
Evaluation of the Impact of Cache Coherence
Protocol and Data Locality on the Efficiency of

Atomic Operations on Multicore Processors?

Evgeniy Goncharenko[0000−0002−6203−8034] and Alexey
Paznikov[0000−0002−3735−6882]

Saint Petersburg Electrotechnical University “LETI”, 5 Professora Popova Str., Saint
Petersburg 197022, Russia kesvesna@rambler.ru, apaznikov@gmail.com

Abstract. In this work, we analyze the efficiency of atomic operations
compare-and-swap (CAS), fetch-and-add (FAA), swap (SWP), load and
store on modern multicore processors. These operations implemented in
hardware as processor instructions are highly demanded in multithreaded
programming (design of thread locks and non-blocking data structures).
In this article we study the influence of cache coherence protocol, size
and locality of the data on the latency of the operations. We developed
a benchmark for analyzing the dependencies of throughput and latency
on these parameters. We present the results of the evaluation of the
efficiency of atomic operations on modern x86-64 processors and give
recommendations for the optimizations. Particularly we found atomic
operations, which have minimum (load), maximum (“successful CAS”,
store) and comparable (“unsuccessful CAS”, FAA, SWP) latency. We
showed that the choice of a processor core to perform the operation and
the state of cache-line impact on the latency at average 1.5 and 1.3 times
respectively. The suboptimal choice of the parameters may increase the
throughput of atomic operations from 1.1 to 7.2 times. Our evidences
may be used in the design of new and optimization of existing concurrent
data structures and synchronization primitives.

Keywords: Atomic operations · Atomics · Multithreading · Multicore ·
Cache coherence.

1 Introduction

1.1 A Subsection Sample

Multicore shared-memory computer systems (CS) include desktop and server
systems as well as computer nodes within distributed CS (cluster systems, mas-

? The reported study was funded by RFBR according to the research projects
No 19-07-00784, 18-57-34001 and was supported by Russian Federation President
Council on Grants for governmental support for young Russian scientists (project
SP-4971.2018.5).

Copyright c© 2019 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).



2 E. Goncharenko, A. Paznikov

sively parallel systems, supercomputers). Such systems may include tens and
hundreds of processor of processor cores. For example, a computer node of Sum-
mit supercomputer (first place in TOP500 supercomputer ranking, more than
2 million processor cores, 4608 nodes) include two 24-core universal processor
IBM Power9 and six graphical accelerators NVIDIA Tesla V100 (640 cores). Sun-
way TaihuLight (more than 10 million processor cores, third place in TOP500)
is equipped with 40960 Sunway SW26010 processors with 260 cores. Proces-
sor cores in such systems are connected via processor interconnects (Intel QPI,
AMD HyperTransport) according to the NUMA architecture. Notice, that cache
memory in such systems is organized in very complicated ways, including differ-
ent policies (inclusive, exclusive cache) and coherence protocols (MESI, MOESI,
MESIF, MOWESI, MERSI, Dragon).

One of the most relevant tasks in parallel programming is the design of effi-
cient tools for parallel thread synchronization. The main synchronization meth-
ods are locks, non-blocking (lock-free, wait-free, obstruction-free) concurrent
(thread-safe) data structures and transactional memory [1–8]. Atomic opera-
tions (atomic) are used for implementation of all synchronization methods. The
operation is atomic, if it’s performed in one undividable step relative to other
threads. In other words, no thread can observe this operation as “partially com-
pleted”. If two or more threads perform operations with a shared variable and
at least one of them writes (stores) to it, then the threads must use atomic
operations to avoid data races.

The most common atomic operations are compare-and-swap (CAS), fetch-
and-add (FAA), swap (SWP), load (read), store (write). Load(m, r) reads the
variable’s value from the memory address m to the processor register r. Store(m, r)
writes the value of the variable from the processor register r to the memory ad-
dress m. FAA(m, r1, r2) increments (or decrements) by register’s value r1 the
value of variable in memory address m and returns the previous value in the
register r2. SWP(m, r) exchanges the values of the memory address m and reg-
ister r. CAS(m, r1, r2) compares the memory value m with the register r1; if
the values are equal, modify memory m to a new value r2. Designing parallel
programs, we should consider the impact to the atomic operation efficiency such
aspects as cache coherence protocol, buffer size, thread number, data locality.

