
Simulation Modeling Of Artificial Neural
Networks*

Konstantin Kormilitsyn1[0000−0002−3305−6604], Pavel
Kustarev2[0000−0001−9326−0837], and Elizaveta

Kormilitsyna3[0000−0002−5182−6940]

1 ITMO University, Saint Petersburg, Russia
kormilicinkostia@gmail.com

2 ITMO University, Saint Petersburg, Russia
kustarev@yandex.ru

3 ITMO University, Saint Petersburg, Russia
sholohova.elizaveta@mail.ru

Abstract. From year to year information processing algorithms based
on neural networks(NN) are gaining more and more popularity. Such
networks are characterized by a large number of hidden layers and huge
amounts of training data, requiring a specialized high-performance de-
vice. In the past few years the main platforms for implementing hard-
ware neural networks have been FPGAs and GPUs. In all power-limited
scenarios FPGAs are the natural choice. Developers of specialized com-
puting systems are interested in porting these algorithms to embedded
computing platforms. However, there are limitations that prevent the use
these algorithms for managing technical systems and objects. One of the
limitations is the lack of a mathematical apparatus that would formally
evaluate the compliance of real-time constraints for artificial neural net-
works(ANN). To solve this global problem, a particular problem is solved
in this paper. There was proposed and tested a method for validating
the temporal characteristics of hardware artificial neural networks im-
plemented on FPGA. This method is suitable for use on neural networks
transferred to a hardware platform with pre-selected coefficients, and
for neural networks trained directly on the target platform. The method
is based on the apparatus of queuing networks (QN), which allow the
validation of the temporal characteristics of artificial neural networks
according with the hardware features of the target computing platform.
The presented method has an applied focus. This paper presents the
results of experimental testing of the proposed method and proved the
feasibility of using the queuing network apparatus for validating the tem-
poral characteristics of artificial neural networks.

Keywords: Artificial neural networks · simulation modeling · queueing
networks · FPGA

Copyright ©2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

* Supported by ITMO University Grant №619296

2 Konstantin Kormilitsyn, Pavel Kustarev, and Elizaveta Kormilitsyna

1 Introduction

Artificial neural networks applications are becoming more popular. They are
using for control of technical and cyberphysical systems. High performance and
energy efficiency are very important for such systems. It can be achieved due to
hardware implementation of calculators. In recent years FPGAs and GPUs are
main platforms for hardware neural networks. Not only functional predictability
of the behavior, but also temporal predictability are critical condition of using
neural networks in control systems. Both of these aspects of predictability are
not resolved issues. The article is focused on the second aspect - temporary pre-
dictability of the behavior. These days there are no established methodologies for
the confirmation of real-time requirements implementation. The article discusses
the opportunities for modeling of hardware neural networks which are based on
FPGAs using queueing networks.The work shows that [1] different structures
of hardware neural networks are well transferred to queueing networks models.
Moreover, [2] analysis of functional dynamic parameters with help of mathe-
matical apparatus and queueing networks simulation tools could optimize the
architecture of hardware neural networks to achieve real-time limitations.

2 Subject area overview

In this paper it is proposed to consider consider a way of neural networks model-
ing in order to confirm real-time requirements. In the article [3] authors offered
a method for estimating delays in neural networks using the Lyapunov method.
In that article, there was derived the Lyapunov equation for recurrent neural
networks. Authors did not prove that this formula will be true for other types of
neural networks. Therefore, the use of this method for modeling various types of
neural networks is impractical. These days there are developments in the devel-
opment of analog neural networks and their subsequent modeling using hardware
components. An example of building hardware neural networks based on mem-
ristors is presented in article[4]. Furthermore, there is a the concept of modeling
these memristors. Using the techniques for developing neural networks that are
described in article[5], it is possible to evaluate the temporal characteristics of a
neural network constructed using operational amplifiers. Methods for modeling
neural networks based on their hardware implementation are presented in arti-
cles [4] and [5]. It is not clear from the articles whether it is possible to transform
other hardware implementations to the described models. Studies using simu-
lation modeling are also being conducted in this area. Authors in article [6]
are offered description of a neuron using pro-networks. Applying the described
methodology, it is possible to simulate the temporal characteristics not only
for an individual neuron, but also for the network as a whole. The described
method allows to simulate hardware neural networks transferred one in one to
the hardware platform. The authors of these articles did not consider cases of
insufficient resources of a computing platform. Therefore, it is not clear whether
it is possible to simulate optimized neural networks using this method. In the

Simulation Modeling Of Artificial Neural Networks 3

article [7] correlation between neural network models and queuing network is
described. Using the developed model, the authors studied the stability of the
neural network to the effects of external signals. Unfortunately, this model was
not used for real-time networks. Summing up, the problem of modeling real-time
hardware neural networks has not yet been solved and research in this area is
relevant.

