CEUR-WS.org/Vol-2590/paper2l.pdf

Utilizing Metadata to Select a Recommendation
Algorithm for a User or an Item

Alexander Nechaevl[0000_0002_0464_9961], Nataly Zhukova2 [0000—0001—5877—4461]7
and Vasily Meltsovl[0000700017547979979]

! Vyatka State University, Kirov, Russia
2 ITMO University, St. Petersburg, Russia
dapga@yandex.ru, nazhukova@mail.ru, meltsov69@mail.ru

Abstract. In general, recommender systems solve the problem of infor-
mation overload by helping users of services to find items in which they
are interested. There are plenty of algorithms and models that can be
used to build such a subset of items, and their performance may vary
not only for different datasets but for separate parts of a single one. This
issue leads to the ”algorithm selection problem”. Many state-of-art solu-
tions to this problem are based on meta-learning. It associates the task
features with the performance of the base-level algorithms and models.
This paper presents the method of recommendation algorithm selection
for particular users (or items) that uses binary representations of both ex-
plicit metadata of them and computable statistical meta-features. There
are two different techniques within the proposed method, which are based
on classification or clustering of such binary data, respectively. The meta-
learning process is almost automated. The findings of the experiments
prove that the usage of the method for recommendation algorithm se-
lection is reasonable and effective. In most cases, a recommender system
that uses the metamodel shows lower rating prediction errors compared
to any other one utilizing a single model or algorithm for all the users
(or items), while in a small number of tests their performance is just the
same. The detailed analysis of the evaluation results allows for affirm-
ing that the described metamodels can be used in real-world systems to
improve the experience of particular users.

Keywords: Recommender System - Algorithm Selection Problem - Meta-
Learning - Collaborative Filtering.

1 Introduction

Numerous modern companies provide their clients with a great variety of ser-
vices, products, and content. Such diversity leads to the problem of information
overload that has an adverse effect on both user experience and service growth.
Recommender systems (RSs) are used to solve this problem effectively. They

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

2 A. Nechaev, N. Zhukova, and V. Meltsov

automatically create suggestions of items that most likely lie in a user’s area of
interest.

Modern recommendation algorithms are actively used in real-world systems [1].
Even a moderate improvement in the personalization of the collections of items
is beneficial for both services’ clients and its owners. Moreover, the existence of
instruments predicting a user’s interests makes it possible to use recommender
systems in such non-standard areas as medicine and law. Nonetheless, the accu-
racy of these algorithms is relatively low. The need for functioning in the poorly
formalizable domain of people’s interests leads to the vast complexity of the de-
velopment of effective algorithms as well as to the inability to create universal
ones. Usually, RS designers implement and evaluate different models and sev-
eral versions of their compositions. This approach needs a significant number of
computational resources, but the result can be suboptimal [2].

The crucial problem that arises is that the performance of a model may
vary for different users and items within a single dataset. For example, a matrix
factorization model can predict the interests of a particular service user precisely,
while the k-Nearest-Neighbors algorithm is much more applicable for making
recommendations for another individual. A state-of-art solution to this problem
is the use of meta-learning.

Meta-learning lies in the creation of metamodels that associate task fea-
tures with algorithms’ performance. Such metamodels can be separated into
the global-level (of a dataset), middle-level (of particular users or items), and
micro-level (of particular rows) ones [3]. Micro-level metamodels have recently
been proposed and not been studied enough, since they need massive and dense
datasets to be effective. There are plenty of researches within the first two levels,
including the meta-recommender system methods. Within this field, the contri-
bution of Cuhna et al. [4J5] and their meta-research [2] is particularly notable.
The authors’ studies provide an in-depth review of the existing meta-learning
approaches to the problem of algorithm selection in the domain of recommender
systems.

In most cases, a metamodel utilizes only the data about the base models’
performance. The real-world systems are generally aware of users’ and items’
features, even if they are not used in the recommendations generation process.
The core idea behind this research is that a metamodel can take a cue from
both such metadata and standard meta-features. Moreover, when a metamodel
training dataset is represented in a binary format, it allows for applying the same
algorithms in different business cases.

This paper proposes the middle-level automated meta-learning method that
uses the recommendation algorithms’ evaluation results as well as the binary
representation of both users’ (or items’) metadata and their computable meta-
features.