Despite the widespread use, the efficiency of atomic operations has not been
adequately analyzed at the current moment. For example, some works still claim
that CAS is slower than FAA [9] and its semantics cause the “wasted work” [10,
11], since unsuccessful comparisons of the data in memory and in the register
lead the additional load to the processor core. The works [12] states that the
performance of atomic operations is similar on multi-socket systems because
of the overheads from the hops between the sockets. The paper [11] analyzes
the performance of atomic operations on graphical processors, but currently the
urgent problem is the evaluation of the costs of atomic operations on universal
processors. The work [13] considers the efficiency of atomic operations CAS,
FAA, SWP for analyzing the impact of dynamical parameters of a program to
the atomic operation execution time. The results show undocumented properties



Evaluation of the Impact of Cache Coherence Protocol 3

of the investigated systems and the evaluation of the atomic operation execution
time. However, the experiments have been carried out with fixed processor core
frequency, with huge pages activated and disabled prefetching. We suppose that
these conditions distort simulation results for real programs. In addition, the
operations load and store have not been examined.

In this work we consider operations CAS, FAA, SWP, load, store, wherein
the conditions of the experiments are as close as possible to the real conditions
of parallel program execution. In particular, the core frequency is not fixed, huge
pages are disabled, and cache prefetching is enabled. We evaluate the efficiency
of atomic operations for modern x86-64 processor architectures depending on
the cache line state (in cache coherence protocol), buffer size and its locality
(relative to the core, executed the operations). Besides, we consider different
variants of CAS operation (successful and unsuccessful).

2 Design of benchmarks

As a metrics we used latency l of atomic operation execution and throughput b.
Throughput b = n/t, where n is the number of executed operations of sequential
access to the buffer’s cells in time t.

To measure the execution time, we used the instruction set RDTSCP. To
avoid reordering while executing operations we used full memory barriers.

We investigated the influence of cache line state (within the cache coherence
protocol: M, E, S, O, I, F) to the atomic operation efficiency. Define the basic
states of cache lines. M (Modified) – cache-line is modified and contains actual
data. O (Owned) – cache line contains actual data and is the only owner of
this data. E (Exclusive) – cache-line contains actual data, which is equal to the
memory state. S (Shared) – cache-line contains actual data and other processor
cores have actual copies of this data at the same time. F (Forwarded) – cache-
line contains the most actual correct data and other cores may have copies of
this data in shared state. I (Invalid) – cache-line contains invalid data.

We designed a benchmark. In this benchmark we allocate integer buffer q of
size s = 128 MiB. The data is placed in the cache-memory and cache-lines are
translated to a given state of the cache coherence protocol. Notice, that we don’t
use virtual memory. All the data was unaligned. To set state M for cache-lines
we write arbitrary values to the buffer’s cells. To set state E we write arbitrary
values to the buffer’s cells and then perform clflush instruction to set the state
of cache-lines to I followed by reading the buffer’s cells. To set the state S a
processor core reads buffer’s cells from the cache-lines with state E of another
core. To set the state O a processor reads from the cache-lines with state M of
another core’s cache-memory (cache-lines are switched from M to O).

For the CAS operation we performed two experiments: for successful and
unsuccessful operation. Unsuccessful CAS is such CAS, when m 6= r1 (the mem-
ory is not changed). The deliberately unsuccessful execution of CAS is achieved
by comparing the address of the pointer with the data on that pointer. For
successful CAS m = r1 (the memory is changed).



4 E. Goncharenko, A. Paznikov

We conducted experiments with the next processors: AMD Athlon II X4
640 (microarchitecture K10), AMD A10-4600M (microarchitecture Piledriver)
(cache coherence protocol MOESI [14]), Intel Xeon X5670 (microarchitecture
Westmere-EP) and Intel Xeon E5540 (microarchitecture Nehalem-EP) (cache
coherence protocol MESIF [15]). Cache line size if 64 bytes. As a compiler we
used GCC 4.8.5, operating system is SUSE Linux Enterprise Server 12 SP3
(kernel 4.4.180).