3 Research

Artificial neuron consists of multi input adder, unit of activation and set of
coefficients (synaptic weights, offset, activation function parameters) that are
stored in memory. The memory is also used for hardware tabled realization of
function‘s activation. Among modern technologies, only FPGA is able to provide
a lot of independent memory units with superfast access. Thus, it caused the
popularity of FPGAs for ANN development and this also means that the memory
can be the bottleneck during realization ANN based on FPGAs.

The structure of NN can be portable on structure of open queueing network
(OQN). Each neuron is a node of OQN, which can be presented as a service
device without queue. The time of service is determined by speed of FPGA.
Despite of visible ”hard” digital circuit synchronization, the time of service is
not fixed and has Gaussian distribution. It is explained by the jitter of the clock
signal which is accumulated while sequential calculation of ANN layers. Input
data stream (requests) is random, evenly distributed. As mentioned, internal
memory is the bottleneck in ANN development based on FPGAs. To save mem-
ory it is possible to use one unit of function‘s activation by several neurons.
Unfortunately, because of parallel calls of neurons to memory units there are
collisions and delays. Moreover, there is an issue of NN topologies optimization
using performance criterion. The paper describes the developed OQN models,
performed simulation, calculated characteristics for ANN-FPGAs with different
ways of neuron combinations. The main ways to combine neurons are combine
inside layers and between layers. These options are presented on Fig. 1, each
marked as A, B, C. OQN devices numbers are marked by digits. These devices
perform the neurons functions.

As properties of OQN are determined by properties of network nodes, it
is necessary to calculate characteristics of each node individually. Nodes char-
acteristics calculation is made considering temporal characteristics for tabled
FPGA realization of neuron with average working time 90 microseconds. These
characteristics are presented in Table 1.

Simulation proved dependence of temporal characteristics on node-neuron
combination (Table 1 and 2). Using simulation tools it was revealed that some
requests in node 2 stayed in a queue, thereby node 2 has become the bottleneck
while increasing flow request. It is impractical to have a large amount of mem-
ory for other nodes in case of described request flow. Given earlier QN model
option (FPGA-ANN) showed the potential evaluation of temporal network char-
acteristics. Futhermore, due to simulation tools this option defined some systems

4 Konstantin Kormilitsyn, Pavel Kustarev, and Elizaveta Kormilitsyna

Fig. 1. Options of ANN-FPGA neuron combinations

Table 1. OQN nodes characteristics

Nodal characteristics Formula
Network topology

A B C
1 2 3 1 2 3 1 2 3

Calling rate y = λb 0.443 0.986 0.442 0.442 0.984 0.443 0.443 0.99 0.442

Load ρ = 1 − ρ0 0.443 0.986 0.442 0.443 0.984 0.443 0.443 0.99 0.442

Down time η = 1 − ρ 0.557 0.014 0.558 0.557 0.016 0.557 0.557 0,01 0,558

Idle time w =
ρb

1 − ρ
0 0.515 0 0 0.5 0 0 0,6 0

Residence time u = w + b 90.014 199.934 89.981 90.014 199.932 90.014 90.014 199.942 89.981

bottlenecks and pointed how memory resource optimization important is.Thanks
to OQN network-wide characteristics there ia s possibility to identify the maxi-
mum allowable intensity ot the requests input stream, thereby test the technical
parameters of the developed system.

