
Learning to Rank Research Articles
A case study of collaborative filtering and learning to rank

in ScienceDirect

Daniel Kershaw, Benjamin Pettit, Maya Hristakeva, and Kris Jack

Elsevier Ltd

Abstract. Online academic repositories help millions of researchers dis-
cover relevant articles, a domain in which there are many potential signals
of relevance, including text, citation links, and how recently an article
was published. In this paper we present a case study of prodictionizing
learning to rank for large scale recommendation, which utilises these di-
verse feature sets to increase user engagement. We first introduce item-
to-item collaborative filtering (CF), then how these recommendations
are rescored with a LtR model. We then describe offline and online eval-
uation, which are essential for productionizing any recommender. The
online results show that learning to rank significantly increased user en-
gagement with the recommender. Finally we show through post-hoc anal-
ysis that the original CF solution tended to promote older articles with
lower traffic. However, by learning from subjective user interactions with
the recommender system, our relevance model reversed those trends.

1 Introduction

The rate of scientific discovery is ever increasing, with new methods, theory and
practice being published each day. This growth poses a challenge for researchers,
who need to stay up to date. Online academic catalogues, such as ScienceDi-
rect,1 give users access to large amounts of peer reviewed scientific publications.
However, the experience of using such catalogues can be characterised as a com-
bination of information overload [4] and information shortage [12]. First, when
encountering a large catalogue of information there is no simple way for the
user to read, comprehend and critique all the documents. Additionally, when
browsing they may not be discovering content that they would deem relevant.

The specific use case we aim to address is to help users of ScienceDirect
find additional relevant articles that go beyond explicitly encoded relationships
such as authorship or publication venue. In contrast to the personalised research
article recommendations in platforms such as Mendeley [13] and CiteULike [19],
we want an approach that works in the absence of profile data or reading history.

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). BIR 2020, 14 April 2020,
Lisbon, Portugal.

1 https://www.sciencedirect.com

BIR 2020 Workshop on Bibliometric-enhanced Information Retrieval

75

In this paper, we describe how we built an initial system using item-based
collaborative filtering (IBCF). Once this system is in production, we collected
data on which recommendations users preferred, and then trained a Learning
to Rank (LtR) model to re-rank the recommendations using a range of article
features and similarity metrics. We focus on the evaluation methodology and
how the recommendations surfaced by LtR differed from the pure collaborative
filtering system. These give insight into what the LtR system achieves that could
not be done with collaborative filtering (CF) alone.

Recommender Systems (RS) have become key tools in a researcher’s con-
tent discovery toolkit, as they not only allow them to more efficiently navigate
large and ever-growing catalogues, but also discover content that they would not
have seen otherwise. Previous work has resulted in a distinction between meth-
ods used for personalised and non-personalised approaches. This can be seen
in the use of implicit feedback and CF for personalised recommendations [13,
19], whereas content-based methods are used predominately for non-personalised
recommendations [20, 21, 16]. In combining CF and LtR we overcome some of
the limitations of CF by reducing the dependence on current navigation pat-
terns, allowing us to take into account the content of the article [7] and how
recently it was published. Unlike purely content-based recommendations, this
system adapts to how the articles are being used and which recommendations
users engage with.

Through this research, we ultimately found that to train and evaluate a
better model of article relevance, it is necessary to go beyond trying to predict
what users will browse next. While the implicit feedback from article browsing
is valuable for CF, it is limited by the very same information shortage problem
that the recommender system attempts to mitigate. In addition to developing
the model, we present some post-hoc analysis that sheds light on some of the
biases in the CF results that are reversed by applying LtR. Our contributions
can be summarised by the following points:

1. Offline evaluation should be matched to the online challenge: By
comparing two offline evaluation scenarios with an online experiment, we
show that higher accuracy at predicting browsing behaviour does not corre-
spond to having the highest engagement from users.

2. The winning ranking model depends on text, usage, article age,
and the citation network: By training a number of LtR models we show
that relevance of a document to a user is a combination of textual similarity,
recency, popularity, usage similarity, and proximity in the citation network.
Traditional bibliometric features have limited impact.

3. The ranking model increases diversity: On average, the ranking model
increases the number of distinct journals in each list of related items.

4. The ranking model promotes recently published items that have
more traffic in the past year: Although other collaborative filtering sys-
tems have reported a popularity bias [2], in this case collaborative filtering
has a bias towards unpopular items, which the LtR system reverses.