Utilizing Metadata to Select a Recommendation Algorithm 3

2 Method

The formal statement of the research problem is as follows. There is a dataset
consisting of (u,,r,;) rows that show what rating r,; has the user u given to
the item ¢. Also, there are users’ and items’ metadata stored as binary vectors.
Several recommendations models (base models) are trained on the part of a
dataset, and evaluated on another part, which has given the predictions (u, i, 7).
The task is to create a metamodel that selects the best base model for a particular
user (or item), i.e. makes a personalized selection.

It should be stated that below is the solution that utilizes users’ metadata.
The solution that uses items’ metadata is the same.

At this stage, two different solutions to the problem are proposed. On the
one hand, one can take the evaluation results as the starting point and make a
dataset showing the correspondence between metadata of the user and the best
model for them. In this case, the task is to solve a classification problem. On the
other hand, one can start from the nature of users, group them using particular
features, and select the best model for each built group. In this case, the task is
to solve a clustering problem [6].

While a metamodel is being trained, its input is built from two parts. The
first one is a set of explicit users’ metadata, taken from a dataset, e.g. age, sex,
or profession. The second one contains meta-features computed on the basis of
users’ rating information, i.e., some standard values used in meta-learning.

Fig. |1| shows the proposed recommender system structure.

Both parts are represented as binary vectors. It is assumed that users’ meta-
data are already binary, while the computable features are converted after a
calculation.

Both proposed meta-learning techniques suggest the users are grouped. The
best base model must be chosen for each users’ group U from the whole set of
models M. The selection is performed by the equation

Mbess = argmax(Y f(m, u)), (1)

meM wel

where f(m,u) is the utility function for the model m and the user u that grows
together with the model’s performance. The definition of such a function depends
on the error metric in use. Since RMSE is highly applicable to the task of rating
prediction, the utility function is defined as follows.

Let r € RN be the vector of actual ratings i, Tm € RY be the vectors of
predictions 7,,,; which model m has given for the row j. The vector e™" € RY
contains values ‘

e = min ((Tm; — r7)%) (2)
equal to minimal squares of error for each row. Thus, the utility function for the
model m and the user u is computed by the formula

flmu) =" (e = (Fmj —15)%), (3)

u,je€L..N

4 A. Nechaev, N. Zhukova, and V. Meltsov

Training

Ratings dataset

Trainpart___.. Training N
Test part | [Model1] .. [ModeIN| :
Meta-features l ____________________
i computation i Evalutation H
E'””’C’o’riiiéiéib’n’””‘; | Evalutation results
i to binary vectors

Existing
users metadata

Binary vectors

Usage

users metadata L > Vetamodel , Chosen ‘

Binary vectors R ;

Model

Predicted
rating

Computed
users meta-features

Binary vectors

May be updatable
in case of
online evaluation

Fig. 1. The proposed recommender system structure

i.e. as the cumulative difference between the minimal squared errors and the
models’ squared errors.

When one chooses an algorithm for a users’ group, they should consider the
fact that several base-level models can show roughly equal performance, but one
of them is the best on a whole dataset, i.e., fits the task and its domain more
than others. Another model may show a higher level of utility not only because
of its accordance with this users’ group but due to the existence of outlying
values in a training dataset, causing errors in modeling of interests. It may lead
to the situation when a wrong base-level model that has learned several random
records, but not the actual patterns of users’ behavior, is selected.

Consequently, there should be a strong reason to prefer a particular algorithm
for a users’ group over the overall best one. In this research, the stated problem
is solved as follows. After the model my pes; that has the highest utility for a
group is chosen, it is calculated how much higher its utility is compared to the
one of the overall best model Myyeraii_pest- 1f this value is lower than the constant
v, the model myyeraii_pest 1S used for a users’ group.

Since a utility function may take strictly non-negative values as well as
strictly non-positive ones, the final selection of a model my for a users’ group U

Utilizing Metadata to Select a Recommendation Algorithm 5

is performed by equations:

utilityy = Z F(muy pest, u), (4)
uelU

utilityovemu = Z f(moverall,bestv u), (5)
uelU

utilityy utilitYoverall
kimp = maX(

); (6)

utilitYoveran utilityy

m if kinp >=
my = U _best : imp Y . (7)
Moverall_best if kimp <7

The meta-learning techniques used within the method are described below.

2.1 Computation of Meta-Features

Meta-features, which are commonly used in metamodel training, can be sepa-
rated into three groups [7].

1. Statistical and/or information-theoretical meta-features describe a dataset
or its parts using particular metrics from corresponding sciences, which are
applied to data analysis. Such metrics provide certain knowledge about users’
behavior and can be used for distinguishing and grouping them. Examples of
these features are the record count, the expected value for separate columns,
their entropy, skewness, and kurtosis.