Table 2. Network characteristics

Nodes characteristics Formula
Network topology
A B C

Network idle time W =

n∑
j=1

ajwj 1.187 1.023 1.417

Network residence time U =

n∑
j=1

ajuj 381.929 380.917 383.867

The number of expectation requests L =

n∑
j=1

lj 0.97 0.94 0.99

The number of requests in the network M =

n∑
j=1

mj 2.81 2.83 2.87

Simulation Modeling Of Artificial Neural Networks 5

4 Training of neural networks

Often there is a necessity to provide the training of neural networks directly on
target computing platform. It is possible to determine three main ways how to
provide the training of neural networks:

– training with a teacher - The training with a teacher assumes the availabil-
ity of the complete set of labeled data for model training at all development
stages. The availability of complete marked dataset means that every exam-
ple in training set must comply with the answer that the algorithm should
receive. Generally the training with a teacher is used to solve classification
and regression problems. In classification problems the algorithm offers dis-
crete values that correspond to class numbers to which the objects belong.
Regression problems are related to continuous data.

– training without a teacher - In the training without a teacher the model
has the data set and there is no exact directions of what to do with this
data. Neural network itself tries to find data correlations by extracting useful
features and analyzing them. Typically, such training method is used by
neural networks the purpose of which is to group data according to certain
parameters.

– training with a partial involvement of a teacher - Training data set contains
labeled data as well as unlabeled.

– training with a support — It is one of machine learning methods during
which the test system (agent) is trained, interacting with some environment.

In this paper the method of training with a teacher will be considered. Usually
the backpropagation method is used for neural networks training. The main
purpose of this method is propagation of error sygnals from the network output
to its input. The propagation occures in the opposite direction to the direct
propagation of signals in normal operation. Therefore, to realize this method on
hardware computing platform is necessary to add the error computing unit to
developed neural network. There are three main ways to error calculation: Mean
Squared Error (MSE), Root MSE and Arctan. These days there is no unified
algorithm for error calculation, so the neural network developer should choose
himself the method that is the most suitable for target goal. To calculate the
error using method Arctan is necessary to use the following formula:

ArtanError =
arctan2(i1 − a1) + arctan2(i2 − a2) ++ arctan2(in − an)

n

=

n∑
i=1

(
arctan2(ii − ai)

n
)

where:

– i - predictions (expected values or unknown results),
– a - observed values (known results).

6 Konstantin Kormilitsyn, Pavel Kustarev, and Elizaveta Kormilitsyna

The error always will be greater when using the method Arctan. This is due
to the method working principle: the larger the difference, the greater the error.
To calculate the error using method Root MSE is necessary to use the following
formula:

RMseError =

√
(i1 − a1)2 + (i2 − a2)2 ++ (in − an)2

n
=

n∑
i=1

((
(ii − ai)2

n
)

1
2)

The Root MSE method has smallest error. To calculate the error using method
MSE is necessary to use the following formula:

MseError =
(i1 − a1)2 + (i2 − a2)2 ++ (in − an)2

n
=

n∑
i=1

(
(ii − ai)2

n
)

When using MSE method the error value will be average compared to Arctan and
Root MSE methods. Therefore, the MSE method is used more often. It provides
balance in error calculation. The MSE method will be will be considered for
error computation in this paper. Structural scheme of error computation using
MSE is presented in the Fig. 2.

Fig. 2. Structural scheme of error computation using MSE

This structural scheme consists of different units. Firstly, it consists of 2
multiplexers that choose input value for predicted signal and observed signal.

Simulation Modeling Of Artificial Neural Networks 7

Multiplexer control counter is also included in this scheme. Moreover, the scheme
consists of subtraction unit that provides subtracting the observed signal value
from the programmable signal value. The difference squaring unit is included in
this scheme. It contains the memory unit and multiplier. The scheme consists of
adder that provides addition of the value obtained at the output of the squaring
unit with the previous value. The output value of the adder goes to the input of
memory unit which is reset at the end of the error calculation.

In oder to implement the backpropagation method, it is necessary to calcu-
late the error for each neuron separately starting from the output neuron. The
following formula is provided for output neuron error calculation:

δo = (i− a) ∗ f
′
(in)

– i - predictions (expected values or unknown results),
– a - observed values (known results),

– f
′
(in) - derivative activation function

To implement the backpropagation method, it is possible to use only those acti-
vation functions that can be differentiate. Derivative function can be represented
as follows:

f
′
(in) = fsugmoid = (1− a) ∗ a

This function is provided the neuron error calculation for the inner layer:

δh =

n∑
(i=1)

(wi ∗ δi) ∗ f
′
(in)

where

– w - the weight of the output value,
– d - the error value of the neighboring neuron.

