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ABSTRACT 
Affect detection is central to educational data mining because of its 
potential contribution to predicting learning processes and 
outcomes. Using multiple modalities has been shown to increase 
the performance of affect detection. With the rise of sensor-based 
modalities due to their relatively low cost and high level of 
flexibility, there has been a marked increase in research efforts 
pertaining to sensor-based, multimodal systems for affective 
computing problems. In this paper, we demonstrate the impact that 
multimodal systems can have when using Microsoft Kinect-based 
posture data and electrodermal activity data for the analysis of 
affective states displayed by students engaged with a game-based 
learning environment. We compare the effectiveness of both 
support vector machines and deep neural networks as affect 
classifiers. Additionally, we evaluate different types of data fusion 
to determine which method for combining the separate modalities 
yields the highest classification rate. Results indicate that 
multimodal approaches outperform unimodal baseline classifiers, 
and feature-level concatenation offers the highest performance 
among the data fusion techniques. 
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1. INTRODUCTION
Affect detection plays a role of growing importance in educational 
data mining. Accurately detecting affect is vital to understanding 
learning. While states such as confusion or engagement have been 
previously correlated with positive learning outcomes [20], other 
emotions such as boredom have been associated with negative 
learning outcomes [5]. Similarly, it has been found that affect 
detection can potentially be used to avoid negative learning 
outcomes [10]. 

To more closely model the human cognitive perception and 
recognition of certain states, affective modeling techniques have 
expanded to include multiple parallel data streams that are 
processed simultaneously to form a single affect prediction or 
approximation; such systems are referred to as “multimodal” [2]. 
Each data stream, or “modality,” can be provided by a wide array 
of sources ranging from user interaction logs to eye gaze tracking. 
The processing of multiple independent modalities has been shown 
to boost affect classifier performance [6] and provide additional 
insight into the various aspects of a student’s interaction with an 
intelligent tutoring system [11]. Multimodal computing can be 
highly beneficial to affective computing and educational data 
mining tasks by providing multiple complementary perspectives on 
a single subject or event [3]. 
A common implementation of multimodal affect detection systems 
utilizes sensors as perceptors to capture physical data and activity. 
This enables the system to process different types of physiological 
and positional information that signify different affective states of 
students. Sensors are commonly deployed within multimodal 
systems due to their relatively low expense, flexibility with regards 
to hardware and software requirements, and generalization across a 
variety of domains. Consequently, sensor-based multimodal 
systems have been the focus of several research efforts in recent 
years. Examples of sensor-based modalities include facial 
expression [1], posture [9], electroencephalogram (EEG) data [24], 
and electrodermal activity (EDA) [15]. 

Sensor-based systems are not without inherent challenges [7]. Such 
systems can be plagued by issues such as calibration problems, 
mistracking, noise, irregular behavior, inconsistent data transfer, 
and synchronization issues. Cultural and social behaviors of 
participants engaged in a sensor-based system can also impact 
performance, as well. In certain instances, a sensor may 
malfunction for an extended period of time, resulting in large 
intervals of missing or invalid data for one or more modalities. 

In this paper, we investigate sensor-based multimodal models for 
affect detection using data from students engaged with a game-
based learning environment for emergency medicine. We utilize 
student posture information captured by a Microsoft Kinect, as well 
as EDA data captured by an Affectiva Q-Sensor. We compare the 
performance of support vector machine (SVM) and deep 
feedforward neural network models as affect classifiers using 
unimodal data, as well as multimodal data combining the posture 
and EDA data channels. Finally, we evaluate three different 
variations of data fusion for the multimodal affect classifiers. 
Results suggest improved performance of multimodal classifiers as 
compared to unimodal classifiers trained on separate Kinect and Q-
Sensor modalities, and they reveal the impact that different data 
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fusion techniques have on a classifier’s accuracy with multimodal 
datasets.  