(a) Piledriver (b) K10 (c) Nehalem-EP (d) Westmere-EP

Fig. 1: Target microarchitectures.

Next, we describe the main steps of the algorithm for measuring the execution
time of atomic operations for state E (fig. 2a). Auxiliary function DoOper
executes defined atomic operation for all the elements of the buffer. The main
algorithm is performed until the buffer size reach the maximum value (line 1).
Used range of test array testSizeBuffer in the experiments is varied from 6 KiB
(minimal size L1 cache) to 128 MiB (larger than L3 cache). Each experiment
is executed nruns times (line 2). Then we store arbitrary values to the buffer’s
cells to set cache-lines of the core c0 to the state M (for the other cores the state
is changed to I) (line 3). After that, we invalidate cache-lines (line 8) followed
by the reading to set cache-lines of the core c0 to the state E (line 5). On the
next step for each variable we perform atomic operation (line 7). In the end we
compute the operation execution time and total execution time (line 9), compute
the latency (line 11), throughput (line 12) and increase the current buffer size
by step = Lx/8, where Lx is the cache memory size for levels x = 1, 2, 3 (line
13).

Here are the main steps of the algorithm for time measurement of atomic
operation execution by the core c0 for cache-lines in state S (fig. 2b). This algo-
rithm is performed in two threads, affined to the cores c0 and c2. Synchronization
is implemented by means of atomic flags. The first thread on the core c0 writes
arbitrary data to the buffer, set the state of cache-lines to M (at the same time
for the other cores the state of these cache-lines is changed to I) (line 4). Then
we clean cache-lines (set to I) (line 5) and read data for changing the state of
cache-lines of c0 to the E (line 6). The second thread (core c2) reads the data,
changes the cache-line state of c0 to c2 cores to S (line 8). Then the first thread
on core c0 implements atomic operation with the elements of a buffer (line 11).
After that we get the time for operation execution and the metrics (lines 15-17).



Evaluation of the Impact of Cache Coherence Protocol 5

Function DoExpExlusive(oper)

1 while d ≤ testSizeBuffer do
2 for i = 0 to nruns do
3 DoOper(store(1), buf)
4 CLFlush(buffer, d)
5 DoOper(load, buf)
6 start= GetTime()
7 DoOper(oper, buf))
8 end = GetTime()
9 sumTime = sumTime + (end–start)
10 end for
11 latency = sumTime/nruns/d
12 bandwidth = (d/sumTime/nruns) × 109/220

13 d = d + step
14 end while

(a) Exclusive state

Function DoExpShared(oper)

1 while d ≤ testSizeBuffer do
2 for i = 0 to nruns do
3 . First thread on c0
4 DoOper(store(1), buf)
5 CLFlush(buffer, d)
6 DoOper(load, buf)

7 . Second thread on c2:
8 DoOper(load, buf)

9 . First thread on c0:
10 start =GetTime()
11 DoOper(oper, buf)
12 end = GetTime()
13 sumTime = sumTime + (end–start)
14 end for
15 latency = sumTime/nruns/d
16 bandwidth = (d/sumTime/nruns) × 109/220

17 d = d + step
18 end while

(b) Shared state

Fig. 2: Algorithm for measuring the latency and throughput of atomic operations
SWP/FAA/CAS/Load/Store and throughput

The following are the main steps of the algorithm for measurement of ex-
ecution time of atomic operations for the cores c1 and c2 in state S (fig. 3b).
The algorithm is performed in three threads, affined to the cores c0, c1, c2. The
first thread (core c0) writes to the buffer to set the state of cache-line of c0 to
M (for the rest of the cores the state is changed to I) (line 4). Then cache-line
is invalidated to the state I (line 5) followed by the reading data to set the state
of c0 to E (line 6). The second thread (core c1) reads the data (the state of
cache-lines in c0 and c1 is changed to S) (line 8). On the next step the third
thread (core c2) perform atomic operation with each element of the buffer (line
11). After that metrics are computed (lines 15-17).

