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Abstract. Citation recommendation systems for the scientific litera-
ture, to help authors find papers that should be cited, have the potential
to speed up discoveries and uncover new routes for scientific exploration.
We treat this task as a ranking problem, which we tackle with a two-
stage approach: candidate generation followed by re-ranking. Within this
framework, we adapt to the scientific domain a proven combination based
on “bag of words” retrieval followed by re-scoring with a BERT model.
We experimentally show the effects of domain adaptation, both in terms
of pretraining on in-domain data and exploiting in-domain vocabulary.
In addition, we evaluate eleven pretrained transformer models and an-
alyze some unexpected failure cases. On three different collections from
different scientific disciplines, our models perform close to or at the state
of the art in the citation recommendation task.

1 Introduction

The volume of scientific publications is growing at an incredible rate. For exam-
ple, over 900,000 papers are added per year to MEDLINE, a database of the life
sciences and biomedical literature.1 A recent study estimates that 3M papers
are published annually in the English language, with a growth rate of 3–5% per
year [18]. This flood of information has made it nearly impossible for researchers
to keep abreast of discoveries and innovations, both in their specific sub-field as
well as more broadly. Furthermore, there is an overwhelming amount of mate-
rial that a scientist entering a new field of study needs to read before becoming
familiarized with common concepts, methods, and other foundations.

A number of tools have come along to help researchers cope with this del-
uge. For example, keyword-based literature search engines (Google Scholar, Mi-
crosoft Academic, PubMed, and Semantic Scholar) and citation recommendation
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tools [5, 2, 27, 21, 14] help scientists find relevant articles, often exploiting ci-
tation networks to identify what’s important in a particular field. Methods to
automatically populate scientific knowledge bases [12, 34, 35] form another broad
approach to tackling this challenge.

In this work, we investigate the potential of deep pretrained transformer
models such as BERT [7] and large scientific datasets such as Open Research [1]
to improve scientific search tools. More concretely, we tackle the task of scien-
tific literature recommendation, where a paper (title and abstract) is given as
a query, and the system’s task is to find papers that should be cited. We use a
standard keyword search engine (based on inverted indexes) with BM25 rank-
ing [33] to initially retrieve candidate documents and evaluate various pretrained
transformer models as re-rankers.

We find that this simple pipeline is more effective than previous cluster-based
methods [32, 4]. To summarize, our main contributions are as follows:

– We evaluate eleven pretrained ranking models and find that pretraining on
the target domain and using domain-specific vocabulary leads to large im-
provements over a general-purpose model.

– We find that despite the effectiveness of the pretrained transformer models
as query–document relevance estimators, they perform poorly when the term
overlap between the query and candidate documents is low. To address this
issue, we train with more query–candidate pairs that have low term overlap,
but interestingly, such a model performs poorly, even on the training set (see
Section 5.2).

– Contrary to our expectation given the symmetric nature of query and candi-
date documents, we find that query terms are more important than candidate
document terms for relevance estimation (see Section 5.3).

2 Related Work

Most early methods for scientific literature search and recommendation take
advantage of keyword-based retrieval [13, 22]. These techniques suffer from the
term mismatch problem, which is common in “bag-of-words” retrieval methods,
but the issue is aggravated by the diversity of scientific vocabulary [17, 8, 29].
As the number of users grows, popular search engines can exploit interaction
signals to learn better ranking models [28, 11, 10]. However, the reported gains
are relatively small compared to classic ranking methods such as BM25.

Another common approach in scientific recommendation systems is collab-
orative filtering [27, 24, 6]. These methods typically suffer from the cold-start
problem, in which there is not enough evidence about new items (or users) to
make predictions accurately.

More recently, cluster-based methods have started to become competitive
with traditional retrieval-based methods in this task. Kanakia et al. [19] cluster
papers based on their word embedding representation and use co-citations to
alleviate the cold-start problem. However, they perform human evaluations on
a private dataset, which excludes an empirical comparison to our approach.
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Perhaps closest to our work is Eto [9], who uses a combination of proxim-
ity measures from the graph of co-citations to score candidate documents. The
edges in the graph are weighted by the distance in which two citations occur in
the citing document. This method requires access to the full text of the citing
document, which is often not available (for example, due to paywalled content).
Our method, on the other hand, predicts citations using only article abstracts,
which are widely available in scientific corpora.