2. RELATED WORK 
Because of their domain independence, sensors have been 
integrated into a wide selection of multimodal affect detection 
systems. Pei et al. [23] utilize long short-term memory (LSTM) 
recurrent neural networks for a binary affect classification task with 
audio and visual recordings. Nazari et al. [18] implement a 
multimodal system to detect instances of narcissism in individuals 
using modalities such as facial expressions, dialogue, vocal 
acoustics, and behavioral cues. Facial tracking is paired with self-
assessment post-tests to detect student engagement with 
MetaTutor, an adaptive learning system with a curricular focus on 
the human circulatory system [12]. Additionally, Muller et al. [17] 
implement a multimodal affect detection system based on human 
pose, motion tracking and speech to classify instances of four 
affective states (anger, happiness, sadness, and surprise) as well as 
estimate continuous level valence and arousal. Other sensor-based 
systems use modalities such as eye gaze to predict learning 
outcomes using gradient tree boosting algorithms [25]. 
The use of posture data within affect detection systems has 
experienced a significant increase in recent years. Low-cost sensors 
such as the Microsoft Kinect have allowed this modality to be easily 
integrated into multimodal systems. As shown in [22], Kinect-
based posture data can be used by supervised and rule-based 
algorithms to detect various affective states. Likewise, Grafsgaard 
et al. [9] use Kinect data to estimate student engagement in 
computer-based tutoring systems used to teach introductory 
programming concepts. Shifts in posture have been linked to 
affective states such as frustration, and thus have been associated 
with negative learning outcomes [9]. When used in conjunction 
with other modalities such as facial expression and gesture 
tracking, posture can also be indicative of engagement, learning, 
and self-efficacy, as [10] demonstrates through the use of stepwise 
linear regression techniques. Finally, Kinect data has also been 
utilized for tasks involving anger detection [21] and biometric 
identification [24]. 

In addition to posture and pose-related data, advances in 
multimodal systems have also extended to biosignal modalities. 
Examples of such work include [24], where Kinect-based posture 
data is combined with EEG data through sensor fusion to construct 
a reliable biometric identification model. Additional low-cost 
sensors were used to capture EEG, EDA, and electromyography 
(EMG) data, where results indicate that a multimodal approach 
outperformed unimodal detectors for arousal and valence levels [8]. 
Using support vector machines, EEG data as well as eye gaze data 
was used to predict emotional response to videos [27]. The 
combination of EDA and EEG data has likewise been applied to the 
problem of stress detection [15] and frustration detection [7]. EDA 
has been paired with Kinect-based posture data and webcam-based 
facial expression data to predict students’ instances of frustration 
and engagement in response to tutor questions in an educational 
environment [29]. 
3. DATASET 
We investigate different multimodal affect classifiers within the 
context of a game-based environment for emergency medical 
training, the Tactical Combat Casualty Care Simulation (TC3Sim). 
Developed by Engineering and Computer Simulations (ECS), 
TC3Sim is widely used by the U.S. Army to provide realistic 
combat medic simulations for soldiers. Students assume the first-
person perspective of a combat medic involved in different 

scenarios alongside a variety of non-player characters (NPCs). 
During a training scenario, participants are faced with different 
tasks in real time such as securing the area, applying appropriate 
medical care to combat victims, and preparing for evacuation. The 
Kinect-based posture data and EDA data collected by the Q-Sensor 
is captured during four different training scenarios: a leg injury 
scenario, an introductory training scenario, a story-driven narrative 
scenario, and a patient expiration scenario that portrays a combat 
victim expiring regardless of the actions of the player. A screenshot 
of a player’s first-person perspective when engaged with TC3Sim 
is shown in Figure 1. 

 
The dataset used in this work was collected from a study with 119 
cadets from the United States Military Academy (83% male. 17% 
female) who participated in different training sessions with 
TC3Sim. All participants completed the same training materials, 
which were administered through the Generalized Intelligent 
Framework for Tutoring (GIFT) framework. GIFT is a service-
oriented software framework designed to aid in the development 
and deployment of computer-based adaptive training systems [28]. 
Each participant worked individually at a single workstation, and 
each session lasted approximately one hour. The posture activity 
for each participant was captured using a Microsoft Kinect for 
Windows 1.0 sensor. The head and torso positions and movements 
were captured using skeleton-tracking features contained in the 
GIFT framework. The data from the Kinect was sampled at a rate 
of 10-12 Hz. This modality contained timestamped feature vectors 
containing coordinates of 91 vertices. For this effort, three vertices 
were selected in accordance with prior research regarding affect 
detection with Kinect data [9]: top_skull, center_shoulder, and 
head. 73 additional features were engineered from this modality 
during the post-processing stage. These features were summary 
statistics such as the mean, variance, and standard deviation of the 
different vertices over time windows of 5, 10, and 20 seconds prior 
to each observation.  
In addition to the postural modality, electrodermal activity was 
captured from each user using an Affectiva Q-Sensor bracelet worn 
by each participant. The Q-Sensor captured each user’s skin 
temperature, electrodermal activity, and the sensor’s acceleration 
vectors as determined by an onboard accelerometer. However, in 
this study, only the EDA readings were used for affect detectors. In 
a similar fashion to the posture modality, summary statistics were 
calculated for the EDA modality such as the min, max, and variance 
of the EDA values for each session, as well as the summary 
statistics across time windows of the prior 5, 10, and 20 seconds. 
The net changes in the EDA levels across the previous 3 and 20 
seconds were also calculated. However, the Q-Sensors experienced 
highly inconsistent behavior with regard to the data capture, which 