2. Base-level model features. This group includes hyperparameters and the fea-
tures of trained base-level models. The examples of the latter include the leaf
count in a decision tree or weights of input neurons in the feed-forward net-
work. These metrics can be used to discover implicit dependencies between
a model and separate parts of a dataset.

3. The last kind of metrics that are commonly used in meta-features compu-
tation is "landmarkers”, i.e., fast and rough estimations of different models’
performance. To calculate them, one can use simplified models or small parts
of a whole dataset.

In terms of the current research, the meta-features from the first group are of
particular interest. Base-level model features are not studied, since it is assumed
that all the models are of different kinds, and not the ones of a single kind that
differ only by hyperparameters. The usage of ”landmarkers” is also not studied,
as the stated task implies the hybridization of several models that are trained
already.

Several statistical features have been chosen; they describe rating dataset
parts that correspond to separate users. For each of these features, the algorithm
of conversion to 0-or-1 columns is described. The meta-features count has been
restricted to three to avoid the increase in the width of the metamodel training
dataset. The meta-features are shown in Table [Il

6 A. Nechaev, N. Zhukova, and V. Meltsov

Table 1. Meta-features used in the research

Meta-Feature Conversion to the Binary Format
Relative count of user’s ratings. Three columns for ranges

Equals to count of user’s rating divided by | [0;0.75), [0.75;1.25), [1.25; +00).
the average rating count per user
in a whole dataset.

Standard deviation of user’s ratings. Two columns for ranges:

[0; 0.1 of maximal possible rating),
[0.1 of maximal possible rating; +00).

User’s ratings skewness. Two columns for positive and negative
values respectively.

2.2 User Classification

Since the input consists of binary vectors, a classifier can distinguish any two
users having non-equal metadata vectors. Thus, the set U is defined as the group
of users having equal metadata vectors. The best model is selected for each set
U using formulas - @ These actions build the dataset for a classifier, which
associates the metadata vector with the base model as a class label. Obviously,
if the dataset includes all the possible varieties of binary metadata vectors, the
classifier is not needed. However, most likely, the dataset does not cover all of
them.

It is considered that the model count is no less than three, so it is better to
train an ensemble of binary classifiers using the ”One-vs-Rest” strategy. Since
the metadata consists of binary vectors, the ensemble can be effectively founded
on any decision-tree based classifiers. In this research, the random forest classifier
is used.

2.3 User Clustering

The clustering-based technique brings a specific problem. A clusterer can con-
sider some users "noise” and not attach them to any group. In this case, the
meta-learning process is organized as follows.

At first, the overall set of users’ metadata is clustered. As a result, several
clusters are obtained, each of which can be considered as a target group U, along
with the separate part of users not belonging to any cluster. The best models for
clustered users are chosen using the formulas - @ For the "noise” group,
a metamodel uses the overall best base model, since it is incorrect to consider
these users as a neighborhood of any kind.

The task of clustering of binary vectors can be considered as the one of point
clustering in the multi-dimensional Euclidean space. It is possible if at least one
of the two following conditions is met [8]. The first one is that a dataset must
not be very sparse. The second one states that a dataset must not be very wide.
It is challenging to provide more precise restrictions, but when both conditions
are not met, a clustering model trains on a wide, sparse dataset. In this case,
distance metrics applied in Euclidean spaces become almost useless and cannot

Utilizing Metadata to Select a Recommendation Algorithm 7

be utilized to distinguish points properly. Nonetheless, it is assumed in this
research that the count of binary columns is less than 100, while the acceptable
density can at least be provided by the computable meta-features.

Thus, the OPTICS model with cosine similarity as a distance metric has
been chosen initially to perform clustering. It has been stated heuristically that
the farthest two users can differ in no more than two columns and coincide in
at least one another column. So, according to the distance metric, the maximal
cluster size equals 1 — 1/(v/2 % v/2) = 0.5.

However, the OPTICS model has a significant disadvantage. Its accuracy is
high, but the training process on the datasets used in the experimental study
can take an unacceptably long amount of time. This problem can be solved
by using the HDBSCAN model [9]. Like OPTICS, it is an improved version of
DBCSAN that performs hierarchical clustering without the fixed restriction of
maximal cluster radius. It has been discovered empirically that the HDBSCAN
model with L2 distance metric shows almost the same level of performance on
the used datasets as the OPTICS one with the stated above configuration. It
shows highly similar results, but learns much faster. So, this is the HDBSCAN
model that is used further.