The methods described so far and our work fall in the category of global
methods, which aim at recommending citations for the entire paper. Another
category comprises local methods, which aim at recommending citations for a
specific sentence or paragraph in the document [14, 26, 15, 16]. We do not com-
pare our method to these as we do not assume access to the full text.

3 Methods

This work tackles the task of citation recommendation: given a partially written
paper, the system’s task is to return all papers that should be cited in it. The
input query q is the title and abstract of a paper (and not the full text). We argue
that this assumption is crucial to building a useful tool as authors might desire
recommendations of relevant citations prior to writing most of their paper.

Our method comprises two phases, Retrieval and Ranking. In the first phase,
the top-k papers D are retrieved by a keyword search engine when queried with
query q. In the second phase, we compute the probability p(d|q) of each paper
d ∈ D being relevant to q. For this, we use a BERT [7] re-ranker model based
on Nogueira and Cho [30]. Using the same notation as Devlin et al., we feed the
query tokens as sequence A and the candidate paper tokens as sequence B.

In our setup, both the query and the candidate are the concatenation of the
title and abstract of each paper, resulting in an input sequence that is often
longer than the maximum tokens allowed by the model (typically 512 tokens).
To handle this, we devote 256 tokens for the query and 256 for the candidate,
truncating as necessary. At inference time, we use the model as a binary classifier:
we feed the [CLS] token to a single layer neural network to obtain p(d|q). The
output of our method is a list of papers D ranked by p(d|q). Training details are
provided in Section 4.2.

4 Experimental Setup

4.1 Datasets

Open Research. We train and evaluate our models on the Open Research cor-
pus [1],2 comprising 7.2M computer science and biomedical paper abstracts and
their references. We closely follow the data processing steps from Bhagavatula

2 https://s3-us-west-2.amazonaws.com/ai2-s2-research-public/open-corpus/

2017-02-21/papers-2017-02-21.zip
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Table 1. Statistics of the datasets.

Open Research DBLP PubMed

Total # of docs 6,892,252 50,227 47,347
Total # of citations 44,400,729 156,807 825,371
Avg. # citations per doc 6.45 3.12 17.43
Avg. len. per doc (char) 1,391 1,193 1,504

Queries - Train 3,343,809 27,322 26,793
- Dev 487,582 8,324 2,768
- Test 464,449 931 8,815

q/rel. doc pairs - Train 32,470,673 106,011 558,674
- Dev 5,985,787 38,628 66,655
- Test 5,944,269 12,168 200,042

et al. [4] to create the training, development, and test sets. In more detail, we
sort papers by publication year and use the oldest 80% for training (1991–2014),
the next 10% for development (2014–2015), and the most recent 10% for testing
(2015–2016). Since the development and test sets are too large (400k+ papers),
we randomly sample 20k examples from each set. We remove papers that do
not cite any other paper or that have no year of publication. Finally, we remove
citations of papers that are not in the corpus or whose year of publication is later
than that of the citing paper. Table 1 shows the statistics of the final dataset
after all processing steps.

Note that although our dataset statistics do not match those reported in
Bhagavatula et al. [4], they match the output of the evaluation script provided
by the authors.3 The difference is that the authors report statistics before the
filtering steps (e.g., removing papers without references). Thus, our corpus and
dataset splits match exactly and thus our results are comparable.

DBLP and PubMed. The DBLP and PubMed datasets were introduced by
Ren et al. [32] and comprise papers from computer science and biomedicine,
respectively. We apply the same data processing steps from Bhagavatula et al.,
and the resulting dataset statistics are summarized in Table 1.

Once processed in the manner described above, the citations within each paper
serve as the ground truth for that paper. That is, using a specific paper as a
query, the perfect results set comprises the actual citations in that paper.

When evaluating our method on DBLP and PubMed, we use models trained
on Open Research’s training set as this yields better results than training on the
much smaller DBLP and PubMed training sets. To avoid leaking training data
into the evaluation sets, we use the following method to remove documents in

3 https://github.com/allenai/citeomatic/blob/master/citeomatic/scripts/

evaluate.py
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Open Research’s training set that appear in the development and test sets of
PubMed and DBLP: We remove special characters from the title and use Jaccard
similarity (on unigrams) to calculate the closeness of two documents, filtering
with a threshold of 0.7. This method results in approximately half of the papers
in the development and test sets of PubMed and DBLP being removed from the
training set of Open Research.

