. From an
abstract perspective, the dL calculus selects a set Φ of (quantified) formulas from
an open branch (Φ is called key) and hands it over to the quantifier elimination
procedure. The resulting formula obtained by applying QE to Φ is then returned
to the main sequent prover as a result, and the main proof continues, see Fig. 2.

In this context, the propositional rules and D-rules (D1–D11) constitute the
foreground rules in the main prover (left box of Fig. 2) and the arithmetic rules
F1–F4 form the set of rules that invoke the background prover (right box).

The tableaux procedure [13] for the dL calculus is presented in Fig. 3. Ob-
serve that the tableaux procedure for our dL calculus has a modified set of
nondeterministic steps (indicated by B, M, and F , respectively in Fig. 4):

B: selectBranch, i.e., which open branch to choose for further rule applications.
M: selectMode, i.e., whether to apply foreground dL rules (P1–P9 and D1–D11)

or background arithmetic rules (F1–F4).
F : selectFormula, i.e., which formula(s) to select for rule applications from the

current branch in the current mode.
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while tab leaux T has open branches do
B := se l ec tBranch (T) (∗ B−nondeterminism ∗)
M := se lectMode (B) (∗ M−nondeterminism ∗)
F := se l ec tFormu las (B,M) (∗ F−nondeterminism ∗)
i f M = foreground then

B2 := r e s u l t o f apply ing a D−r u l e or P−r u l e to F in B
r ep l a c e B by B2 in T

else
send key F to background d e c i s i o n procedure QE
receive r e s u l t R from QE
apply a ru l e F1−F4 to T with QE−r e s u l t R

end i f
end while

Fig. 3: Tableaux procedure for dL.

ψ ` [α]φ

F
M

B
Deductive Prover

QE(Φ)

Φ

R-Algebraic
Elimination

M

Fig. 4: Nondeterminisms in the tableaux procedure for dL.

A further, but minor, nondeterminism is whether to expand loops using D6 or
to go for an induction by D11. The other dL rules do not produce any conflicts
once a formula has been selected as they apply to formulas of distinct structures.

At this point, notice that, unlike the classical tableaux procedure [13], we
have three rather than four points of nondeterminism, since dL does not need
closing substitutions. The reason for this is that dL has an interpreted domain.
Rather than having to try out instantiations that have been determined by
unification as in uninterpreted first-order logic [13], we can make use of the
structure in the interpreted case of first-order logic over the reals. In particular,
arithmetic formulas can be reduced equivalently by QE to simpler formulas in the
sense that the quantified symbols no longer occur. As this transformation is an
equivalence, there is no loss of information and we do not need to backtrack [13]
or simultaneously keep track of multiple local closing instantiations [15].

Despite this, the influence of nondeterminism on the practical prover per-
formance is remarkable. Even though the theory of real arithmetic is decidable
by quantifier elimination [8], its complexity is doubly exponential in the number
of quantifier alternations [10]. While more efficient algorithms exist for linear
fragments [18], the practical performance is an issue in nonlinear cases. The
computational cost of individual rule applications is quite different from the
linear complexity of applying closing substitutions in uninterpreted tableaux.
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In principle, exhaustive fair application of background rules by the nondeter-
minismsM and F remains complete for appropriate fragments of dL. In practice,
however, the complexity of real arithmetic quickly makes this näıve approach
infeasible. In the remainder of this section, we discuss the consequences of the
nondeterminisms and sketch guidelines to overcome the combination problems.

4.2 Nondeterminisms in Branch Selection

In classical uninterpreted tableaux, branch selection has no impact on complete-
ness but can have impact on the proving duration as closing substitutions can
sometimes be found much earlier on one branch than on the others. In the inter-
preted case of dL, branch selection is even less important. As dL has no closing
substitutions, there is no direct interference among multiple branches. Branches
with (explicitly or implicitly) universally quantified variables have to be closed
independently, hence the branch order is not important. For instance, when x is
an implicitly universally quantified variable, the branches in the following proof
can be handled separately (branches are implicitly combined by conjunction and
universal quantifiers distribute over conjunctions):

QE(∀x . . . )
F1Γ, b > 0 ` bx2 ≥ 0

QE(∀x . . . )
F1Γ, b > 0 ` bx4 + x2 ≥ 0

P5 Γ, b > 0 ` (bx2 ≥ 0 ∧ bx4 + x2 ≥ 0)

For existentially quantified variables, the situation is a bit more subtle as
multiple branches interfere indirectly in the sense that a simultaneous solution
needs to be found for all branches at once. In ∃v (v > 0 ∧ v < 0), for instance,
the two branches resulting from the cases v > 0 and v < 0 cannot be handled
separately as the existential quantifier claims the existence of a simultaneous
solution for v > 0 and v < 0, not two different solutions. Thus, when v is an
implicitly existentially quantified variable, the branches in the following proof
need to synchronise before quantifier elimination is applied:

