CEUR-WS.org/Vol-2590/short32.pdf

Automated Scalability System for Distributed
Applications in Heterogeneous Environment

Elizaveta Kuzenkova[OOOO—0002—4490—4023], Turii KOrenkOV[OOOO_OOO3_O373_669X],
Ivan LOgiIlOV[0000_0002_6254_6098], Aglaya Ilina[0000—0003—1866—7914]’ and
Andrey Dergachev[OOO()fo()()Zf175477120]

ITMO University, 49 Kronverksky Pr., 197101, St. Petersburg, Russia,
elizabeth.k@outlook.com, ged.yuko@gmail.com, ivan.p.loginov@gmail.com,
agilina@itmo.ru, amd@itmo.ru

Abstract. The project presented describes an approach for horizontal
scaling management system for applications in heterogeneous environ-
ment. It incorporates interconnected supervisor services for end-user de-
vices, making it possible to dynamically distribute utilization of available
computation resources by the particular applications. Horizontal scaling
achieved by connecting lots of end-user devices having supervisor services
that allows resource management. Load balancing represented if form of
application component migration between different compute nodes. Dy-
namic migration of components of running application based on shared
registry of RPC endpoints and transparent routing of RPC interconnec-
tions between application components. It is also possible to not freeze
the whole application during migration operations due to the way, how it
is treated by the proposed system. Application component temporarily
suspended during the migration of an application component and then
resumed when migration completed. Described way of RPC organization
allows to make parts of application independent in a way that component
pausing should not cause the entire application to stop. Brief description
of contract between management system and application is presented, as
well as description of the migration procedure. Proposed solution can be
applied to scale applications targeted for end-user devices, that can’t be
scaled using traditional server-side technologies of clusterization or can
be scaled only using specific technical skills, that are not mastered by
non-technician user.

Keywords: Scalability - Heterogeneous environment - Distributed ap-
plication - Clusterization - Modularity - Live migration

Copyright (©2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

1 Introduction

1.1 Problem

The problem of auto-scalability is very actual nowadays. There are more and
more different devices that can be connected by the network and lots of resource-
intensive applications. So, we have heterogeneous environment of end-user de-
vices and applications without clusterization technologies in user-friendly way.

1.2 Known popular solutions

There are many solutions, but most of them limited by platform fragmentation
and heterogeneous environment, that leads to limitations scalability applications.
Some solutions could be used in heterogeneous environment, but they are limited
by special cases typically. They don’t aim for end-user. There is no common
possibility to get advantages of scalability and clusterization for the end-user
applications, that run on end-user devices. There is no well-known methodology
of how to support it transparently in the software and no user-friendly ways of
dynamic clusterization functionality exposure. But let’s consider some of similar
solutions.

QNX is a real-time operating system that allows you to effectively organize
distributed computing by combining the entire network into a single homoge-
neous set of resources. This operating system is well suited for building dis-
tributed systems. However, distributed computing can only be performed in a
homogeneous environment. In other words, it is required that all your devices
run the QNX operating system. In addition, if you want to run your applica-
tion on this system, you will need to finalize or completely rework the existing
solution.

Docker is an open-source platform for running and shipping applications
using relatively lightweight isolated environments — containers. Containers run
simultaneously on a given host machine’s kernel and often managed by Swarm.
It’s well suited for continuous integration and continuous delivery workflows,
high load and working with heterogeneous environment. But we cannot move
a running Docker container from one host to another. Scaling and managing
workflows possible just in near real time. Now there are many orchestrators and
containers managers for Docker, but they still don’t allow ship application or its
part in real time.

Kubernetes is open source software for automating the deployment, scaling
and management of containerized applications. It works in heterogeneous envi-
ronments and helps to manage balancing load and auto-scalability. Kubernetes
deploys containers based on OS-level virtualization instead of hardware virtual-
ization. But it still doesn’t bring us non-stop working.

Mesos does the same as Kubernetes, but it has directly different principle
of working. It chose from offered existing resources most suitable and then runs
task on chosen agent. When task ends the same retried again. Mesos support

auto scaling of cluster and heterogeneous resources with the Dominant Resource
Fairness algorithm (DRF) as default resource allocation policy.

All of them designed to run in mostly trusted environment with explicit
administration procedures, completely excluding them from being applied on
the end-user side of a typical application.

2 Project description

We can’t name even one known system that has all the listed characteristics such
as scaling in a heterogeneous environment, non-stop working of an application
during the migration of its component, orientation to end-user, clear and sim-
ple solution using. Well-known similar solutions either aimed to homogeneous
environment are unable to sustain working application during scaling manage-
ment operations and can’t be applied in particular software, when that software
does not have builtin clusterization technologies. There are Kubernetes, Mesos,
Docker, QNX — solutions that are related to different classes (of destination),
but with similar features in the scalability context. This project presents an ap-
proach that based on this functionality and makes an accent on application in
heterogeneous software or hardware environments.