BIR 2020 Workshop on Bibliometric-enhanced Information Retrieval

76

2 Related Work

A wide variety of techniques have been used to generate recommendations for
academic publications. [21] and [20] focused on using hierarchical clustering of
citation networks to make recommendations that distinguish between core pa-
pers in a discipline and important papers in sub-fields. While, [10] and [18]
used author-defined keywords and tags to identify similar documents. Not only
explicit article metadata are used to generate recommendations: Mendeley Sug-
gest [13]2 used user-based collaborative filtering (UBCF) to generate recommen-
dations based on a user’s library of documents, which showed improvements
over content and citation based methods. Another example comes from Wang et
al. [19], who used implict feedback from CiteULike3 in conjunction with Latent
Dirichlet allocation (LDA) applied to article text. For a comprehensive survey
of research article recommender systems, we refer the readers to [3].

LtR has traditionally been used in information retrieval (IR) systems such as
search engines [14]. For example, WalMart demonstrated that LtR could be used
to improve the rankings of Grocery search results [15]. They used features mined
from images of the products, and experimented with optimising the models for
different actions such as clicking on the item or buying the item.

To aid research into LtR, a number of frameworks have been developed which
allow for the test and training of models. Microsoft released LEROT [1], an “on-
line learning to rank framework”. Additionally, RankLib [8] is a JAVA framework
that contains a number of standard LtR models, which will be discussed next.
These frameworks have allowed research to be reproducible and applied easily
across a number of domains. These frameworks implement a number of different
algorithms between point-wise, pair-wise and list-wise approaches.

3 Data sets

The recommendations generation has two distinct phases. First we generate the
recommendation candidates using CF and then re-rank them with a LtR model
to get the recommendations list. We use different data sets within these two
distinct phases.

3.1 Article browsing logs

The main data set for CF contains implicit feedback from users as they browse
ScienceDirect. This usage data set is in the format of <sessionID, articleID,
accessTime>. We apply IBCF on this data set to find candidate related articles
based on co-usage patterns. High traffic users are removed, as these can represent
public access machines in institutions. Additionally, we remove traffic that was
elicited by the recommender system, in order to remove a positive feedback loop.

2 https://www.mendeley.com/suggest
3 https://www.citeulike.com

BIR 2020 Workshop on Bibliometric-enhanced Information Retrieval

77

3.2 Recommender logs

LtR requires labelled training data that represents user preferences in relation to
the recommendation list. We computed relevance labels by aggregating clicks and
impressions from the live CF recommender on ScienceDirect. When users visit a
ScienceDirect article page, a set of related-article recommendations are displayed
(i.e. impressions) and they may click on one or more of the recommendations to
view or download the article. We ignored impression data for page loads where
none of the recommendations were clicked, or where all of the recommendations
were clicked. For each query article, we aggregated the recommended articles
across all user sessions. For simplicity we treat relevance as a binary label: 1 if
the recommended article was clicked at least once, otherwise 0.

3.3 Article metadata

Each article has a large amount of data and meta-data associated with it. This
includes titles, authors, abstract, references, and various metrics on article, jour-
nal impact and citation information. These additional data sets are used to
generate features for the LtR models.

4 Recommendation Method

4.1 Collaborative Filtering

At the core of IBCF is the method proposed by [17], which finds similar items
(documents) based on the similarity between their usage vectors. This means
that for a given document (d) the function sim(d,D) returns a set of M sim-
ilar documents based on their co-usage patters. Within this nearest-neighbour
method, we use cosine similarity to identify documents that have been browsed
in the same sessions. Here, Sd is the set of sessions in which document d was
browsed.

cosine(d, d′) =
|Sd ∩ Sd′ |√
|Sd| × |Sd′ |

(1)

Using cosine similarity to score neighbours ignores the statistical confidence
in the correlation between usage patters. For example, many documents were not
viewed in very many sessions, so a similar document d′ may have only one or
two sessions in common with the focal document d, but nonetheless rank highly
in terms of cosine(d, d′) because |Sd′ | is also small. Therefore, we scale cosine
similarity with a significance weighting computed from the number of articles in
common:

score(d, d′) = min(1,
|Sd ∩ Sd′ |

q
)× cosine(d, d′) (2)

BIR 2020 Workshop on Bibliometric-enhanced Information Retrieval

78

If the documents have fewer than q sessions in common, then its contribution
to the CF score is scaled down. This means that preference is given to recommen-
dations that are generated from high co-occurrence neighbours, who are more
likely related to the focal document d. An alternative would be to discard pairs
with low co-occurrence, but to keep catalogue coverage high we chose to keep
them and reduce their scores instead.