To calculate the new value of the neuron weight, the following formula is
presented:

4wi = E ∗GRADw + a ∗ 4wi−1

where

– E - training speed,
– a - moment - training step size.

To calculate the new value of the neuron weight, it is necessary to obtain the
gradient value for the given function. The following formula is provided the
gradient value calculation:

GRAD = δb ∗ outa

For artificial neural networks (ANN) shown in Fig. 1, the simulation modeling
of the training process was performed. To perform the simulation modeling,

8 Konstantin Kormilitsyn, Pavel Kustarev, and Elizaveta Kormilitsyna

developed model should be supplemented by a device that imitates the error
calculation process. Moreover, functions that imitate the neuron work should be
replaced by functions that calculate the new neuron weight. Calculation of the
nodal characteristics should be performed according to time characteristics for
target platform. Average working time is 40 microseconds and equals function
of new neuron value calculation. Average time of ANN error calculation is 5
microseconds. All these characteristics are presented in Table 5.

Table 3. OQN nodal characteristics for training process

Nodal characteristics Formula
Network topology

A B C
1 2 3 1 2 3 1 2 3

Calling rate y = λb 0.192 0.41 0.191 0.191 0.443 0.193 0.192 0.401 0.192

Load ρ = 1 − ρ0 0.192 0.41 0.191 0.191 0.443 0.193 0.192 0.401 0.192

Down time η = 1 − ρ 0.808 0.59 0.809 0.809 0.557 0.807 0.808 0.599 0.808

Idle time w =
ρb

1 − ρ
0 0.214 0 0 0.225 0 0 0.201 0

Residence time u = w + b 41.117 87.109 40.915 40.898 88.754 40.915 41.106 86.931 40.915

Dependence of time characteristics on the option of combining neuron nodes
was also confirmed for the neural networks simulation training process (Table 5
and Table 4). The simulation modeling results show that in contrast to the
process of calculating the time characteristics of the output signal the best way
to combine neurons for training process is presented in Fig. 1.C. This is due to
the fact that in this case there is a multiplexing of two unconnected neurons,
thus the backpropagation method is calculated without delay.

Table 4. Network characteristics for the training process

Nodal characteristics Formula
Network topology
A B C

Network idle time W =

n∑
j=1

ajwj 0.516 0.616 0.44

Network residence time U =

n∑
j=1

ajuj 169.141 170.55 168.952

The number of expectation requests L =

n∑
j=1

lj 0.42 0.43 0.39

The number of requests in the network M =

n∑
j=1

mj 1.27 1.31 1.28

Simulation Modeling Of Artificial Neural Networks 9

5 Experiment

The correctness of simulation results with using OQN was checked full-scale
experiment. The stand consists of:

– ANN realizes on FPGA by Lattice MachXo2-1200ZE.
– Input-output data system for neural networks. Input data are pre-buffered

as FIFO and synchronously extracted to ANN inputs. There is a requests
stream with a certain, adjustable intensity. The data trigger on the network
output allows to measure the delay in data processing relative to the input
clock signal.

– The monitor which configures input FIFO while system start. It checks va-
lidity (availability) of the output data and determines the temporal NN
characteristics.

The experiment consisted of 1000 sequentially applied input impacts with
fixing the input signal installation time and observable system‘s response time.
ANN average time reaction data are presented in Table 5, and histogram of
the distribution density of the ANN reaction for network topologies type A is
presented in Fig. 3.A.