2.1 Aspects of research

To solve these problems, the principles of dynamic clustering and accessibility
management of distributed resources were investigated. As a result, the goal
was determined to create a prototype system that can automatically control the
distribution of application components without pausing it in a heterogeneous
environment. Desired system should also have enough security to provide safety
data transferring.

To ensure safety of application component live migration to another com-
putational resource possible attack vectors have to be addressed. The essential
security requirements listed as follows:

— Appropriate access control. The source and destination hosts should mutu-
ally authenticate each other.

— Confidentiality. The contents of data passed between computational nodes
under the authority of the user should be protected from the second-person
inspection, so that no one can read or misuse an information about user’s
applications or tasks executed on top of distributed infrastructure.

— Infrastructure integrity. No one could interfere with dynamic resource manag-
ment coordination and distributed state of the application managed by the
system, so it should be consistent at any moment.

— Availability. No one should be able to disrupt the services provided by dis-
tributed application, except infrastructure fragmentation.

This goal was decomposed into a few tasks:

— Implement software prototypes with listed functionality as follows:
e dynamic resources management from the point of their usage by parts
of the distributed application;
e fog-like computation environment integrity;
e relocatable resources accessibility support;
e essential security requirements should be considered.
— Design and research software infrastructure that allows dynamic transfer of
an application parts between compute nodes in a heterogeneous environment.

2.2 Solution overview

Presented software system was designed in conjunction with research tasks. The
architecture based on the interaction of services. These services located on the
particular user devices, which can have different hardware architecture and ca-
pabilities. This provides an opportunity of working in unified heterogeneous en-
vironment.

Given services collect information about available resources and parameters
of user’s devices at each moment of time. They monitor changes in utilization
of pro-cessors, memory and network. Services can interchange this information
with each other and interact, distributing components of running application to
perform load balancing. Balancing operations guided by an information about
utilization require-ments and thresholds, so that when they met, it leads to the
decision about particular application component migration from one device to
another, keeping the whole application state intact.

In order to specify and avoid situations when migration of the component of
run-ning application is impossible or unwanted, services also should be configured
and keep information about quotas of resources dedicated for user’s tasks and
accom-panying constraints.

The application can be considered as running in the managed environment
and consisting of modules (so-called Application Domains - AppDomains). Mod-
ules are interacting parts of an application, that are the components mentioned
above. The application can be migrated from one user’s device to another, con-
nected by the network, by services that supervise and manage different com-
putational nodes. For example, on the Fig. 1 there are green modules of one
application, and blue modules of another.

An application integrity reached by remote procedure call (RPC) abstraction.
Supervisor services maintain safety connections between modules and route their
communications transparently for the RPC layer. So it does not matter, on which
device the particular module of the application is running now. It is important,
because RPC end-points are not bound to devices due to migrations. Thus, all
devices are sharing their resources between each other and form a self-organizing
peer-to-peer overlay network. Information about RPC end-points is available
through the distributed registry.

It becomes possible to not freeze the whole distributed application during its
modules migration, because of the connection information availability between
modules independently on their states.

Compute node Compute node
Managed Managed

environment environment
{ k i' i
! i !]
me B .
1 | f H -
! . Bupervisol | AppDomain | Supervisqr
i AppDomain i~ i A
i S | {
i : i AppDomain i
| i I Al
i | ! A
: AppDomain i : :
\,) i i
- \AppDomain |

Fig. 1. Applications distributed across different computing nodes

In fact, the main subject of this research is management and migration of
application’s modules. It is required to be able to get meta-information about
application module to manage the state of particular application domain and its
RPC end points, used for inter-domain communications. The CLR runtime, cho-
sen for our implementation, presents such capabilities by rich reflection services
and builtin application domains functionality.

All of this leads to the only one limitation. The application should consist of
more than one module. If the application consists of only one module, it can’t
be distributed.

————————————— ~

Compute node Compute node
Managed Managed
environment

, P -,
5 i B
:) | AppDomain | Supervisgr
i AppDomain i i s
i . i P
L | v
} | AppDomain !
i i o
i i
! i

|

T
———
1
1

'- AppDomain ,-'

N

Fig. 2. The process of AppDomain migration

The information required to connect application to the service is stored in
an environment variable. A communication channel creates between each ap-
plication domain and the service under discussion during application domain
initialization. Each AppDomain has a specific contract implementation. This
contract allows the application and service to interact and makes possible all
of the functionality described above. The following code is an example of the
programming interface for managing an application module.

interface IAppManager

void Start (IRpcHost);
AppState Freeze();
void Restore(AppState, IRpcHost);

}

This contract allows the service to manage the lifecycle of each module of
distributed application. Any AppDomain can be migrated from one compute
node to another until it has bounded resources, such as specific device require-
ments. To accomplish this, the execution of the particular AppDomain should
be frozen, then its state should be serialized and transferred, and then it should
be resumed on the other device.