QE(∃v . . . )
b > 2 ` b(v − 1) > 0

D8b > 2 ` [v := v − 1]bv > 0
b > 2 ` (v + 1)2 + bε(v + 1) > 0

D8b > 2 ` [v := v + 1]v2 + bεv > 0
b > 2 ` ([v := v − 1]bv > 0 ∧ [v := v + 1]v2 + bεv > 0)

The order in which the intermediate steps at two branches are handled has no
impact on the proof. Branches like these synchronise on an existential variable v
in the sense that all occurrences of v need to be first-order for quantifier elimina-
tion to work. Consequently, the only fairness assumption for B is that whenever
a formula of a branch is selected that is waiting for synchronisation with another
branch to become first-order, then it propagates its rule application to the other
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branch. In the above case the left branch synchronises with the right branch
on v. Hence, rule F3 can only be applied to b(v − 1) > 0 on the left branch after
D8 has been applied on the right branch to yield first-order occurrences of v.

4.3 Nondeterminisms in Formula Selection

In background proving mode, it turns out that nondeterminism F is important
for the practical performance. When a branch closes or, at least, can be simplified
significantly by a quantifier elimination call, then the running time of a single
decision procedure call seems to depend strongly on the number of irrelevant
formulas that are selected in addition to the relevant ones by F .

Clearly, when Φ is a set of formulas that yields a tautology such that ap-
plying F1–F4 closes a branch, then selecting any superset Ψ ⊇ Φ of Φ from a
branch yields the same answer in the end (a sequent forms a disjunction of its
formulas hence it can be closed to true when any subset closes). However, the
running time until this result will be found in the larger Ψ is strongly disturbed
by the presence of complicated additional but irrelevant formulas. From our ex-
perience with Mathematica, decision procedures for full real arithmetic seem to
be distracted considerably by such irrelevant additional information.

Yet, such additional information accumulates in tableaux procedures quite
naturally, because the purpose of a proof branch in dL is to keep track of all
that is known about a particular (symbolic) case of the system behaviour. Gen-
erally, not all of this knowledge finally turns out to be relevant for that case
but only plays a role in other branches. Nevertheless, throwing away part of this
knowledge light-heartedly would, of course, endanger completeness.

For instance, the safety statement (1) in Section 3 depends on a constraint
on the safety envelope s that regulates braking versus acceleration by the con-
dition m− z ≥ s in corr . A maximal acceleration of a is permitted in case
m− z ≥ s, when adaptively choosing s depending on the current speed v, max-
imum braking force b, and maximum controller response time ε in accordance
with the following constraint (which can be discovered by the dL calculus [20]):

s ≥ v2

2b
+

(a
b

+ 1
) (a

2
ε2 + εv

)
. (3)

This constraint is necessary for some but not for all cases of the safety analysis,
though. In the case where the braking behaviour of ETCS is analysed, for in-
stance, the constraint on s is irrelevant, because braking is the safest operation
that a train can do to avoid crashing into preceding trains. The unnecessary
presence of several quite complicated constraints like, for instance, (3), however,
can distract quantifier elimination procedures considerably.

A possible solution for this is to iteratively consider more formulas of the
sequent and attempt decision procedure calls. There, only those additional for-
mulas need to be considered that share variables with any of the other selected
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formulas. Further, timeouts can be used to discontinue lengthy decision proce-
dure calls and continue along other choices of the nondeterminisms in Fig. 3. For
complicated cases with a prohibitive complexity, this heuristic process, which we
followed manually, worked well on our examples.

4.4 Nondeterminisms in Mode Selection

In its own right, nondeterminism M has less impact on the prover performance
than F . Every part of a branch could be responsible for closing it. In particular,
the foreground closing rule P9 of the main prover can only close branches for
comparatively trivial reasons like b > 0, ε > 0 ` ε > 0. Hence, mode selection has
to give a chance to the background procedure every once in a while, following
some fair selection strategy. From the observation that some decision procedure
calls can run for hours without terminating, we can see, however, that M needs
to be devised with considerable care.

As the reason for closing a branch can be hidden in any part of the sequent,
some expensive decision procedure calls can be superfluous if the branch can
be closed by continuing dL reasoning on the other parts. For instance, if F
is some complicated algebraic constraint, decision procedure calls triggered by
nondeterminism M can lead to nontermination within any feasible time for

. . . , ε > 0,m− z ≥ s ` F, [drive]ε > 0, . . .

Instead, if M chooses foreground rules, then an analysis of [drive]ε > 0 by dL
rules will quickly discover that the maximum reaction-time ε remains constant
while driving. Then, this part of the induction step closes without the need to
solve constraint F at all. For this reason, proof strategies that eagerly check for
closing branches by background procedure calls are not successful in practice.

Unfortunately, converse strategies that strongly favour foreground dL rule
applications in M, are not appropriate either. There, splitting rules like P5
and P7 can eagerly split the problems onto multiple branches without necessarily
making them any easier to solve. If this happens, then slightly different but
similar arithmetic problems of about the same complexity need to be solved on
multiple branches rather than just one resulting in runtime blow-up.