Table 5. Network characteristics

Characteristics Formula
Network topology
A B C

Reaction time u =

∑n

i=0
ui

n
384.763 377.178 390.375

As presented in Table 5, ANN reaction time, which is obtained in experiment,
coincides (up to 5%) with average time of staying request in the network, calcu-
lated for OQN model. Calculation error is related to the fact that time limitations
of hardware interfaces between individual network neurons were not taken into
account in the OQN model. Thus, ANN simulation results based on OQN were
confirmed. Furthermore, because of the information transfer between individual
neurons it is necessary to include in the OQN model the delay. This delay can be
implemented as separate service device which simulates operation of a separate
communication interface. As a result changes in data transfer interfaces between
individual neurons can lead to changes in the OQN model. Identified instability
of calculated reaction time is due to the fact that functioning of ANN hard-
ware unit in FPGA is not absolutely synchronous. As the tacts number for ANN
output calculation is constant in this realization, instability as caused by clock
signal jitter. It is assumed that the factor causing the ANN clock signal jitter
is the primary source of clock pulses. Generator signal frequency measurements
and distribution histogram presented in Fig. 3.B were made. The nature of the
frequency values distribution of the clock generator (Fig. 3.B) coincides with

10 Konstantin Kormilitsyn, Pavel Kustarev, and Elizaveta Kormilitsyna

the nature of the ANN reaction time distribution (Fig. 3.A), that allows to fix
direct connection of the second fact with the first. Therefore, developing ANNs
based on FPGA, special attention should be paid to the stability parameters of
the used clock signal generator.

Fig. 3. Distribution density

Previously described experiment was also performed for neuron networks
training process. The Table 6 shows that ANN training time coincides with the
calculated values obtained in the OQN model simulation. Coincidence accuracy
is 5%. Network topology type C provides the best reaction time result for sim-
ulation modeling too. Reaction density distribution graph that was created for
OQN training process is presented in Fig. 4. It revealed that the nature of the
distribution of the frequency values of the clock generator (Fig. 3.B) coincides
with the nature of the distribution of the OQN reaction time (Fig. 4).

Table 6. Network characteristics for training process

Characteristics Formula
Network topology
A B C

Reaction time u =

∑n

i=0
ui

n
169.074 169.891 168.06

6 Conclusion

The study concluded that applying OQN models for hardware neural networks
simulation based on FPGA is expedient and using this mathematical appara-
tus it is possible to evaluate the temporal characteristics of hardware NN. The
results of this method were confirmed by field tests. It was revealed that one
of the source of unstable operation of hardware NN is associated with a jitter
synchrosignal. The correlation of the distribution characteristics of the frequency

Simulation Modeling Of Artificial Neural Networks 11

Fig. 4. Distribution density for training process

values of the clock generator with the distribution characteristics of the ANN re-
action time was also proved experimentally. This experiment was carried out on
ANN implemented on a single crystal and with constant environmental charac-
teristics. In further studies it is planned to test this theory for multi-chip ANNs
implementation.

References

1. Himavathi, S., Anitha, D. and Muthuramalingam, A.,Feedforward Neural Network
Implementation in FPGA Using Layer Multiplexing for Effective Resource Utiliza-
tion, IEEE Trans. on Neural Networks, 18(3), 880-888(2007)

2. Turkovsky Y.A., Bogatikov E.V., Tikhomirov S.G., Adamenko A.A. Modeling the
restoration of biological and biotechnological systems using hardware analog and
software artificial neural networks - Bulletin of the Voronezh State University of
Engineering Technologies

3. Jinde Cao ,Jun Wang Global Exponential Stability and Periodicity of Recurrent
Neural Networks With Time Delays , Senior Member, IEEE

4. D.D. Kozhevnikov, N.V. Krasilich. Memristor-based Hardware Neural Networks
Modelling Review and Framework Concept, Trudy ISP RAN/Proc. ISP RAS, vol.
28, issue 2, 2016, pp. 243-258. DOI: 10.15514/ISPRAS-2016-28(2)-16

5. Novotarsky M.A., Simulation of neural networks for solving equations of mathemat-
ical physics by local-asynchronous methods ,Radioelectronics. Computer science.
Management., No. 1. , 2001

6. A. Muthuramalingam, S. Himavathi, E. Srinivasan, Neural Network Implementa-
tion Using FPGA: Issues and Application , International Journal of Information
Technology, vol. 4 Number 2, 2008 pp. 86–92.

12 Konstantin Kormilitsyn, Pavel Kustarev, and Elizaveta Kormilitsyna

7. Erol Gelenbe. G-networks, A unifying model for neural and queueing networks ,An-
nals of Operations Research, vol. 48, issue 5, 1994, pp. 433–461.