4.2 Re-ranker Training

To obtain the positive and negative examples used to train our binary classifi-
cation models, we retrieve the top 10 papers for each query (title + abstract)
using the Anserini IR toolkit4 [36, 37] with BM25 ranking. Among these, ap-
proximately 6% on average are relevant papers (positive examples). We do not
balance positive and negative examples; see additional discussions about this
decision in Section 5.2.

Starting with a pretrained BERT model, we fine-tune it to our task using
cross-entropy loss:

L = −
∑

j∈Jpos

log(p(dj |q))−
∑

j∈Jneg

log(1− p(dj |q)), (1)

where Jpos and Jneg are the indexes of the relevant and non-relevant papers
and p(dj |q) is the relevance probability the model assigns to the j-th paper. We
examine several BERT variants, detailed in Section 5.1.

All models are fine-tuned using Google’s TPUs v3-8 with a batch size of
128 (128 sequences × 512 tokens = 65,536 tokens/batch) for 300k iterations,
which takes approximately three days. This corresponds to training on 38.4M
(300k × 128) query–candidate pairs, or 1.1 epochs. We do not see any improve-
ments in the development set when training for another 700k iterations, which
is equivalent to 3.8 epochs. We use Adam [20] with the initial learning rate set
to 3× 10−6, β1 = 0.9, β2 = 0.999, L2 weight decay of 0.01, learning rate warm-
up over the first 10,000 steps, and linear decay of the learning rate. We use a
dropout probability of 0.1 in all layers.

4.3 Inference and Metrics

At inference time, we first retrieve the top 1000 candidate documents with the
title and abstract as the query using BM25 ranking in Anserini. These docu-
ments are further re-ranked with one of the variants of the fine-tuned BERT
models (see Section 5.1 for more details). Following Bhagavatula et al. [4], we
evaluate the results using F1 of the top 20 retrieved papers (F1@20) and Mean
Reciprocal Ranking (MRR) of the top 1000 retrieved papers. We additionally
report Recall@1000 (R@1000) to assess the effectiveness of our keyword search
in isolation, which provides an upper bound on re-ranking effectiveness.

4 http://anserini.io/
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Table 2. Main results on Open Research, DBLP, and PubMed.

F1@20 MRR R@1000
Dev Test Dev Test Dev Test

Open Research
BM25 [4] - 0.058 - 0.218 - -
BM25 (Anserini) 0.082 0.089 0.279 0.312 0.424 0.421

Citeomatic [4] - 0.125 - 0.330 - -
BM25 + SciBERT-Large 0.136 0.132 0.430 0.431 0.424 0.421

DBLP
BM25 [4] - 0.119 - 0.425 - -
BM25 (Anserini) 0.105 0.194 0.352 0.585 0.669 0.691

ClusCite [32] - 0.237 - 0.548 - -
Citeomatic [4] - 0.303 - 0.689 - -

BM25 + SciBERT-Large 0.149 0.272 0.472 0.714 0.669 0.691

PubMed
BM25 [4] - 0.209 - 0.574 - -
BM25 (Anserini) 0.299 0.268 0.793 0.721 0.794 0.765

ClusCite [32] - 0.274 - 0.578 - -
Citeomatic [4] - 0.329 - 0.771 - -

BM25 + SciBERT-Large 0.326 0.304 0.835 0.792 0.794 0.765

5 Results

Our main results are shown in Table 2 with SciBERT-Large as the ranking
model, selected based on the experiments in Section 5.1. On the Open Research
dataset, our best configuration (BM25 + SciBERT-Large) improves upon the
best previous result in terms of both F1@20 and MRR. On the smaller DBLP
and PubMed datasets, our method is on par with the state of the art. Note that
our BERT-based models are trained only on Open Research as we achieve better
results than training on the smaller datasets.