4.2 Learning to Rank

Once the set of recommendations (Rd) have been generated for each document
(d ∈ D) it is re-scored using a pre-trained LtR model. The premise of LtR is to
rank items higher which users are more likely to engage with through observing
their past action. Training takes the form of n labelled query documents, qi(i =
1, ..., n) and their associated recommended documents with feature vectors with
relevance judgements xi = {x(i)j }m

(i)

j=1 , where n is the number of recommendations
in the query.

For this work we focus on methods which have been implemented in the
LtR package RankLib [8]. This is a JAVA application which can apply popular
LtR methods to an SVMRank formatted file. The algorithms we compared in-
cluded RankNet, LambdaRank, MART, and LambdaMART. These LtR models
represent both pair-wise and list-wise objectives.

RankNet [5] is a pair-wise neural network algorithm. The objective function
is cross entropy, which aims to minimise the number of inversions in the rank-
ing. However, this pair-wise objective does not optimise for the whole list, unlike
list-wise methods such as LambdaRank and LambdaMART. LambdaRank [6]
built on RankNet by modifying the cost function to use gradients, λ, which
also take into account the change in a list-wise IR metric such as NDCG.
LambdaMART [6] combines LambdaRank and multiple additive regression trees
(MART), using the cost function from LambdaRank rather than from MART,
thus optimizing for the whole list. Out of the available models, LambdaMART is
generally considered state-of-the-art, and has performed well in competitions [6].

Feature Extraction The features for the LtR models are taken from the query
document and the recommended document as well as from the interaction be-
tween the two. These features can be grouped into seven categories.

CF score: A measure of co-usage of the query document and the candidate
recommendation (Equation 2).

Popularity: Popularity (number of views) of a document potentially indi-
cates its quality or its future engagement.

Citations: Two documents (the query document and the recommendation)
share references then this could indicate a quality recommendation, and likewise
if two articles are both cited by the same article. To quantify this, we compute
two measures, the first being the Jaccard index between the citation neighbour-
hoods,

BIR 2020 Workshop on Bibliometric-enhanced Information Retrieval

79

cite_sim(Cd, Cd′) =
|Cd ∩ Cd′ |
|Cd ∪ Cd′ |

(3)

where the neighbourhood Cd is the set of articles that either cite document d
or are cited by document d, plus document d itself. The second measure is the
total number of citations a document has received.

Journal Metrics: Impact factors are potential predictors of the quality of
the research, although a weakness is the huge variation in article impact within a
journal. We added to the feature set several impact metrics of the journal where
the recommended article was published .

Temporal: We represent age as the number of years since the cover date.
Topics: All articles published are tagged with a scientific taxonomy, indicat-

ing which topics and subjects they cover. We calculate binary similarity between
the sets of topics associated with each document .

Text: We included the similarity of the recommended document text to the
query document text, where text is represented as an n-gram tf-idf vector of a
document’s title and abstract.

Training We used query-recommendation pairs with relevance labels inferred
from recommender logs, as described in Section 3.2. We held out 20% of the
query articles from the training data as a validation set, and trained on the
remaining 80%. The validation set was used for hyper-parameter tuning and
feature selection.

For hyper-parameter tuning, LambdaMART and MART require choosing
the learning rate, the number of trees, maximum leaves per tree, and minimum
training examples per leaf. With LambdaMART, we used 20 leaves per tree,
with at least 200 examples per leaf and a learning rate of 0.1. The number of
trees (∼ 250) was determined by early stopping, again based on the validation
set. The final model used was LambdaMART, optimising for NDCG@3.

We pruned features through backwards elimination: removing the least im-
portant feature (highest NDCG@3 when removed), and then repeating the process
as long as NDCG@3 increased on the validation set. In Section 6.3 we compare the
importance of the different types of features.

4.3 Dithering

The candidate recommendations are ranked using the LtR model or, in the initial
version of the system, by their CF scores. Before selecting the top portion of the
list to display to the user, we apply dithering [9], so that a larger proportion
of the list is explored. Dithering is the process of adding Gaussian noise to the
items’ ranks, thus slightly shuffling the list; new_score = log(rank)+N(0, log ε)
, where ε = ∆rank

rank and typically ε ∈ [1.5, 3]. Over time, items at lower ranks will
eventually be shown to users, allowing us to collect feedback on their quality as
recommendations.