For atomic operation latency measurement on the c1 we use the similar al-
gorithm, in which the steps for c1 and c2 cores are changed places with each
other.

The following are the main steps for the algorithm for measurement of execu-
tion time of atomic operations for cache-lines in state O on the core c0 (fig. 3a).
The algorithm is performed in two threads, binded to the cores c0 and c2. The
first thread (core c0) arbitrary data is written into the buffer to set the state of
cache-lines of the core c0 to M (for the rest cores the state is changed to I) (line
4). The second thread (core c2) reads the data to change the state of cache-lines
of the local core c0 to O and cache-lines of the core c2 to S (line 8). On the next
step the first thread (core c0) perform atomic operation for each variable in the
buffer (line 9). After that we compute atomic operation execution time and the
metrics (lines 13-15).



6 E. Goncharenko, A. Paznikov

Function DoExpLocalityShared(oper)

1 while d ≤ testSizeBuffer do
2 for i = 0 to nruns do
3 . First thread on c0:
4 DoOper(store(1), buf)
5 CLFLush(buf, d)
6 DoOper(load, buf)

7 . Second thread on c1
8 DoOper(Load)

9 . Third thread on c2:
10 start =GetTime()
11 DoOper(oper, buf))
12 end =GetTime()
13 sumTime = sumTime + (end–start)
14 end for
15 latency = sumTime/nruns/d
16 bandwidth = (d/sumTime/nruns) × 109/220

17 d = d + step
18 end while

(a) Exclusive state

Function DoExpLocalityOwned(oper)

1 while d ≤ testSizeBuffer do
2 for j = 0 to nruns do
3 . First thread on c0:
4 DoOper(store(1), buf)

5 . Second thread on c2:
6 DoOper(load, buf)

7 . First thread on c0:
8 start =GetTime()
9 DoOper(oper, buf)
10 end =GetTime()
11 sumTime = sumTime + (end–start)
12 end for
13 latency = sumTime/nruns/d
14 bandwidth = (d/sumTime/nruns) × 109/220

15 d = d + step
16 end while

(b) Shared state

Fig. 3: Algorithm for measuring the latency and throughput of atomic operations
SWP/FAA/CAS/Load/Store and throughput

3 Results and discussion

Fig. 4, 5 represent the experimental results for SWP operation. Latency on
all processor except Nehalem-EP highly depends on the locality. Local core c0
provides minimal latency especially for buffer size less than L2 cache. In shared
state (Fig. 5), the latency grows when buffer size exceeds L2 cache and in most
cases the impact of locality is insignificant on a large buffer size.

Figure 6 represents the latency of SWP operation on K10 processor for dif-
ferent cache-line states. It shows that state Modified gives minimal latency and
Invalid state gives the maximum latency. Exclusive and Shared states are com-
parable with each other. Meanwhile, execution on local processor (c1) provide
substantially lower latency, compared with remote ones (c2, c3). With increasing
buffer size, the effect of locality on latency decreases, because all the data is not
cached and locates in main memory.

Fig. 7 depicts latency evaluations for different atomic operations in Shared
state on K10 processor. As expected, Load has the minimal latency. Successful
Compare-and-swap gives substantially larger latency compared with the other
operations. Meanwhile, unsuccessful Compare-and-swap has the latency similar
to FAA and SWP. Store operation also has larger latency. The similar results
have been obtained for other processors.

Fig. 8 shows the results for the operation SWP, state O (Owned). The results
are similar to the other states.