Interestingly, our baseline BM25 implementation using Anserini out of the
box, denoted “BM25 (Anserini)” in Table 2, is 3–7 points higher in F1@20 than
the BM25 implementation of Bhagavatula et al. This is likely due to the choice
of the query form that we use for “bag of words” retrieval, which is analyzed in
Section 5.3, and perhaps a better implementation of BM25 in Anserini (which
is based on Lucene).

Our method appears to be as effective and more scalable than a cluster-
based approach. For example, Bhagavatula et al.’s model requires at least 100
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Table 3. Results on Open Research’s development set of BERT-based models pre-
trained under different settings. All models are fine-tuned for approximately one epoch
on the training set.

Pretrained Model Size Pretraining Corpus Tokens Vocabulary Cased F1@20 MRR

(1) NCBI Base PubMed+MIMIC 4.5B Wiki+Books 0.093 0.315
(2) NCBI Large PubMed+MIMIC 4.5B Wiki+Books 0.105 0.352

(3) Google Base Wiki+Books 3.3B Wiki+Books 0.113 0.374
(4) Google Large Wiki+Books 3.3B Wiki+Books 0.115 0.373
(5) Google WWM Large Wiki+Books 3.3B Wiki+Books 0.121 0.399

(6) RoBERTa Large Various (Non-Scientific) 33B (Non-Scientific) 0.125 0.409

(7) BioBERT v1.1 Base Wiki+Books+PubMed+PMC 21.3B PubMed+PMC X 0.128 0.417

(8) SciBERT Base Open Research (1M Full Papers) 3.2B Wiki+Books 0.125 0.409
(9) SciBERT Base Open Research (1M Full Papers) 3.2B Open Research 0.131 0.423
(10) SciBERT Large Open Research (7M Abstracts) 1.4B Wiki+Book 0.135 0.420
(11) SciBERT Large Open Research (7M Abstracts) 1.4B Open Research 0.137 0.430

GB of RAM to search the 7M documents in the Open Research corpus,5 whereas
keyword search has far more modest memory requirements.

In the next sections, we investigate the effectiveness of our method by eval-
uating various pretrained transformer models, as well as the effects of class im-
balance and different query forms.

5.1 In- vs. Out-Domain Pretraining

Here we investigate how different pretraining configurations change effectiveness
in the target task. The results, shown in Table 3, are from fine-tuning the pre-
trained models on Open Research’s training set for 300k iterations with a batch
size of 128, which corresponds to approximately 1.1 epochs. In the remainder
of this paper, we call an in-domain corpus a collection whose majority of docu-
ments are from the same domains as those in Open Research (i.e., biomedicine
and computer science), and we call an out-domain corpus a collection whose
majority of papers are not from those domains.

The models pretrained on an in-domain corpus, i.e., BioBERT [23] (row 7)
and SciBERT [3] (rows 8–11), yield significant improvements in the target task
over models pretrained on a corpus of a similar size but a different domain (rows
3–5). Pretraining on an out-domain corpus ten times the size of the in-domain
corpus results in lower effectiveness on the target task; compare RoBERTa [25],
row 6 vs. row 10. We conclude that, at least for the task of citation recommenda-
tion, pretraining on a smaller in-domain corpus is more effective than pretraining
on a larger out-domain corpus.

When pretraining settings are kept the same except for the vocabulary, the
use of in-domain vocabulary gives 5–10% improvement over out-domain vocab-

5 https://github.com/allenai/citeomatic#citeomatic-evaluation
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ulary (row 8 vs. 9 and row 10 vs. 11). This make intuitive sense, and Beltagy et
al. [3] report a similar finding in other tasks as well.

The NCBI models [31] (rows 1 and 2) are pretrained on an in-domain corpus
but produce worse results than models pretrained on an out-domain corpus of
a similar size (rows 3–5). They also underperform when compared to SciBERT-
Base (row 8), which is pretrained on an in-domain corpus of a similar size but
comprises full papers instead of abstracts. As also noted by Beltagy et al. [3],
this result suggests that pretraining with longer documents improves the target
task effectiveness.

We find that model size appears to be even more important than document
length. Our SciBERT-Large models (rows 10 and 11) have higher effectiveness
than the SciBERT-Base models (rows 8 and 9) despite being pretrained on a
smaller corpus of 7M paper abstracts (1.4B tokens) as opposed to 1M full-text
papers (3.2B tokens).

