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ABSTRACT
In this research, we explore the problem solving strategies of both           
humans and AI agents in the open-ended domain of video games.           
We utilize data collected from several human-level performing AI         
agents, that follow a given policy, and data from expert human           
players, that follow a set of strategies, for two Atari 2600 console            
games. We compare both types of data streams using a          
visualization technique to gain insights about how each player         
type, AI or expert human, go about solving the given games.           
Analyzing the action sequences of the two, we demonstrate how          
closely the agent policies resemble the real-world problem solving         
of a human player, and explore how we might extract human-level           
strategies for agent policies. We reflect on the benefits of using           
data from both AI agents and expert humans to instruct learners,           
model their behaviour, and how strategies may be more apparent          
and easier to adopt from human play. Finally, we hypothesize the           
benefits of combining both types of data for learning these          
complex tasks within open-ended domains. 
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1. INTRODUCTION
The process of building expertise, especially in complex tasks, has          
been an area of study for some time in education [11]. Issues            
related to the difficulty of data collection and storage, have been           
an impediment in the educational data mining (EDM) research         
community to explore many truly open ended complex tasks. In          
this research, we are taking steps to better understand how to           
collect, analyze, and gain a better understanding of complex         
environments where human expertise in the form of strategies         
may be used. We have selected a classic video game system           
environment based on the Atari 2600 console called the Arcade          
Learning Environment (ALE) [2]. ALE has generated a large         
amount of interest in recent years in the broader artificial          
intelligence and machine learning environments as a test bed for          
game playing agents. While the majority of work with this          
environment is focused on building general game playing agents,         
we have found the environment provides a useful test bed for           
understanding how humans learn and apply strategies, which can  

also be compared to agents. To this end, we are currently trying to             
understand how agents, that have met or exceeded human level          
capabilities at these games, encode strategies in their game         
policies, and how their strategies compare to expert human         
players.  

In the development of these agents, it is the human encoding the            
strategy into the AI using their knowledge of the game. The           
majority of game-playing agents, however, make use of deep         
neural nets to develop their policies, which makes them black box           
and often difficult to interpret by a human. Recent work has           
looked at making policies developed this way programmatically        
interpretable, but much work remains for humans to be able to           
clearly articulate what many of these agents have learned from          
their training [31]. It is debatable if these deep reinforcement          
learning agents make use of explicit strategies as they execute          
their given policies. A recent approach uses saliency maps to          
highlight key decision regions for agents in ALE, and found that           
their agent for the Space Invaders videogame learned a         
sophisticated aiming strategy [12]. Another way to make policies         
less black box is to break the policy down into smaller subtasks            
that are comprised of a few actions that feed back into the overall             
policy [20]. These techniques of breaking down policies into         
smaller interpretable strategies and visually representing the       
mechanisms of an agent’s policy are steps toward having humans          
learn strategies from agents, without directly encoding any into         
the agent itself.  

While previous work continues to reduce the amount of training          
data required to develop successful agents via self-learning, others         
look to use human games to seed agents. One such study found            
that training on human data, they could achieve comparable scores          
to state-of-the-art reinforcement learning techniques and even beat        
the scores using just the top 50% of their collected data for more             
complicated games, such as pinball [16]. Combining a method         
that not only trains agents on expert human data, but also encodes            
their strategies into the form of an evaluation function, has the           
potential to yield successful agents that require less computational         
time while performing at greater levels than comparable agents. 

Data from stochastic and adversarial domains remains challenging        
to mine, interpret, and visualize in a way that improves the           
understandability of the data. Video game data collected in the          
ALE is representative of this challenging domain, while also         
being open ended. Datamining and visualization techniques       
applied to such data can readily be leveraged for more traditional           
educational domains, such as solving a stoichiometry problem or         
completing a task in a physics simulator. One technique to help           
visualize such game data, in a way that enables us to make            
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comparisons, is the use of t-distributed stochastic neighbor        
embedding (t-SNE) [19]. This is a technique used to visualize          
high-dimensional datasets and has previously been used a few         
times to visualize and interpret game data [22, 28]. By applying           
t-SNE for dimensionality reduction and visualization to data,       
similar clusters detailing potential strategies and policy enactment       
may emerge. Visually representing the mechanisms of an agent’s        
policy can provide a step towards having humans learning        
strategies from these agents, gaining their expertise.