The tables 1 and 2 show suboptimal parameters of atomic operation execu-
tion on Westmere-EP and Nehalem-EP processors. Similar results have been ob-
tained for the other processors. For example, on microarhictecures K10, Nehalem-
EP, Westmere-EP operation load has the minimal latency for state S on the core



Evaluation of the Impact of Cache Coherence Protocol 7

(a) Piledriver (b) K10

(c) Nehalem-EP (d) Westmere-EP

Fig. 4: Latency of atomic operation SWP for cache lines in the Exclusive state

c0 (from 1.14 to 1.81 ns), while for a Piledriver processor this operation has the
lowest latency on c0 and c2 cores (from 1.8 to 2.4 ns).

Table 3 shows the ratio of maximum and minimum throughput.

Table 1: Suboptimal parameters for the architecture Westmere-EP.

Operation Cache-line state Buffer size Core

Shared
memory

level
l,
ns

b,

MiB/s

Load Exclusive L2 c0, c1, c2 L3 1.1 – 1.15 823 – 866

Store Modified RAM c0, c1, c2 L3 4.1 – 4.21 226 – 230

FAA Invalid L1 c0, c1, c2 L3 1.89 – 1.91 490 – 499

SWP Invalid, Modified RAM c0, c1, c2 L3 1,93 493

unCAS Exclusive L1, L2 c0, c1, c2 L3 2.55 – 2.59 367 – 372

CAS Invalid L2, L 3 c0, c1, c2 L3 4.9 – 19.3 49 – 194

State of cache-lines is M. Metrics for atomic operations SWP, FAA, unCAS
on the core c0 for Piledriver architecture slightly varies with buffer resizing,
meanwhile for the cores c1 and c2 the increasing of the buffer more than L2
leads the latency reduction down to minimum value for the both cores. For
K10 at buffer size exceeding L2 latency of operations SWP, FAA, unCAS differs



8 E. Goncharenko, A. Paznikov

(a) Piledriver (b) K10

(c) Nehalem-EP (d) Westmere-EP

Fig. 5: Latency of atomic operation SWP for cache lines in the Shared state

slightly. Latency of load, SWP, CAS for Nehalem-EP latency is comparable for
all cores for buffer size more than L3. There are similar observations for load,
SWP for Westmere-EP. For other operations (store, CAS, FAA, unCAS) latency
is the minimum for the core c0 and doesn’t depends on the buffer size.

State of cache-lines is E. Operations SWP, FAA, unCAS on Piledriver archi-
tectures and the buffer size more than L2 for c1 and c2 latency is comparable,
for c0 core we obtained maximum values at the same time. For K10 architecture
latency of operations SWP, FAA, unCAS is similar for all the cores for buffer size
exceeding L2. For Nehalem-EP latency of SWP, load is similar on all the cores
for buffer size more than L3. For Westmere-EP minimum latency for load, SWP,
FAA, CAS operations was obtained on the core c0. For c1 and c2 and buffer size
more than L3 latency varies slightly. State of cache-lines is S. Operations SWP,
FAA on Piledriver architecture for buffer size L1 latency is maximum on the
core c0. On K10 for buffer size L2 maximum latency was obtained on the core c0
for SWP, FAA, store operations. For Nehalem-EP and Westmere-EP for buffer
size L2 latency of SWP, FAA is maximum on c1 and c2 cores.

State of cache-lines is I. Operations SWP, FAA, unCAS on Piledriver archi-
tecture buffer size the buffer size does not significantly affect the runtime for
all cores; the lowest latency was obtained on c1 and c2 cores. Load and SWP
operations on K10 at buffer size more than L2 latency is minimal for c0 core. For
Nehalem-EP latency of SWP, load is similar for all the cores at buffer size more



Evaluation of the Impact of Cache Coherence Protocol 9

(a) Modified (b) Exclusive

(c) Shared (d) Invalid

Fig. 6: Latency of atomic operation SWP for K10 processor core for different
cache-line states

than L3. For operations load, SWP, FAA, CAS on Westmere-EP the minimal
latency was obtained on the core c0.

State of cache-lines is O. Operations SWP, FAA on Piledriver at buffer size
L1 the maximum latency was obtained on the c0 core. For the core c1 buffer
size does not affect to the operation latency. The maximal latency of operations
SWP, FAA, store on K10 is obtained for buffer size L2 on c0 core.