BIR 2020 Workshop on Bibliometric-enhanced Information Retrieval

80

Table 1. Comparison of LtR models using click prediction task on both the time-split
test set and validation set.

Ranker NDCG@3
Validation

NDCG@3
Test

Random 0.753 0.768
CF score 0.802 0.787
LambdaMART 0.814 0.807
MART 0.813 0.804
RankBoost 0.805 0.797
AdaRank 0.802 0.787
Random forests 0.808 0.798

Fig. 1. LambdaMART performance on two offline evaluation tasks, compared to rank-
ing by CF scores and a random baseline.

This is important because the LtR model is trained on impressions and clicks
of recommendations (Section 3.2). Dithering makes the training data for LtR less
constrained by the previous iteration of the recommender system.

5 Evaluation Method

We used two different tasks to evaluate LtR offline. First, we test it on recom-
mendation click prediction, the same task that the model was trained on. Then
we test whether the model transfers to a session prediction task.

In the recommendation click prediction task, each test case consists of a query
article and its recommended articles that were displayed to users. Some of the
recommendations were clicked (labelled 1) and some were not clicked (labelled
0). The recommender is evaluated on its ability to rank the clicked items higher
than the non-clicked, using NDCG@k. This is the same ranking task that the LtR
model was trained on, but the test data came from a time interval after the
training and validation data. Its limitation is that it only evaluates performance

BIR 2020 Workshop on Bibliometric-enhanced Information Retrieval

81

on the recommendations that were displayed by the incumbent recommender
system, so it cannot judge articles that a new ranker will introduce into the top
k.

In the session prediction task, each test case consists of a sequence of articles
that were browsed in the same user session, excluding browsed articles elicited
by the recommender system. The top k recommendations for the first item are
compared to what the user actually browsed next. The recommender is evaluated
on its ability to rank the browsed items highly (NDCG@k). We have found this
evaluation procedure useful for tuning CF candidate selection, where it correctly
predicted which CF variant had higher click through rate (CTR).

For both types of evaluation, we split the data set on a time boundary (τ),
train the model on data generated before τ , and then test the model to see if
it predicts the actions after τ . This means before τ we use the clicks in sessions
(browsing between articles) to train the CF model, and then clicks on the already
deployed CF recommender is used to train the LtR model. We use actions after
τ as the ground truth, where sessions browsed are used for sessions prediction
and click on the deployed recommender for click predictions. Although they were
collected in the same time window, the test sets from the two evaluation tasks
use mutually exclusive subsets of the logs, e.g. the first only uses recommender
clicks, whereas the second excludes recommender clicks.

We calculated a random baseline for each evaluation task. For session pre-
diction, the baseline is a random permutation of the candidate recommendation
list for each query article. For recommendation click prediction, the baseline is
a random permutation of the displayed recommendations for each query article.

6 Results

6.1 Offline evaluation

LambdaMART performed best in terms of NDCG@3 on a time-split test set of
recommender clicks and impressions (Table 1).

Having chosen a modelling approach for LtR, we tested whether Lamb-
daMART’s performance gains transferred to the session-prediction task. As shown
in Figure 1, the ranking using LambdaMART was an improvement over CF score
on the click prediction task, but not on the session prediction task. The Lamb-
daMART and CF score rankings outperformed the random baseline in both
tasks (Figure 1). Nonetheless, we decided to proceed with online evaluation, be-
cause the click prediction task is based on user behaviour in the recommendation
context, and we therefore thought it would be a better proxy for online perfor-
mance. We discuss the discrepancy between the two offline evaluation tasks in
more detail in Section 7.

6.2 Online evaluation

Our best candidate algorithms from offline evaluation are compared against the
current production model via A/B testing. Prior to the work on LtR, we had

BIR 2020 Workshop on Bibliometric-enhanced Information Retrieval

82

C
F

sc
or

e

P
op

ul
ar

ity

Te
xt

A
ge

C
ita

tio
ns

To
pi

c

Jo
ur

na
l m

et
ric

s

Type of feature removed

0.785

0.790

0.795

0.800

0.805

0.810

0.815

0.820

N
D

C
G

@
3

all features

Fig. 2. Impact of removing each category of feature from LambdaMART model

A/B tested a number of iterative improvements on the CF stage, for example
by varying the duration of log data ingested to generate the recommendations.
A/B tests performed included increasing the time period of input data for CF
candidate selection which resulted in a CTR change of +9.6%, and Re-rank using
LambdaMART mode which increase CTR by +9.1%.