3 Results and Discussion

The initial pool of algorithms in this research included five collaborative filtering
models, implemented in the Surpriselib library [10]: SVD, SVD++, Baseline only,
KNN Baseline, Co-Clustering.

Five datasets [ITJI2IT3] were used. They are described in [2 The presented
features do not include computable ones. Metadata rows were converted to bi-
nary vectors manually in such a way that most of the information was saved,
but the width of the dataset did not increase drastically.

Table 2. Summary description about the datasets used in the experimental study

Dataset No. of No. of| No. of user No. of| No. of item |Rating scale
ratings users features items features

Movielens 100k 100 000 943 32 1682 19 1-5

Movielens 1M 1 000 000 6 040 29 3 883 18 1-5

Amazon Phones 82 816 55 975 6 793 20 1-5

Rent the Runway 192 463 105 509 41 5 851 68 1-10

Modcloth 82 723 47 911 17 1377 8 1-5

Each dataset was used in the following way. It was shuffled randomly and
split into three parts A, B, and C with 60, 20%, and 20% of records from the
initial dataset, respectively. Each model from the initial pool was trained on part
A and evaluated on part B. Based on the evaluation results, the pool of the best
base models was built. Next, four metamodels were trained, each of which was
classifying/clustering users/items. The ~ constant was defined as 1.25. During

8 A. Nechaev, N. Zhukova, and V. Meltsov

the process of classifier training, only 70% of users/items from part B were used.
Finally, all the base models and created metamodels were evaluated on the part
C. The RMSE was used as the evaluation metric.

The evaluation results are presented in Table (3| Additionally, the table in-
cludes the results for a perfect abstract metamodel that chooses the truly best
algorithm for each user or item.

Table 3. Evaluation results (RMSE). The best results among the models and the
metamodels are bold-faced. MM is for ”Metamodel”.

Model Movielens| Movielens 1M Amazon Rent the Modcloth
100k Phones Runway
SVD 0.9433 0.8941 1.5569 1.3941 0.9522
SVD++ 0.9306 0.8795 1.5992 1.4043 0.9547
KNN Baseline 0.9434 0.9133 1.5649 - 0.9506
Baseline Only 0.9350 0.9039 1.5525 1.3889 0.9877
Co-Clustering 0.9713 0.9224 1.6088 1.5531 1.0263
Perfect (by user) 0.8947 0.8558 1.3921 1.2280 0.7877
Perfect (by item) 0.8866 0.8634 1.5003 1.3374 0.9310
MM (user class.) 0.9296 0.8798 1.5371 1.3752 0.9144
MM (item class.) 0.9324 0.8796 1.5463 1.3897 0.9505
MM (user clust.) 0.9317 0.8795 1.5375 1.3746 0.9144
MM (item clust.) 0.9320 0.8795 1.5492 1.3894 0.9504

In four out of five cases, the best metamodel had better performance than the
best base-level one, since its RMSE on a whole dataset was lower. The greatest
benefit from the meta-learning was taken for the Modcloth dataset. In the case
of Movielens 1M dataset, the best metamodel had shown exactly the same result
as the best base-level one.

The improvement achieved by applying the proposed method was different
for different datasets. It is possible to suggest that it depended both on the best
base-level model accuracy and on the level of maximal theoretical improvement
that could be obtained by per-user (or per-item) algorithm selection. Figure
illustrates the relation between these values.

18% 35%
N 30% ---Relative best model
13% e 25% error
________ L7 ~ - 20% —Actual MM
8% --- “ - ” /
N 15% improvement
o 10% . .
3% J_/ ’ Maximal possible
%
% MM improvement
2% 0%

Fig. 2. The relation between the relative best model error and the metamodel im-
provement. Metamodel improvements are on the primary axis, and relative best model
errors are on the secondary axis.

Utilizing Metadata to Select a Recommendation Algorithm 9

According to the graphs, the actual improvement that the metamodel usage
made could be truly dependent on the maximal possible one. At the same time,
the possibility of such dependency on the relative best base-level model error
was questionable due to the results for the Rent the Runway dataset. It was
important that previous experiments that had been performed without statistical
meta-features and the usage of the constant v showed that this dependency
could exist, and the results had been generally worse. It allows for affirming
that combining explicit metadata together with computable meta-features and
performing a restricted selection of the best model for a users’ (or items’) group
is reasonable and increases the accuracy of metamodels.