If we compare all the operations among each other, “successful CAS” has
the highest latency and load has the lowest latency. For example, for the K10,
Westmere-EP cores minimal latency was obtained for the state S on the core
c0 and equals from 12 to 24 ns; for Piledriver processor CAS has the minimal

Table 2: Suboptimal parameters for the architecture Nehalem-EP.

Operation Cache-line state Buffer size Core

Shared
memory

level
l,
ns

b,

MiB/s

Load Shared L2 c0, c1, c2 L3 1,30 – 1,34 706 - 730

Store Shared L1, RAM c0, c1, c2 L3 2,32 410

FAA Shared RAM c0, c1, c2 L3 2,32 – 2,33 409 - 410

SWP Shared L2 c0, c1, c2 L3 2,77 – 2,79 341 - 343

unCAS Exclusive L2, L3, RAM c1, c2 L3 4,97 – 5,12 186 - 191

CAS Modified L3, RAM c0, c1 L3 9,86 – 12,8 75 - 97



10 E. Goncharenko, A. Paznikov

(a) Load (b) Store

(c) Swap (SWP) (d) Fetch-and-add (FAA)

(e) Successful CAS (f) Unsuccessful CAS (unCAS)

Fig. 7: Latency of atomic operations for K10 processor for Shared cache-line state

value on cores c0 and c2 (from 42 to 44 ns); on Nehalem-EP in the state S
CAS performs with minimal latency on the core c0 (from 22 to 46 ns), wherein
the maximal latency (46 ns) was obtained for buffer size L2. For Piledriver
architecture latency of load operation (1.76 ns) exceed the minimal latency of
CAS (12.39 ns) by 7 times. For K10 architecture minimal latency of load (1.72
ns) exceeds minimal latency of CAS (22.38 ns) by 12 times. For Nehalem-EP the
ration of minimum load latency (1.3 ns) to minimum CAS latency (9.86) is 7.5.
For Westmere-EP architecture, the ratio of minimum load latency (1.1 ns) to
minimum CAS latency (4.9 ns) is 4.5. Comparing the microarchitecture, we note



Evaluation of the Impact of Cache Coherence Protocol 11

(a) Piledriver (b) K10

Fig. 8: Latency of atomic operation SWP for cache lines in the Owned state

Table 3: The ratio of maximum and minimum throughput (bmax/bmin) when
performing atomic operations.

Operation Piledriver K10 Nehalem-EP Westmere-EP

Load 1.4 1.1 2.1 2

FAA 1.1 1.2 2.2 1.1

SWP 1.1 1.2 2.1 1.1

unCAS 1.1 1.2 2.4 2.0

Store 3.9 1.1 2.1 1.1

CAS 1.1 1.6 6.1 7.2

that at average the lowest latency was obtained on the Westmere-EP processor
(MESIF protocol), and the largest on the Piledriver (MOESI protocol).

4 Conclusions

In this work, we developed the algorithms and software tools and conducted
experiments for efficiency analysis of atomic operations on modern multicore
shared-memory systems depending on buffer size, cache line state and data lo-
cality. We experimentally show that operations “unsuccessful CAS”, FAA and
SWP has the minimum latency. Load operation has the minimum latency and
operations “successful CAS” and store – maximum latency.

We analyzed the experimental results and gave the recommendations for
increasing the throughput and minimizing the latency of atomic operation per-
formance of modern processors. So, the application of our recommendations will
increase the throughput of atomic operations on the Piledriver processors from
1.1 to 3.9 times, on the K10 processor - from 1.1 to 1.6 times, on the Nehalem-
EP processor from 2.1 to 6, 1 time, on the Westmere-EP processor - from 1.1 to
7.2 times. Thus, the results show that the execution time of atomic operations
can vary widely, depending on the conditions of their execution (cache line state,
localization, and buffer size). These evidences should be considered for designing
new concurrent data structures and synchronization primitives.