Figure 1. TC3Sim game-based learning 
environment. 



affected approximately half of the collected data. Additionally, the 
interaction trace log data from each session was captured by the 
GIFT framework, but because this work focuses exclusively on 
sensor-based modalities, this data was not utilized.  
To obtain ground truth labels of each student’s affective states, two 
trained observers marked instances of different displays of affect in 
accordance with the BROMP protocol [19]. BROMP is a 
quantitative observation protocol for run-time coding of student 
affect and behavior during classroom-based interactions [19]. 
During this process, the two observers walked around the perimeter 
of the classroom and discreetly marked instances of affect in 20-
second intervals using a handheld device. Affective states recorded 
include bored, confused, engaged, frustrated, and surprised.  
A total of 3,066 separate BROMP observations were collected. 
Only observations that were collected during students’ actual 
engagement with TC3Sim were kept, and observations where there 
was disagreement between the two observers were discarded. 
Agreeing BROMP observations were treated as a single label, and 
only BROMP observations recorded during the TC3Sim exercise 
were preserved, excluding instances during pre and post-test 
surveys, as well as instances occurring during the instructional 
PowerPoint presentation. Additional factors contributing to the 
significant reduction in BROMP observations were the subtlety of 
instances of affect in the cadets compared to classroom participants, 
as well as cases of multiple different affective states being observed 
within the same 20-second window. The resulting dataset contained 
755 distinct BROMP observations; the distribution of affect 
instances is shown in Figure 2. Instances of engagement were by 
far the most common occurrence, while instances of frustration and 
surprise were sparse. As stated previously, the Q-Sensor 
experienced frequent stops in data logging. This issue resulted in 
333 BROMP observations containing missing EDA information, 
while a subset of 422 data samples contained both the posture and 
the EDA modalities. The posture-based modality did not appear to 
suffer any data loss from the Kinect sensor. 

4. METHODOLOGY 
The primary goal of this paper is to demonstrate the effectiveness 
of a multimodal classification system for affect detection using two 
modalities: Kinect-based posture data and electrodermal activity 
data. To ensure that both modalities are present in each data sample, 
any BROMP observation with missing or invalid EDA data was 

removed from the dataset. Therefore, our classifiers were trained 
on a dataset using 422 BROMP observations containing correlated 
posture and EDA data. 

4.1 Data Preprocessing 
After the aforementioned BROMP observations were removed 
from the dataset, five separate datasets were created through 
oversampling of each affective state. The oversampling was 
accomplished using a minority class cloning technique. 
Additionally, feature data was scaled using z-score standardization. 
This method ensures that each attribute of the feature vectors have 
the same mean and standard deviation but allows for different 
ranges.  

4.2 Feature Selection 
Prior to training the classifiers, each dataset underwent forward 
selection for the purpose of feature selection. This reduces the 
number of attributes in each dataset through a greedy algorithm that 
trains a model and selects the best [0, k] features based on each 
model’s Cohen’s Kappa [4]. For our work, a k value of 10 was 
chosen. The model used in feature selection was the sequential 
minimal optimization (SMO) support vector machine [7]. This 
polynomial-kernel model was selected due to its linear memory 
requirements and scalability, as a high number of models were 
trained to obtain the best features. An attribute was not considered 
unless it showed positive improvement over the currently-selected 
dataset, and the attribute showing the highest improvement was 
kept as a selected feature. The feature selection was implemented 
using RapidMiner 9.0 [16]. This platform was selected due to its 
convenience as a toolkit for implementing the data processing 
pipeline, as well as its use in prior work in affect detection [7].  

4.3 Classifiers 
Prior work has demonstrated the effectiveness of deep neural 
networks in affect classification tasks [14]. We utilize the same 
neural network approach and compare it with SVM models.  The 
SVMs contain a radial kernel function with a convergence epsilon 
of 0.001 for a maximum of 100,000 iterations. The artificial neural 
network (ANN) architecture contained feed-forward layers of 800, 
800, 500, 100, and 50 nodes, respectively, in addition to a binary 
classification layer. Each layer’s activation function was a 
Rectified Linear Unit (ReLU). Each network was trained for 10 
epochs with the ADADELTA adaptive learning rate [30]. A 
separate classifier was trained for each affective state, using the 
selected features of the oversampled data as described in section 
4.1.  