In complex tasks humans generate strategies which can be applied          
in many different situations. Combinations of strategies that lead         
to optimal outcomes can lead to expertise in a domain, although           
there is still no consensus among researchers as to what makes a            
person an expert and how expertise is defined. In this research we            
explore the interactions of policies and strategies, then look at          
how both relate to expertise in the context of these two games.            
Our long term goal is to see how humans can help teach agents             
and agents can help teach humans in a continuous loop hence the            
idea of “teachable humans and teachable agents.” Specifically in         
this work, the main contribution is a start to this goal with a novel              
comparison of agent policies, generated with two different state of          
the art techniques on several complex game domains, and         
strategies generated from human players. We do this through the          
use of visualizing both types, expert human and agent, of          
collected gameplay data using t-SNE diagrams of the state spaces          
as a means to compare the two. We believe this work can help             
lead to a better understanding of human strategies and expertise,          
while also contributing to data mining techniques which can         
further be used in the context of explainable AI for educational           
systems. The visualization and comparison techniques used can be         
extended to more traditionally educational games, to gain a sense          
of any strategies being enacted. Additionally, it is beneficial to see           
if the agents are solving the game in a natural way, using a             
human-like strategy, as many similar systems are often designed         
to playtest such games and act as tutors to the users. 

2. RELATED WORK
Expertise has been the subject at the crossroads of Psychology and           
Computer Science for some time. One of the first compiled works           
came from Glaser et al., ​The Nature of Expertise [11] explored a            
wide variety of domains from human typing to sports to ill           
defined domains. A key insight from this work is that in the early             
development of AI systems, expertise was tightly related to the          
concept of encoding human strategies into machines, such as early          
work involving chess players and intelligent tutors [4]. As work          
continued, there seems to be a drift from the Psychology field into            
architectures of cognition defined by ACT-R [1] and Soar [17] as           
examples. Computer Science moved towards agents and policy        
creation focusing early on reinforcement learning [29] and now         
advanced techniques built on deep learning [18].  

2.1 Human Expertise and Strategies 
The question of what exactly defines someone as an expert is still            
an open question and has a lot to do with the particular domain             
that is being studied. In chess, Chase and Simon posited that it            
takes 10,000 hours of study to become an expert in chess [4]. That             
number has also been suggested as the rough number of hours to            
become an expert musician [9] and is a general theory of expertise            
[10], although largely due to Simon’s chess work.  

In the case of learning systems, we often define mastery using           
some form of knowledge tracing. These systems often set         
“mastery” as a probabilistic value that a learner knows a particular           

skill. The value of mastery varies on skills and domains, but often            
a value of 90% or 95% are assumed to have achieved mastery [7].  

Beyond measurements of expertise is it also important to         
qualitatively understand the strategies associated with expertise.       
Understanding strategies that are used to solve problems has also          
been explored in many domains. Tasks to elicit knowledge from          
experts, such as cognitive task analysis (CTA) have been used by           
cognitive scientists to better understand the 3 strategies that         
experts use, but may not explicitly recognize [6]. In a mathematics           
study on word problems where students were using cognitive         
math tutors, researchers noted three different strategies that        
students used to solve problems [8]. These strategies included (1)          
working backwards from the answer or unwinding, (2) plugging         
in values in a hill climbing method, and (3) using equations. With            
the correct structure of the problems these strategies could be          
explicitly identified. 