5.2 Class Imbalance

Because we only use the top 10 papers returned by BM25 as training examples,
the BERT-based models in this work are trained with more negative examples
than positive ones (94% vs. 6%). In a separate experiment, to balance these
classes, we include in the training phase pairs of query and relevant papers not
retrieved by BM25, but this results in F1@20 and MRR close to zero in both
training and development sets. We obtain a similar result when adding to the
training set negative candidates randomly sampled from the corpus.

What explains these findings? We hypothesize that although BERT is a
strong model for document ranking, it still partly relies on exact term match
to learn relevance. Thus, when we sample training documents not using an ex-
act term match method such as BM25, fewer terms between the query and the
candidate paper match, which makes learning relevance harder. Further studies
should investigate if this limitation applies to other tasks as well.

5.3 Query Analysis

In the citation recommendation task, the “query” used for initial retrieval can
take many forms, such as the title of the paper, the concatenation of title and
abstract, or keywords extracted from the text. Here we investigate how these
query forms impact the effectiveness of a keyword-based retrieval method.

In Table 4, we show the effectiveness of BM25 on the Open Research devel-
opment set. For Key Terms, we follow Bhagavatula et al. [4] and use Whoosh6

to first create an index and then extract key terms from the title and abstract
with Whoosh’s key terms from text method. Despite being faster due to hav-
ing fewer query terms, the results show that this method has lower effectiveness
than simply concatenating the title and abstract of the paper.

6 https://whoosh.readthedocs.io/en/latest/
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Table 4. BM25 results on Open Research’s development set when different query forms
are used. BERT-based re-ranking is not applied in these experiments.

Open Research PubMed DBLP
Query Type F1@20 MRR R@1000 F1@20 MRR R@1000 F1@20 MRR R@1000

Key Terms (Whoosh) 0.065 0.251 0.282 0.201 0.595 0.604 0.130 0.425 0.510
Title 0.063 0.244 0.287 0.199 0.584 0.654 0.133 0.424 0.551
Title and Abstract 0.095 0.351 0.363 0.268 0.720 0.765 0.194 0.585 0.691

64 128 256 384 448
0.1

0.11

0.12

0.13

0.14

# tokens for query

F
1
@
20

Fig. 1. F1@20 on the development set when varying the number of tokens allocated
to the input sequence (whose limit is 512 tokens) for the query (as opposed to the
candidate document). The query is the concatenation of the title and abstract.

One of the limitations of transformer-based models (including BERT) is that
memory consumption increases quadratically with the number of tokens in the
input sequence. On modern hardware such as TPU v3s or GPU V100s, the
maximum number of tokens that we can efficiently train a BERT-Large model is
approximately 512. In our task, since the concatenation of query and candidate
tokens is typically longer than this limit, there is a trade-off between the number
of tokens we allocate to each sequence.

In Figure 1, we show how effectiveness changes as we allocate more tokens
to the query than to the candidate document while limiting the sum of the two
sequences to 512 tokens. These results are obtained with BM25 + SciBERT-
Base (for faster experimental turnaround). The curve shows that query terms
are more important to the re-ranker model, as increasing query tokens from
64 to 256 increases F1@20 by 2 points. Decreasing candidate document tokens
from 256 to 64 barely changes F1@20. This result is somewhat surprising as
one expects the two sequences to have equal importance in the task of query–
document relevance estimation. Note that in all previous experiments (Table 2),
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we used 256 tokens for the query and 256 for the candidate; this suggests that
our main results might be even higher had we tuned this hyperparameter as well.
Future work should investigate if this is particular to citation recommendation,
or if it also occurs in other retrieval tasks with long queries as well.

6 Conclusions

We provide an extensive evaluation of pretrained transformer models for the
scientific literature recommendation task. We find that in-domain pretraining
and domain-specific vocabulary greatly improve effectiveness. Additionally, we
present an unexpected finding: Despite the symmetry of the two inputs when
trying to estimate the relevance of a candidate article to a query article, we
find that terms from the query article are more important than terms from
the candidate article in allocating “space” for BERT input. Future work should
investigate this observation in more detail.
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