Both the numerical results and the graphs showed that the actual improve-
ment was far from theoretically possible. Along with that, training accuracy was
reasonably good. The graphs in Figure [3] demonstrate how often metamodels
have selected the truly best algorithm for a user or an item.

30%

20% ‘
10% I
0

(user class.) MM (item class.) MM (user clust.) MM (item clust.)

X

B Movielens 100k m Movielens 1M ® Amazon Phones Rent the Runway ™ Modcloth

Fig. 3. A perfect algorithm selection rate per metamodels and datasets

According to these measurements, classification and clustering models had a
rather similar performance that led to the best selection rate that equaled 24-
28%. Worse results showed by item-based models for three out of five datasets
could be explained by relatively small item counts in them. It allows for con-
cluding that the bottleneck lies in both dataset size and the complexity of de-
termining the truly best model for users’ or items’ groups before training.

A pending question within this research is how to choose an optimal value for
the constant . Figure [4] shows the ratios between the lowest metamodel RMSE
and the lowest base-level model RMSE with different v values. When 7 is less
or equal to 1, it is equivalent to 7 to be ignored (following formulas @ - @
from Section 2).

In three out of five cases, the usage of the v constant was effective. In the case
of the Modcloth dataset, there was almost no difference between the evaluated ~y
values. For the Amazon Phones dataset, the restrictions in the algorithm selec-
tion the v constant brought had affected metamodels’ performance negatively.
Consequently, the optimal « value depended on the used dataset and perfor-
mance of the base-level models. Since the evaluation of several metamodels with
different v values has a high computational cost, it is highly preferable to deter-

10 A. Nechaev, N. Zhukova, and V. Meltsov

Modcloth
Rent the Runway
Amazon Phones

Movielens 1M

Movielens 100k

09 097 097 098 098 099 0,99 1,00 1,00 1,01

mgamma=15 ®Mgamma=125 mMgamma=1.0

Fig. 4. The lowest metamodel RMSE divided by the lowest base-level model RMSE
with different v values

mine its value before the training. Possibly, this task can be done on the basis
of the base-level models’ errors. This problem requires additional research.

The impact of the usage of the metamodels on the time needed for recommen-
dation generation has also been considered. Figure[5]shows the average times the
base-level and meta- models need to make a single rating prediction on the used
datasets. The experiments have been performed using the Intel Core i7-7700HQ
CPU and DDR-4 RAM on 2133 MHz frequency. It is significant that the Sur-
priselib framework evaluates test requests individually, and not in batches. This
peculiarity allows the measured time values to be as realistic as possible.

500
400

: II ||I|I‘I|I‘I|||I|||I|

3

o
o

2

o
o

1

o
o

SvD SVD++ KNN Baseline Co-Clustering MM (user MM (item MM (user MM (item
Baseline Only class.) class.) clust.) clust.)
M Movielens 100k ™ Movielens 1M B Amazon Phones Rent the Runway M Modcloth

Fig. 5. Average prediction time per record (microseconds)

Depending on a dataset, when a metamodel was used, the average prediction
time was ranged between 143 and 413 microseconds. This interval allowed an RS
to process thousands of requests per second. The speed of base-level models, in
some cases, was comparable to the metamodels’ one, but, in some other cases, it
was noticeably higher. However, the base-level models have particularly native
implementation, while the metamodels are implemented in pure Python without

Utilizing Metadata to Select a Recommendation Algorithm 11

any optimizations. Besides, it is obvious and seen from the graphs that the speed
of a hybrid model depends on the speed of all the models it combines directly.
Thus, the prediction time of a recommender system that uses the metamodel
is enough for the production but it can be decreased by optimizations and the
native implementation.

The results show that all the metamodels are equally performant. To choose
one of them in real-world tasks, one should consider the number of users and
items in the available data. The classification-based metamodels are preferred
in this case, since they can be trained faster than the clustering-based ones. To
employ the proposed method in an existing system that includes several recom-
menders, one can convert users’ metadata to the binary vectors format, train
the classifier using the existing recommenders’ evaluation results, and redirect
recommendation requests to the metamodel.

Although the improvement is moderate, the usage of the metamodel that uti-
lizes the peculiarities of a particular user can noticeably increase the quality of
their experience. To examine this assumption, one should conduct additional re-
search that aims at the evaluation of ranking measures and uses the appropriate
datasets.

4 Conclusions

The presented work describes a solution to the problem of recommendation al-
gorithm selection for particular users or items within a single service. The paper
proposes the middle-level automated meta-learning method that uses the rating
prediction algorithms’ evaluation results as well as the binary representation of
both users’ (or items’) metadata together with their computable meta-features.
Two techniques of creating the metamodel are suggested; they are based on clas-
sification and clustering, respectively. Both techniques are applicable for users’
features as well as for an items’ features.