2.2 Agent Expertise and Policies 
Artificial intelligence has been used now for decades to create          
agents that mimic human behavior. These agents are generally         
driven by a policy created by some form of machine learning such            
as reinforcement learning [29]. The policy tells the AI agent what           
to do given a certain set of conditions. This is most often defined             
as a state-action graph that suggests the best possible next action           
for an agent assigned to a given state [27]. 

In education, agents driven by policies have long been a          
foundational part of data-driven intelligent tutors and adaptive        
learning. Work has been done in modeling learning at a partially           
observable Markov decision process (POMDP), and using a        
policy generated to predict what a student knows and what the           
next best instructional lesson is for a particular student [24]. Other           
research has been done using reinforcement learning with a focus          
on what pedagogical action would be best to use for a student            
when multiple actions are available [5]. Most closely associated         
with the research we are doing is working on the automatic           
generation of hints and feedback [25, 26]. This work uses state           
graphs and reinforcement learning to identify the best path for          
solving problems and using the state features of the next best state            
to generate a just in time hint, like the next optimal move in a              
game [23]. This type of feedback can lead the student down a            
better path for learning. 

2.3 Comparing Human & Agent Gameplay 
Visualizations of gameplay data are widely popular, often        
being used by players to compare their performance against         
others and to make sense of how they played the game [32].            
For instance, heat maps have been used by players to refine           
gameplay strategies, providing insights into popular areas       
about a game’s environment [15]. In a similar vein,         
saliency maps have been applied to gameplay from agents,         
acting as heat maps for activations in their neural nets [12].           
From such visualizations, it became clear that the agent was          
enacting a form of a strategy around aiming, as a human           
player would do. Another use of saliency maps, combined         
with t-SNEs, looked to describe the policies agents were         
using [34]. This was done to not only make the agents less            
black-box and understandable, but to see if they followed         
any set strategies. 



Many games are making use of such game-playing agents         
and procedurally generated content methods to develop       
both the game environment and to play-test the games [13].          
Much like the agents developed for the ALE, these         
game-playing agents play a game in order to find any bugs           
or areas of improvement. With such large amounts of data          
coming from even the most simple games, many tools have          
been developed to assist in the visualization and analysis         
process [33]. Using visualizations is one way to gain         
insights into any human-like strategies being enacted by        
such agents. This is important as an agent might not be of            
much use if it plays the game, but not in a way that a              
human user does. In open-ended games with a massive         
state space, mimicking as close to human play as possible          
helps to provide the most accurate data and bug testing          
from the agent.  

3. METHOD 
3.1 Environment & Games 
The Arcade Learning Environment (ALE) provides a framework        
consisting of over fifty Atari 2600 games that can used to evaluate            
competency in deep reinforcement learning (DRL) agents and        
other types of AI [2]. Despite having a limited amount of input, a             
fire button and four directional controls, many of the games          
consist of complex tasks in open-ended worlds, making them a          
fitting testbed for DRL agents. Using the ALE, we focused on           
gameplay from two distinct games for the Atari 2600. The first           
game is Space Invaders, which is one of the simpler games for the             
system, consisting of just four non-combinational inputs. The        
second game is Seaquest, which incorporates all input        
combinations available for the Atari 2600, making it a much more           
complex and challenging game for both humans and agents. 

3.1.1 Space Invaders 
In the game Space Invaders, depicted in Figure 1, the player or            
agent controls a ship at the bottom of the screen that can navigate             
along a single dimension of left or right. The goal of the game is              
to destroy all the enemy units above the user’s ship, gaining points            
for each enemy destroyed, while also avoiding any projectiles         
from them. If the player is struck by an enemy projectile they lose             
one of their three lives. To destroy these enemy units, the player’s            
ship can fire a projectile that goes directly up, damaging or           
destroying an enemy unit on contact. Additionally, the player can          
hide behind three objects at the bottom of the screen to avoid the             
enemy fire. The only valid controls for this game are left and right             
to move the player agent and the fire button to shoot. 