For LtR, we carried out an online A/B experiment comparing LtR (using
the LambdaMART model in Figure 1) to our best CF algorithm. Each user is
randomly allocated to one of two treatments, either receiving recommendations
from the incumbent CF system or from the LtR variant. The LtR variant resulted
in a statistically significant 9.1% increase in CTR. This result agreed with the
offline performance of LtR on the click prediction task, but it disagreed with
their performance on the session prediction task (Figure 1).

6.3 Feature importance

Figure 2 shows the effect of removing each category of features, as introduced
in Section 3. Using backwards elimination (Section 4.2), we obtained a slight
increase in the validation metric (NDCG@3). Using fewer features also reduced
training time and simplified the feature extraction pipeline. The journal metrics
were all removed, and we retained one or two features from each of the other
categories. The evaluation steps described above used this tuned LambdaMART
model with a reduced feature set.

As one can see in Figure 2, CF score was the most important feature, in that
removing it resulted in the greatest drop in NDCG@3 on the held-out validation
set. The feature importance for our ranking model should not be interpreted
as what makes an article “relevant” in general, because the training data were
collected through a specific user interface that displayed some article metadata
and not others, and furthermore the order of the articles was determined by CF
score. Instead, the impact of features within the model guided us as to which
could be safely discarded (e.g. journal impact metrics).

BIR 2020 Workshop on Bibliometric-enhanced Information Retrieval

83

(a) Mean age of items at a
given rank.

Query Article Popularity

0.2

0.1

0.0

0.1

0.2

s(a
ge

,s
co

re
)

Method
cf
ltr

(b) Correlation between age
and rank

Query Article Popularity

0.75

0.50

0.25

0.00

0.25

s(p
op

ul
ar

ity
,s

co
re

)

Method
cf
ltr

(c) Correlation between pop-
ularity and rank

Fig. 3. Post-hoc analysis results

6.4 Post-hoc analysis

Item Age One of the main motivations behind research article discovery tools is
to help people stay up to date with recent developments in their fields. Therefore
we examined the mean age of recommended documents in each rank position,
where age is defined as the current year minus the publication year of the rec-
ommend article. As shown in Figure 3a, recommendations ranked by CF scores
are biased against newly published articles, with higher-ranking articles tending
to be older. When ranked by the LtR model, there is a bias towards younger
articles instead.

The bias towards older articles, when ranked by CF, is especially pronounced
where the query article is relatively cold, in other words it had less usage data
available for collaborative filtering (Figure 3b). Figure 3b bins the query items
based on their popularity within the CF input data, then for each query item
it computes the Spearman’s rank correlation (ρs) between the recommendation
age and rank (ordered either by LtR or CF score), and finally takes the mean
of ρs within each bin. A positive value of ρs indicates that older recommended
articles tend to be ranked higher.

However, for recommendations ranked by LtR this effect of bias towards
older articles has been reduced (lower values of ρs in every bin), resulting in
warm articles having recommendations that favour newer publications.

Popularity In addition to favouring older articles, our CF method also tends
to give higher scores to less popular articles (Figure 3b), where popularity is
measured as the number of unique users viewing the item in the 12 months of
input data for CF (this is assessed using the same method as in Section 6.4).
This is the opposite pattern to the popularity bias often found in UBCF [2].
Like the age bias, it is most pronounced for colder source articles in the bot-
tom two quartiles of popularity. LtR reverses this trend and instead biases the
recommendations towards more popular items. Although this is not necessar-
ily a desirable outcome for all recommender systems, it is not so surprising in
this case, where popularity metrics were available as a feature for the relevance
model. Despite the bias towards popular items, LtR caused only a 2.1% reduc-

BIR 2020 Workshop on Bibliometric-enhanced Information Retrieval

84

Table 2. Journal diversity

% of Query Articles

Distinct Journals@3 CF score LambdaMART

1 13.78% 12.27%
2 29.65% 32.16%
3 56.57% 55.57%

tion in item coverage@3, with over 90% of recommendable items appearing in
the top three recommendations for at least one query article.