12 E. Goncharenko, A. Paznikov

References

1. Herlihy, M., Shavit, N.: The art of multiprocessor programming. Morgan Kaufmann
(2011).

2. Paznikov, A., Shichkina, Y.: Algorithms for optimization of processor and memory
affinity for Remote Core Locking synchronization in multithreaded applications.
Information 9(1), pp. 21. (2018) https://doi.org/10.3390/info9010021

3. Anenkov, A. D., Paznikov, A. A., Kurnosov, M. G.: Algorithms for access localiza-
tion to objects of scalable concurrent pools based on diffracting trees in multicore
computer systems. In: 2018 XIV International Scientific-Technical Conference on
Actual Problems of Electronics Instrument Engineering (APEIE) pp. 374-380. IEEE
(2018) https://doi.org/10.1109/APEIE.2018.8545197

4. Tabakov, A. V., Paznikov, A. A.: Algorithms for optimization of relaxed concurrent
priority queues in multicore systems. In: 2019 IEEE Conference of Russian Young
Researchers in Electrical and Electronic Engineering (EIConRus) pp. 360-365. IEEE
(2019) https://doi.org/10.1109/EIConRus.2019.8657105

5. Tabakov, A. V., Paznikov, A. A.: Using relaxed concurrent data struc-
tures for contention minimization in multithreaded MPI programs. Journal
of Physics: Conference Series 1399(3), pp. 033037. IOP Publishing (2019)
https://doi.org/10.1088/1742-6596/1399/3/033037

6. Paznikov, A. A., Smirnov, V. A., Omelnichenko, A. R. Towards Efficient Im-
plementation of Concurrent Hash Tables and Search Trees Based on Soft-
ware Transactional Memory. In: 2019 International Multi-Conference on Indus-
trial Engineering and Modern Technologies (FarEastCon) pp. 1-5. IEEE (2019).
https://doi.org/10.1109/FarEastCon.2019.8934131

7. Kulagin, I., Kurnosov, M. Instrumentation and Optimization of Transac-
tional Sections Execution in Multithreaded Programs. In: Proc. of the In-
stitute for System Programming of the RAS, 27(6), pp. 135-150 (2015)
https://doi.org/10.15514/ISPRAS-2015-27(6)-9

8. Shavit, N., Touitou, D.: Software transactional memory. Distributed Computing
10(2), pp. 99-116. (1997) https://doi.org/10.1007/s004460050028

9. Morrison, A., Afek, Y.: Fast concurrent queues for x86 processors. ACM SIGPLAN
Notices 48(8), pp. 103-12. (2013) https://doi.org/doi.org/10.1145/2442516.2442527

10. Harris, T. L.: A pragmatic implementation of non-blocking linked lists. In: Inter-
national Symposium on Distributed Computing pp. 300-314. Springer (2001)

11. Elteir, M., Lin, H., Feng, W. C.: Performance characterization and optimization of
atomic operations on amd gpus. In: 2011 IEEE International Conference on Cluster
Computing, pp. 234-243. IEEE (2011) https://doi.org/10.1109/CLUSTER.2011.34

12. David, T., Guerraoui, R., Trigonakis, V.: Everything you always wanted to know
about synchronization but were afraid to ask. In: Proc. of the Twenty-Fourth ACM
Symp. on Operating Systems Principles pp. 33-48. ACM (2013)

13. Schweizer, H., Besta, M., Hoefler, T.: Evaluating the cost of atomic operations on
modern architectures. In: 2015 Int. Conf. on Parallel Architecture and Compilation
(PACT), pp. 445-456. IEEE (2015) https://doi.org/10.1109/PACT.2015.24

14. Dey, S., Nair, M. S.: Design and implementation of a simple cache simulator in
Java to investigate MESI and MOESI coherency protocols. International Journal of
Computer Applications 87(11), pp. 6-13. (2014)

15. Molka, D., Hackenberg, D., Schone, R., Muller, M. S.: Memory performance and
cache coherency effects on an intel nehalem multiprocessor system. In: 2009 18th
Int. Conf. on Parallel Architectures and Compilation Techniques, pp. 261-270. IEEE
(2009) https://doi.org/10.1109/PACT.2009.22