Figure 1. In Space Invaders the player controls the green ship           
at the bottom of the screen and must shoot the invaders that            
proceed left, then down, then right. 

3.1.2 Seaquest 
In the game Seaquest, depicted in Figure 2, the ultimate goal is to             
retrieve as many scuba divers from under the water as possible.           
The player or agent controls a submarine that can navigate in all            
directions around the screen and faces the front of the ship in the             
direction of movement, either right or left. This submarine has an           
oxygen tank gauge that slowly diminishes over time, the player          
must surface their ship at the top of the screen to refill it. As they               
navigate around the screen, collecting the divers, they also must          
dodge enemy ships and sharks that navigate across the map. If           
their submarine collides with an enemy unit or the oxygen gauge           
reaches zero, they lose one of their three lives. To combat these            
enemies, they are able to shoot a projectile from the front of the             
ship, which damages or destroys these enemy units. Killing an          
enemy results in a point increase, but the main increase in points            
comes from saving the divers. In order to receive points for the            
collected divers, the submarine must surface by navigating to the          
very top of the map. All valid button combinations for the Atari            
2600 controller work for this game, such as up-left-fire, right-fire,          
and down. 

Figure 2. In Seaquest the player controls the yellow         
submarine, collects the scuba divers, and shoots or avoids the          
enemies. 

3.2 Agent Dataset  
As the ALE provides a framework for testing DRL agents, we           
selected two higher performing agents implemented in the        
environment using value-based DRL algorithms. The first agent        
utilizes a Deep Q-network (DQN) and has achieved a level          
comparable to a human professional in almost fifty games,         
including the two we investigate [21]. Our second is an agent           
known as Rainbow, which is built upon a DQN variant and has            
achieved even greater scores across the same Atari 2600 games          
[14]. We selected the DQN agent as it is often cited as a baseline              
for this domain. The Rainbow agent was selected for its high           
scoring performance, while still mimicking human play when        
observed. For instance, Rainbow will move the player avatar         
about the screen in Seaquest, rather than stay at the very bottom of             
the screen to avoid enemies, as some agents do.  

The data for both of these agents come from the benchmarks used            
in the ​Atari Zoo​, an open-source set of trained models for six            
major DRL algorithms at varying benchmarks, collected from the         
ALE [28]. Other DRL algorithm agents implemented in ​Atari Zoo          
perform at lower levels than DQN and Rainbow, while not          
mimicking human gameplay, such as A2C [22]. For this reason,          
we did not select those agents, as we wanted high performing ones            
for both games. 



Table 1 shows the max score achieved per Space Invaders game           
for the Rainbow agent, DQN agent, and expert humans. The cells           
with multiple scores in them indicate the agent or human lost all            
lives during that session and restarted play within the limited          
amount of frames recorded. Thus, a single score indicates the          
agent or human did not lose all of their lives during the recorded             
play. Table 2 shows similar information, but for the game plays           
from Seaquest. In particular for the DQN agent, as shown in the            
second game play, the five scores low scores indicate the agent           
lost all lives and had to restart play five times in the allotted steps. 

Table 1. The highest score(s) achieved for the two agents and           
expert human in the collected Space Invaders data over three          
different game plays. 

Space Invaders Game DQN Rainbow Human 

1 2380 1805,990 1685 

2 1495, 600 3750 1745 

3 1345, 830 3845 1845 

 

Table 2. The highest score(s) achieved for the two agents and           
expert human in the collected Seaquest data over three         
different game plays. 

Seaquest Game DQN Rainbow Human 

1 800,1400 4960 12590 

2 60, 60, 60, 60, 100 5020 14220 

3 3900, 500 7840 16880 

 

3.3 Expert Human Dataset 
Using the ALE, we collected expert human data for both Space           
Invaders and Seaquest. To collect the human game play data, we           
modified the ALE code to record the RAM state at each frame of             
gameplay, so that it could be compared to the agent data from the             
Atari Zoo​. Using Atari 2600 data collected from the Atari Grand           
Challenge project as a baseline for Space Invaders, our collected          
expert human data ranks in the top 1% based on scores [16]. We             
were unable to use the collected data from the Atari Grand           
Challenge, as we needed the RAM states in order to visualize the            
data in the ​Atari Zoo​. 