The reason why this can happen is that there is a syntactic redundancy in
the sequent encoding of formulas. For instance, the sets of sequents before and
after the following rule application are equivalent:

P5
ψ ` v2 ≤ 2b(m− z) ψ ` ε > 0 ψ ` (z ≥ 0 → v ≤ 0)

ψ ` v2 ≤ 2b(m− z) ∧ ε > 0 ∧ (z ≥ 0 → v ≤ 0)

Yet, closing the three sequents above the bar by quantifier elimination is not
necessarily easier than the single sequent below (neither conversely). Even worse,
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if the sequents close by applying rules to ψ, then similar reasoning has to be
repeated for three branches. This threefold reasoning may not be detected as
identical when ψ is again split differently on the three resulting branches.

Further, the representational equivalence in sequents is purely syntactic, i.e.,
up to permutation, the representations share the same disjunctive normal form.
In the uninterpreted case, this syntactic redundancy is exploited by the rules P1–
P9 in order to transform sequents towards a canonical form with atomic formu-
las, where partial closing situations are more readily identifiable. In the presence
of a background decision procedure, however, reduction to sequents with atomic
formulas is no longer necessary as it will be undone when handing the formulas
over to the background decision procedure.

Even worse, algebraic constraint handling techniques as in Mathematica can
come up with a result that is only a restated version of the input when a
selected (open) formula cannot be simplified or closed. For instance, the se-
quent z < m ` v2 ≤ 2b(m− z) “reduces” to ` b ≥ v2/(2m− 2z) ∨m ≤ z with-
out any progress. Such reformulation can easily lead to infinite proof loops when
the outcome is split by P8 and again handled by the background procedures.

4.5 Iterative Background Closure Strategy

As a strategy to solve the previously addressed issues, we propose the priorities
for rule applications in Fig. 5a (with rules at the top taking precedence over rules
at the bottom). In this strategy, algebraic constraints are left intact as opposed
to being split among multiple branches, because arithmetic rules have a higher
priority than propositional rules on first-order constraints. Further, the result of
the background procedure is only accepted when the number of variables has
decreased to avoid proof loops. Arithmetic background rules have priority 1 or 6.

The effect of using priority 1 is that branches are checked eagerly for closing
conditions or variable reductions. If reasoning about algebraic constraints does
not yield any progress (no variables can be eliminated), then dL rules further
analyse the system. For this choice, it is important to work with timeouts to
prevent lengthy decision procedure calls from blocking dL proof progress.

1. arithmetic rules F1–F4 if variable eliminated
2. propositional rules P1–P4, P8–P9 on modalities
3. dynamic rules D1–D4, D7–D8
4. dynamic evolution rules D9–D10
5. splitting rules P5–P7 on modalities
6. arithmetic rules F1–F4 if variable eliminated
7. propositional rules P1–P9 on first-order formulas

5a: Proof strategy priorities.

1

2 2

4 4

8 8

16 16 16

∗
∗

5b: Iterative background closure.
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This problem is reduced significantly when priority 6 is used for arithmetic
rules instead. The effect of priority 6 is that formulas containing modalities are
analysed as much as possible before arithmetic reasoning is applied to algebraic
constraint formulas. Then, however, the prover can again take too much time
analysing the effects of programs on branches which would already close due to
simple arithmetic facts like in ε > 0, ε < 0 ` [α]φ.

A simple compromise is to use a combination of background rules with pri-
ority 1 for quick linear arithmetic [18] and to fall back to expensive quantifier
elimination calls for nonlinear arithmetic with priority 6.

As a more sophisticated control strategy on top of the static priorities in
Fig. 5a, we propose iterative background closure (IBC). There, the idea is to
periodically apply arithmetic rules with a timeout T that increases by a factor
of 2 after background procedure runs have timed out, see Fig. 5b. Thus, back-
ground rules interleave with other rule applications (triangles in Fig. 5b), and
the timeout for the sub-goals increases as indicated until the background proce-
dure successfully eliminated variables on a branch (marked by ∗). The effect is
that the prover avoids splitting in the average case but is still able to split cases
when combined handling turns out to be prohibitively expensive.

5 Conclusions and Future Work

From the experience of using our dL calculus [20] for verifying parametric hybrid
systems in traffic applications, we have investigated combinations of deductive
and algebraic reasoning from a practical perspective. We have analysed the prin-
ciples of this prover combination, identified the nondeterminisms that remain in
the dL tableaux procedure, and analysed their impact. We have proposed proof
strategies that navigate among these nondeterminisms, including an iterative
background closure strategy. Similar to the huge importance of subsumption in
resolution, background-style tableaux proving requires quick techniques to rule
out branches closing for simple arithmetic reasons. In our preliminary experi-
ments with verifying cooperating traffic agents, our proof strategies significantly
reduced the number of interactions and the overall running time significantly.

Future work includes validation of the IBC strategy by experiments in other
case studies using a full implementation in our verification tool. Further, we
will develop techniques that guide the selection of algebraic constraints by term
weight and variable occurrence to discharge simple cases quickly.

Acknowledgements. I thank the anonymous referees for their helpful comments.
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