The metamodels have been evaluated on five open datasets, with the usage
of collaborating filtering models on a base level. The experiments prove that the
usage of the proposed method is reasonable and effective. The performance in
comparison to the base-level models improved up to 3.81% of RMSE value in
a best-case scenario and did not decrease in any case. The measures obtained
from the evaluation have been analyzed in detail, and the possible directions of
future work been described, including the ones aimed at performance enhance-
ment. Current results can be used in real-world systems; they can improve the
experience of their users. The additional advantage of the method is that the
process of creation of a metamodel is almost automated, and the only manual
task is to convert explicit metadata to the binary format.

References

1. Ricci, F., Rokach, L., Shapira, B. eds: Recommender Systems Handbook. Springer
US (2015). https://doi.org/10.1007/978-1-4899-7637-6

https://doi.org/10.1007/978-1-4899-7637-6

12

10.
11.

12.

13.

A. Nechaev, N. Zhukova, and V. Meltsov

. Cunha, T., Soares, C., de Carvalho, A.C.P.L.F.: Metalearning and Recommender

Systems: A literature review and empirical study on the algorithm selection
problem for Collaborative Filtering. Information Sciences. 423, 128-144 (2018).
https://doi.org/10.1016/j.ins.2017.09.050

Collins A., Beel J., Tkaczyk D. One-at-a-time: A Meta-Learning Recommender-
System for Recommendation-Algorithm Selection on Micro Level. ArXiv
abs/1805.12118 (2018).

Cunha, T., Soares, C., de Carvalho, A.C.P.L.F.: Selecting Collaborative Fil-
tering Algorithms Using Metalearning. In: Machine Learning and Knowledge
Discovery in Databases. pp. 393-409. Springer International Publishing (2016).
https://doi.org/10.1007/978-3-319-46227-1_25

Cunha, T., Soares, C., de Carvalho, A.C.P.L.F.: CF4CF. In: Proceedings of the
12th ACM Conference on Recommender Systems - RecSys "18. ACM Press (2018).
https://doi.org/10.1145/3240323.3240378

Meltsov V., Novokshonov P., Repkin D., Nechaev A., Zhukova N.: Development
of an intelligent module for monitoring and analysis of client’s bank transactions.
In: Conference of Open Innovations Association, FRUCT. N 24. 255-262 (2019).
https://doi.org/10.23919/fruct.2019.8711931

Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, R.: Metalearning. Springer
Berlin Heidelberg (2009). https://doi.org/10.1007/978-3-540-73263-1

Smieja, M., Hajto, K., Tabor, J.: Efficient mixture model for clustering of sparse
high dimensional binary data. Data Mining and Knowledge Discovery. 33, 1583—
1624 (2019). https://doi.org/10.1007/s10618-019-00635-1

Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-Based Clustering Based
on Hierarchical Density Estimates. In: Advances in Knowledge Discov-
ery and Data Mining. pp. 160-172. Springer Berlin Heidelberg (2013).
https://doi.org/10.1007/978-3-642-37456-2_14

Surprise — A Python skicit for recommender systems. http://surpriselib.com/
Harper, F.M., Konstan, J.A.: The MovieLens Datasets. ACM Transactions on In-
teractive Intelligent Systems. 5, 1-19 (2015). https://doi.org/10.1145/2827872

Amazon Cell Phones Reviews — Kaggle - https: //www.kaggle.com/grikomsn/amazon-

cell-phones-reviews

Misra, R., Wan, M., McAuley, J.: Decomposing fit semantics for product
size recommendation in metric spaces. In: Proceedings of the 12th ACM
Conference on Recommender Systems - RecSys ’'18. ACM Press (2018).
https://doi.org/10.1145/3240323.3240398

https://doi.org/10.1016/j.ins.2017.09.050
https://doi.org/10.1007/978-3-319-46227-1_25
https://doi.org/10.1145/3240323.3240378
https://doi.org/10.23919/fruct.2019.8711931
https://doi.org/10.1007/978-3-540-73263-1
https://doi.org/10.1007/s10618-019-00635-1
https://doi.org/10.1007/978-3-642-37456-2_14
https://doi.org/10.1145/2827872
https://doi.org/10.1145/3240323.3240398

	Utilizing Metadata to Select a Recommendation Algorithm for a User or an Item