3.4 Visualizing 
A popular technique used for dimensionality reduction and        
visualization of high-dimensional data used with large       
reinforcement learning datasets is t-SNE [22]. It provides a way to           
plot the data, from both agents and humans, along varying          
dimensions, clustering the related frames to one another. Our data,          
for both agents and humans, consisted of the Atari RAM          
representation, which is the same across agent algorithms and         
runs, but distinct between the games. Traditionally, the use of          
t-SNE embeddings are for a single high-level representation of an          
agent. However, since our datasets are all from the Atari RAM           
representation, this enables us to make comparisons between        
different runs of an agent for the same algorithm and runs from            

different DRL algorithms. As these datasets were quite large for          
both games, we pre-processed them using Principal Component        
AnalysiS (PCA) to a dimensionality of 50, then followed that with           
300 t-SNE iterations with a perplexity of 30 [30]. Note that t-SNE            
positions the points on a place such that the pairwise distances           
between them minimizes a certain criterion. As a result, the axes           
can not be labeled with a specific unit, due to the high            
dimensional nature of the data. 

Utilizing the code provided from the ​Atari Zoo ​[28], we are then            
able to visualize the processed agent and human data in a t-SNE            
embedding with associated screenshots. The points in the        
resulting t-SNE embeddings represent a separate frame from the         
agent or human. They are colored corresponding to their given          
source and the transparency is used to indicate score, with a           
darker color indicating a higher score. The clustering of the points           
help to indicate the distributions of states, corresponding to         
behaviour, the agent or human visited. Additionally, the points         
can be clicked on to view a screenshot of the game. This provides             
another metric for analyzing agent-collected data, in addition to         
providing a means of comparison to our collected human data.  

4. RESULTS 
4.1 Space Invaders 
Plotting the DQN, Rainbow, and expert human data from Space          
Invaders via t-SNE, we can see both similarities and differences in           
the clustering. Figure 3 depicts a t-SNE embedding of nine Space           
Invaders games in total, three from each agent and the expert           
human. The agent data, green depicting Rainbow and blue for          
DQN, overlaps more throughout the graph than the human data          
points, represented by red. A majority of the human data          
clusterings are on the bottom half of the t-SNE, where there only            
appears to be a single Rainbow and DQN cluster. There is an            
equal separation of high scoring points, depicted by darker shades          
of the color, for all three parties. High scoring human points of            
dark red are scattered about, while the dark blue DQN data is            
grouped toward the upper center. Above that is the dark green           
Rainbow data, that is grouped between the 100 and 150 points of            
the y-axis. Ultimately while there is similar clustering of the          
Rainbow and DQN agents across all three games, it does not hold            
true for when the game is coming to an end and a higher score has               
been achieved. Additionally, regardless of the game’s score, the         
human data does not seem to have much overlap with either agent.  

 



Figure 3. Two-dimensional t-SNE embedding of Space       
Invaders gameplay collected from three games using the        
Rainbow agent, depicted in green, three games from the DQN          
agent, depicted in blue, and three games from the expert          
human, depicted in red, for nine games in total. 

To further identify any interesting clustering of the points, we          
selected a single game play from the two agents and the human            
data, so the t-SNE would show one from each for a total of three,              
instead of the aforementioned nine. The resulting t-SNE for this is           
shown in Figure 4, along with screenshots that are representative          
of the major clusters. We included screenshots for six clusters,          
two from each, that are darker in color corresponding to a higher            
score and being further along in the game. Since this depicts a            
later point in the game, any key moves or strategies are more            
visible since they have had time to be enacted. With a single game             
for each agent or human depicted, the representative clusters stand          
out even more. 