The supervising service collects information about other available devices
and monitors performance indications during the execution of the application of
the compute node, where it is running, as well as other available compute nodes.
If there are no restrictions about application state or environment state and it
is appropriate to transfer particular application module, then the supervising
service can initiate the migration procedure.

Here’s how the state of an application can be seen in conjunction with mi-
gration procedures:

— Initialization of application

Initialization of application modules

— Application module hibernation (during transportation)
— Restoration of the application module

Completion of the application module

— Shutdown the application

Process of application instance initialization looks like following sequence of
operations:

— RPC endpoint information retrieving from the environment variable

— Establishing RPC channel connection

Selection of startup mode

— Registration of new application instance or restore of the module of an ex-
isting application instance

AppDomain A Start Running
AppDomain ° st Running Ru"ning
start application running time

Fig. 3. Migrated AppDomain states

3 Conclusion

Proposed solution allows to create "seamless" workspaces, where the boundary
between different computing devices can be eliminated, if they connected to the
same network, thereby potentially increases the productivity of scientific and
technical work.

It removes obstacles about extra efforts and pains required for the interaction
of user with the applications deployed on the different devices, connected by the
network, when such applications are not designed to be accessible remotely.

It is the first steps to ubiquitous computing - a model of human interaction
with a computing system in which the user is surrounded by computing devices
permeating the environment, integrated into everyday things.

The software system architecture was designed with the contract between
managing service and manageable application module. The logic of mentioned
service was formulated.

Further research planned on implicit implementation of AppDomain state
serialization and migration. It should decrease the complexity of proposed tech-
nology integration for the applications. These plans include prototyping and
testing in the emulated network environments with various limitations on band-
width and latency.

Further areas of application of the proposed solution are Internet of Things
domain and fog computing. The nature of the computer systems that used in
this areas supposes limited computational resources from the one side, and the
requirement of reliability and small time to get the results. Such aspects lead to
adaptivity of software system as possible answer to needs of integrated end-user
application development.

References

1. lorian Katenbrink, Ludwig Mittermeier, Andreas Seitz, Harald Mueller, and Bernd
Bruegge. Dynamic Scheduling for Seamless Computing. In 2018 IEEE 8th Inter-

10.
11.

12.

national Symposium on Cloud and Service Computing (SC2), pages 41-48, Nov
2018.

Tanenbaum, Andrew S., and Herbert Bos. "Modern operating systems.", Pearson,
(2015).

Richter, J. "CLR via C#. Programming in .NET Framework 4.5 platform on in
C+#", Saint-Petersburg: Piter. (2013).

Hildebrand, Dan. "An Architectural Overview of QNX." USENIX Workshop on
Microkernels and Other Kernel Architectures. (1992).

Sam Newman. Building Microservices. O’Reilly Media, Inc., 1st edition, (2015).
J. Oueis, E. C. Strinati, and S. Barbarossa. The Fog Balancing: Load Distribution
for Small Cell Cloud Computing. In IEEE 1st Vehicular Technology Conference
(VTC Spring), 2015.

Florian Katenbrink, Ludwig Mittermeier, Andreas Seitz, Harald Mueller, and
Bernd Bruegge. Dynamic Scheduling for Seamless Computing. In 2018 IEEE 8th
International Symposium on Cloud and Service Computing (SC2), pages 41-48,
Nov 2018.

Eva Marin-Tordera, Xavier Masip-Bruin, Jordi Garcia Almifiana, Admela Jukan,
Guang-Jie Ren, Jiafeng Zhu, and Josep Farre. What is a Fog Node A Tutorial on
Current Concepts towards a Common Definition. CoRR, 2016

Harald Mueller, Spyridon V. Gogouvitis, Houssam Haitof, Andreas Seitz, and
Bernd Bruegge. Poster Abstract: Continuous Computing from Cloud to Edge. In
IEEE/ACM Symposium on Edge Computing (SEC), pages 97-98, 2016.

Kakadia, Dharmesh. Apache Mesos Essentials. Packt Publishing Ltd, 2015.
Merkel, D. (2014). Docker: lightweight linux containers for consistent development
and deployment. Linux journal, 2014(239), 2.

Buchanan, Steve, Janaka Rangama, and Ned Bellavance. "Inside Kubernetes."
Introducing Azure Kubernetes Service. Apress, Berkeley, CA, 2020. 35-50.