Diversity One of the challenges of RS is to highlight content from across a
catalogue. Diversity in recommendations has been shown to increase users’ in-
teractions and perception of fairness [2]. However one of the issues with our
system is that traffic can be concentrated within the same journal, which leads
to some recommendation lists being all from the same journal. Thus we aim to
understand how LtR and CF affect diversity within the set of recommendations.

To quantify diversity within our recommendations we look at the number of
recommendations that come from different journals. With journals identified as
distinct ISSN numbers.

As one can see in Table 2, LtR caused a slight increase diversity, in terms of
the number of different journals in the top three recommendations for each query
article. To further confirm the significance of change in diversity we perform a
chi-square test (χ2) of the contingency table showed a significant dependency
between the ranker and number of distinct journals (p < 10−16).

7 Discussion

In this paper we set out to show how LtR is applied to item-to-item academic
paper recommendations. In doing so we were able to significantly improve user
engagement with the RS, using a model trained on user interaction with the
recommender system. The model learned how to combine many indicators of
article relevance, including co-usage, popularity, age, text, topic tags, and shared
citations. As with previous studies, we found that gradient boosted decision trees
(MART, LambdaMART) performed well for this task [6], and that list-wise
optimisation of the LambdaMART model was an additional advantage.

However, when it came to predicting what users would browse next, in the
absence of recommendations, the model did not improve on IBCF. This is sur-
prising, because we had previously found session prediction to be a good in-
dicator of online performance, when tuning the collaborative filtering system.
Recommendation is often framed as a problem of session prediction, for example
in session-based recommendations with recurrent neural networks [11], but we
found it had shortcomings.

BIR 2020 Workshop on Bibliometric-enhanced Information Retrieval

85

Designing offline evaluation raises the question of what the recommender sys-
tem is designed to do. The session-prediction task assumes the goal of recommen-
dation is to predict human browsing behaviour. Although it was a good proxy for
online performance of the candidate selection step, the session-prediction task
did not agree with online results when it came to choosing a ranking method.

One explanation for why CF outperformed the LtR model on the session
prediction task is that users’ browsing behaviour outside of the recommender
system is at odds with what they actually find useful as recommendations. Users
might struggle to find the most relevant articles, which is the very problem of
information shortage that motivated us to create the recommender. For example,
a recently published article may be less well known within its field, and yet when
it is presented in a recommendations list it attracts more attention than older
articles.

The post-hoc analysis demonstrated some trends in the types of items rec-
ommended by IBCF, which LtR counteracted. Cold start and data sparsity are
well-known challenges in collaborative filtering. Even among warm items with
usage data, those with fewer users are expected to have less accurate recom-
mendations. We found that the less popular the query article, the more the CF
system tended to promote old or unpopular articles as recommendations. Based
on which articles users clicked, the LtR system learned to promote articles that
were published more recently or had more activity in the past year.

Based on these results, we should be able to improve the model by includ-
ing as a feature the popularity of the query article (not just the recommended
article). That would allow the tree-ensemble model to learn different relevance
functions depending on how warm the source article is, for example giving less
importance to CF score for items with sparser usage data. In theory, the model
could also counteract the unpopularity-bias for colder articles without adding a
popularity bias to the warmer articles’ recommendations.

8 Conclusion

In this work we have demonstrated the benefits of LtR for improving upon
a production CF system, which is especially important in a domain such as
research articles where there are vast catalogues of recommendable items, each
of which has high quality structured metadata. We showed how changes to the
production system were ultimately decided on the basis of online evaluation, but
given the number of models and parameter choices, we also needed an offline
evaluation that was a good proxy for online performance.

The winning LambdaMART model combines co-usage, semantic similarity,
shared citations, popularity, and recency. The original IBCF solution tended to
promote older articles with lower traffic, but by learning from subjective user
interactions with the recommender system, our relevance model reversed those
trends and therefore overcame some of the limitations of CF.

BIR 2020 Workshop on Bibliometric-enhanced Information Retrieval

86

References

1. S. Whiteson M. de Rijke A. Schuth, K. Hofmann. Lerot: an online learning to
rank framework. In Living Labs for Information Retrieval Evaluation workshop at
CIKM’13., 2013.

2. Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. Controlling pop-
ularity bias in learning-to-rank recommendation. In Proceedings of the Eleventh
ACM Conference on Recommender Systems, RecSys ’17, pages 42–46, New York,
NY, USA, 2017. ACM.