Figure 4. A t-SNE for a single game of Space Invaders from            
the green Rainbow agent, blue DQN agent, and red expert          
human with screenshots depicting the largest and high scoring         
clusters. 

4.2 Seaquest 
Following the same steps of the Space Invaders data, we plotted           
the collected Seaquest gameplay data via t-SNE. Figure 5 depicts          
the t-SNE embedding of nine Seaquest games in total, three from           
each agent and three collected from the expert human. Similar to           
the Space Invaders t-SNE embedding, the two Rainbow and DQN          
agents, represented by green and blue respectively, overlap more         
with one another than the expert human data, represented by the           
red points. However, all three types of points about the diagram           
are much less clustered into groups and more spread out          
throughout the given range, indicating a greater variance of game          
states between the two agents and the expert human. One notable           
clustering resulting from all nines games is a grouping in the           
center, where the Rainbow agent, shown in green, almost         
perfectly overlaps the DQN agent, shown in blue. For this cluster,           
the points for both agents are also darker, indicating they are for            
higher scoring states that occur later during the game play. 

Figure 5. Two-dimensional t-SNE embedding of Seaquest       
gameplay collected from three games using the Rainbow        
agent, depicted in green, three games from the DQN agent,          
depicted in blue, and three games from the expert human,          
depicted in red, for nine games in total. 

As the resulting data appears to be fairly scattered for all nine            
games of Seaquest, we selected just the third play through for both            
agents and the humans and displayed it via t-SNE, shown in           
Figure 6. With just a single game from each source displaying,           
several clusterings became more apparent. The Rainbow agent has         
three distinct clusters, two of which overlap with the DQN agent.           
Screenshots from these two clusters depict the player unit, the          
yellow submarine, towards the center of the screen with no          
enemies around. The representative screenshots depicting the       
expert human data, via the red points, show the shit less towards            
the center and with more enemy units about. This suggests a           
potential difference in gameplay between the agents and the         
human, that we elaborate on in the following discussion. 

 

Figure 6. Representative screenshots for the various clusters        
about the t-SNE embedding for the third play of Seaquest          
from each agent and human dataset. Green points represent         
the Rainbow agent, blue points for the DQN agent, and red           
ones for human. 



5. DISCUSSION 
Plotting the game data via t-SNE provides a concise visualization          
of such high-dimensional data. However, they are only beneficial         
to us if their clusterings detail any patterns that might be           
indicative of a strategy or interesting behaviour. One immediate         
clustering that caught our eye was for the t-SNE depicting a single            
game of Space Invaders for the two agents and humans. As Figure            
7 shows, there is a clear dark red cluster of expert human data             
toward the center, indicating there are many similar game states          
here and ones with a high game score comparatively. Examining          
the points on this curving cluster, we noticed the screenshots          
representing the game states at the time had a clear similarity. The            
states in this cluster were for when a single enemy ship was left             
on the map, the point right before the player can advance to the             
next stage. It became clear that human player had difficulty hitting           
the last few enemies, as they move fast and requires precise           
aiming when there are not many left. A nearby cluster from the            
Rainbow agent, represented in green and highlighted in Figure 7          
too, depicts a similar set of states. However, there are not as many             
points for the agent in this set of states as there are the human,              
suggesting the agent can more accurately hit the fast moving last           
remaining enemies.  

While this is not a particular strategy, it does provide insights into            
similar difficulties both agent and human have in the game. It also            
aligns with the maximum scores both agent and human achieved,          
as the agent spent less time on this phase and could advance            
through the game more rapidly, achieving a higher score in the           
allotted time, which one might equate to expertise in this domain.           
It is a case where the Rainbow agent is reflecting a difficulty also             
encountered by the human. If this was in the context of an            
educational game, we could use the agent’s data to gain insights           
into where a hint or other feedback might be the most optimal, as             
it is a clear point of difficulty. Additionally, the DQN agent did            
not demonstrate such difficult. If just the DQN agent’s data was           
used for such playtesting, this area of struggle may have been           
missed altogether. This insight was provided through a brief         
visual inspection enabled via t-SNE, that may not be as readily           
clear from parsing log data.  

Figure 7. A long clustering of red points, representing human          
data, with screenshots from the top and bottom, showing a          
pattern of the player attempting to destroy the last remaining          
enemies. The nearby green points, for the Rainbow agent,         
represents a similar clustering as the agent finishes the final          
enemy. 

Another analysis of the same t-SNE plot for a game of Space            
Invaders provided insights into a distinct shooting strategy the two          
agents and human each had. When we inspected clusters and          
points that represented the game at a halfway point, where half the            
enemy units on the screen were destroyed and the other half alive,            
we noticed an interesting pattern in the configuration of the          
remaining enemies. As Figure 8 shows, the Rainbow and DQN          
agents target enemies either horizontally across the bottom or in a           
diagonal pattern. However, the expert human destroys the enemy         
units starting from the left column and working right. While each           
of these represents a different shooting strategy for the given          
player, the expert human’s strategy is debatably the most optimal.          
For Space Invaders, the enemy units move about the screen          
horizontally, and once they reach the edge of the screen they           
move down a single row, and continue moving the opposite          
horizontal direction. This means that if there are few enemy          
columns, it takes the enemies a greater time to horizontally          
traverse, allowing the player more time to fire at them. 

There are trade-offs for this strategy though, as if the bottom row            
of the enemy units comes into contact with the ground, the game            
is over. This may be the reason why the deep reinforcement           
learning trained agents shoot in a horizontal or diagonal pattern,          
so that they keep the bottom row higher up to avoid the game over              
condition, something they must have encountered quite often        
during their early training phases. However, this does not translate          
to an optimal strategy as the expert human data reveals. Teaching           
a player the game using such agents could lead to the adoption of             
this firing strategy, which would be suboptimal compared to that          
of the human’s. Such a case could also readily apply to more            
educational game contexts, as an agent or tutor that learned to           
play or solve the problem may be doing so in a non-optimal way             
compared to that of an expert human. Even though the “score” for            
a given game is greater, ultimately learning the better strategy          
would have a greater pay off in the long run.  

Figure 8. The DQN and Rainbow agent cluster towards the          
bottom shows that half way through the game, they keep the           
enemies clustered. This can be observed from the human data,          
however instead of going across the bottom or diagonal, they          
start from the left most column and work right. 

Examining the t-SNE for a game of Seaquest also revealed          
insights into the differing navigational strategies used by both         
agent and human. For this t-SNE plotting, there was less          
clustering compared to the Space Invaders ones. However, as we          
investigated the different points and viewed the screenshots for         



representative states, a pattern with the player-controlled       
submarine emerged. For both the DQN and Rainbow agent, the          
submarine remained towards the bottom of the map and stayed          
centered on the y-axis, unless they were briefly moving to rescue           
a diver. However, the human points showed the submarine in a           
variety of positions that were far from the center or bottom axis,            
even without the presence of these scuba divers. As Figure 9           
depicts, the human made use of more free moving navigational          
behavior, traversing the entire map and getting towards the edges          
to allow themselves more time to position and fire at enemies. The            
agents, who presumably had better accuracy from their mass         
training, could remain towards the center and only leave the          
bottom when they had to move upwards to fire at an enemy or             
surface for oxygen.  

Figure 9. The red human data shows that they move about the            
screen more compared to the agents, depicted in blue and          
green, who most often end up in the center of the y-axis,            
particularly towards the bottom. 