3. Joeran Beel, Bela Gipp, Stefan Langer, and Corinna Breitinger. Research-paper
recommender systems: a literature survey. International Journal on Digital Li-
braries, 17(4):305–338, Nov 2016.

4. Christian Borgs, Jennifer Chayes, Brian Karrer, Brendan Meeder, R. Ravi, Ray
Reagans, and Amin Sayedi. Game-theoretic models of information overload in
social networks. In Ravi Kumar and Dandapani Sivakumar, editors, Algorithms
and Models for the Web-Graph, pages 146–161, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

5. Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. Learning to rank using gradient descent. In Proceedings of
the 22Nd International Conference on Machine Learning, ICML ’05, pages 89–96,
New York, NY, USA, 2005. ACM.

6. Christopher J. C. Burges. From ranknet to lambdarank to lambdamart: An
overview. 2010.

7. Fidel Cacheda, Víctor Carneiro, Diego Fernández, and Vreixo Formoso. Compar-
ison of collaborative filtering algorithms: Limitations of current techniques and
proposals for scalable, high-performance recommender systems. ACM Trans. Web,
5(1):2:1–2:33, February 2011.

8. Van Dang. RankLib, 2011.
9. Ted Dunning, Ellen Friedman, and M D Ellen Friedman. Practical Machine Learn-

ing: Innovations in Recommendation. O’Reilly Media, Inc., August 2014.
10. Felice Ferrara, Nirmala Pudota, and Carlo Tasso. A keyphrase-based paper recom-

mender system. In Maristella Agosti, Floriana Esposito, Carlo Meghini, and Nicola
Orio, editors, Digital Libraries and Archives, pages 14–25, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

11. Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
Session-based recommendations with recurrent neural networks. CoRR,
abs/1511.06939, 2015.

12. Liangjie Hong, Ron Bekkerman, Joseph Adler, and Brian D. Davison. Learning to
rank social update streams. In Proceedings of the 35th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’12,
pages 651–660, New York, NY, USA, 2012. ACM.

13. Maya Hristakeva, Daniel Kershaw, Marco Rossetti, Petr Knoth, Benjamin Pettit,
Saúl Vargas, and Kris Jack. Building recommender systems for scholarly infor-
mation. In Proceedings of the 1st Workshop on Scholarly Web Mining, SWM ’17,
pages 25–32, New York, NY, USA, 2017. ACM.

14. Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceed-
ings of the Eighth ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, KDD ’02, pages 133–142, New York, NY, USA, 2002. ACM.

15. Shubhra Kanti Karmaker Santu, Parikshit Sondhi, and ChengXiang Zhai. On ap-
plication of learning to rank for e-commerce search. In Proceedings of the 40th

BIR 2020 Workshop on Bibliometric-enhanced Information Retrieval

87

International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, SIGIR ’17, pages 475–484, New York, NY, USA, 2017. ACM.

16. Jimmy Lin and W. John Wilbur. PubMed related articles: a probabilistic topic-
based model for content similarity. BMC Bioinformatics, 8(1):423, oct 2007.

17. Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations:
Item-to-item collaborative filtering. IEEE Internet Computing, 7(1):76–80, Jan-
uary 2003.

18. Cristiano Nascimento, Alberto H.F. Laender, Altigran S. da Silva, and Marcos An-
dré Gonçalves. A source independent framework for research paper recommenda-
tion. In Proceedings of the 11th Annual International ACM/IEEE Joint Conference
on Digital Libraries, JCDL ’11, pages 297–306, New York, NY, USA, 2011. ACM.

19. Chong Wang and David M. Blei. Collaborative topic modeling for recommending
scientific articles. In Proceedings of the 17th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’11, pages 448–456, New
York, NY, USA, 2011. ACM.

20. Ian Wesley-Smith and Jevin D. West. Babel: A platform for facilitating research
in scholarly article discovery. In Proceedings of the 25th International Conference
Companion on World Wide Web, WWW ’16 Companion, pages 389–394, Republic
and Canton of Geneva, Switzerland, 2016. International World Wide Web Confer-
ences Steering Committee.

21. J. D. West, I. Wesley-Smith, and C. T. Bergstrom. A recommendation system
based on hierarchical clustering of an article-level citation network. IEEE Trans-
actions on Big Data, 2(2):113–123, June 2016.

BIR 2020 Workshop on Bibliometric-enhanced Information Retrieval

88