Similarly to the Space Invaders strategy of creating different         
enemy configurations, the agents for Seaquest had their own         
strategy that differed from the expert human gameplay. In this          
game’s context, there is not necessarily a clear benefit of one           
navigational strategy over the other. However, the one used by the           
agents might be better suited for a player who has better aim and             
does not need to get their avatar close to the enemy units. If a              
human user learned from the actions of these agents though, they           
might not move around the map as the expert human gameplay           
did. While not necessarily impacting the score, it could impact          
their enjoyment of the game, as they will be making less           
movements and have less control over their avatar, compared to          
treating it as basically fixed along the y-axis. This is another           
consideration of using just an agent to playtest or learn from, as            
even when it might not impact performance, other factors like          
enjoyment might be impacted from the enactment of certain agent          
performed strategies.  

This research represents our initial exploratory work into        
understanding expertise of complex tasks in open ended domains         
using a combination of human and artificial intelligence agents.         
We have begun by plotting expert human and human-level agents          
using t-SNEs to provide a way for us to visualize data. We can see              
from the plotted t-SNEs that expert human data does have some           
overlap with data from high performing DRL agents, however,         
gaps exist where humans clusters are far away from the agent           
data. Nevertheless strategies from both human and agent data         

emerge in the visualizations and allow for some interesting         
comparisons between the two. There are clear implications of         
using just an agent’s gameplay, as the enacted strategies may be           
optimal, but limiting to a user’s play. They also might          
demonstrate a clear strategy, such as the firing configuration in          
Space Invaders, yet such a strategy could actually be sub-optimal          
for a human to enact.  

While these two games are not traditional educational ones, the          
implications of the techniques used and insights gained are still          
applicable to ones in such a context. Eliciting strategies,         
regardless of coming from an AI system or human, is challenging           
and such visualizations provide one way to search for and          
understand them. At present, the use of agents using similar          
mechanisms and reinforcement learning methods to solve       
problems then instruct students agents [3] could benefit from the          
use of t-SNE visualization of the collected data. They want to           
ensure the strategies and suggested instruction are optimal, while         
remaining natural as a human would act. As it is not useful if a              
human cannot enact a particular suggested strategy, due to an          
agent having different control during the training process, such as          
access to frame-by-frame data in the game, causing it to have           
greater accuracy. 

6. CONCLUSION & FUTURE WORK 
Our primary goal in this work is to explore expertise, in this case             
in the context of games. In such games, prior work often uses the             
score as a measure of how expert a player, either human or agent,             
is at the game. We believe in addition to the score, the strategies             
used to solve the game impact how expertise, in this domain, can            
be quantified. To gain insights into such strategies we visualized          
gameplay data of a high scoring and long time playing human,           
deemed an expert, and high scoring agents gameplay data via          
t-SNE. Analysis of the resulting t-SNEs yielded insights into both          
shared and differing strategies the two parties had. Even between          
agents, there existed similar and dissimilar strategies, in addition         
to their score variance. Taking into account these gameplay         
differences and how realistic an enacted strategy might be for a           
human to learn from or mimick is important for game and tutor            
developers to keep in mind when using agents as playtesters or           
instructors. A strategy might be seem beneficial, yet compared to          
a different one it may not be as optimal nor practical for a player              
or learner to utilize in their own gameplay.  

As we continue this work, we want to extend it to more games             
other than Space Invaders and Seaquest, particularly ones in the          
educational space that also have accompanying agent-collected       
data. Further inspection remains to be done to draw more          
strategies from the accompanying visualizations. Following this,       
we will further look into how they cluster, indicating the          
performance of similar strategies based on their policies. One key          
area we plan to explore is adding a temporal aspect to the t-SNE             
graphs. Although not represented in our current visualizations, we         
do have the screenshots numbered temporarily, so we expect that          
we can connect the paths to show the progression of game play.            
Additionally, visualizing novice human data, in addition to the         
expert and agent data, could provide useful strategy comparisons.         
This could help developers of educational games find where their          
novice learners seem to struggle the most, from a visual          
standpoint.  
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