4.4 Data Fusion 
To evaluate different methods of integrating the two modalities for 
affect classification, we implement several variations of data fusion 
techniques. We test two types of data fusion: feature-level fusion 
(“Early Fusion”) and decision-level fusion (“Late Fusion”). Early 
Fusion involves the concatenation of features from the posture and 
EDA modalities prior to training the affect classifier. Late Fusion 
calls for the training of separate classifiers for each modality, and 
the predicted confidence levels of each binary class (positive or 
negative label of affective state) are processed by a voting 
schematic to produce a singular prediction of the affective state. 
The voting schematic can be implemented in different ways, such 
as majority voting, averaging, or weighting [2]. For this paper, we 
take the highest confidence value across the two classifiers and use 
the associated class as our final representative prediction. Two 
different variations of Early Fusion are also evaluated. The first 
variation, referred to in this paper as “Early Fusion 1”, concatenates 
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Figure 2. Distribution of affect instances from BROMP 
observations. 



the features prior to the feature selection process. The other 
variation, referred to as “Early Fusion 2”, performs separate feature 
selection on the separate modalities, and only the selected features 
are concatenated prior to training the classifiers. A visual 
representation of the various data fusion pipelines is shown in 
Figure 3. 

5. RESULTS AND DISCUSSION 
The classifiers were evaluated using 10-fold cross validation, with 
the data split on a per-session basis to ensure that all data from 
individual training sessions were kept in the same fold. The same 
batches of data were maintained across all modeling approaches to  
ensure fair comparisons across classifiers. The unimodal baseline 
classifiers and Early Fusion pipelines were implemented using 
RapidMiner 9.0. RapidMiner does not support decision-level 
fusion, so the Late Fusion pipeline was implemented using Python 
3.6, while the classifiers were still implemented in RapidMiner.  
Unimodal classifiers were trained on the posture and EDA 
modalities independently to provide a baseline for the multimodal 
classifiers’ performance. The results for the posture and EDA-
based unimodal classifiers for each affective state are shown in 
Tables 1 and 2 respectively. Evaluation metrics include Cohen’s 
Kappa, raw accuracy, and F1 Score. Particular focus is given to 
Cohen’s Kappa due to its ability to account for the possibility of 
correct classification due to random chance. 
The posture-based SVM returned the highest Kappa for four of the 
five affective states, and the EDA-based SVM outperformed the 
ANN for three of the five affective states. The ANN model 
performed poorly on a majority of the evaluations, returning a 
negative Kappa on two of the posture-based states and four of the 
five EDA-based states, indicating that the ANN is no better than a 
random classifier for a majority of states.  
 

 
The posture classifiers performed relatively poorly on boredom, 
confused, and surprised. It is worth noting that surprised contains 
the lowest number of positive instances within the dataset, which 
may contribute to the poor performance. Additionally, it is possible 
that postural behavior may not distinguishably change between 
positive instances of boredom and confused, lead to common 
misclassifications across the two states. The EDA classifiers also 
performed poorly on the affective states of bored, engaged, and 
frustrated. However, the EDA modality contains significantly 
fewer features than the posture modality, and this may have caused  

 

TABLE 2: Classifier Performance for Affective States (EDA) 

Bored 

Classifier Kappa Accuracy F1 Score 
SVM -0.042 0.500 0.286 
ANN -0.047 0.360 0.478 

Confused 

Classifier Kappa Accuracy F1 Score 
SVM 0.033 0.533 0.319 
ANN -0.083 0.387 0.529 

Engaged 

Classifier Kappa Accuracy F1 Score 
SVM -0.108 0.449 0.437 
ANN -0.013 0.541 0.682 

Frustrated 

Classifier Kappa Accuracy F1 Score 
SVM -0.046 0.491 0.539 
ANN 0.011 0.387 0.641 

Surprised 

Classifier Kappa Accuracy F1 Score 
SVM 0.086 0.607 0.357 
ANN -0.001 0.222 0.478 

TABLE 1: Classifier Performance for Affective States (Posture) 

Bored 

Classifier Kappa Accuracy F1 Score 
SVM 0.004 0.607 0.013 
ANN -0.001 0.408 0.530 

Confused 

Classifier Kappa Accuracy F1 Score 
SVM 0.002 0.566 0.040 
ANN -0.003 0.566 0.040 

Engaged 

Classifier Kappa Accuracy F1 Score 
SVM 0.065 0.484 0.523 
ANN 0.020 0.484 0.523 

Frustrated 

Classifier Kappa Accuracy F1 Score 
SVM 0.092 0.553 0.441 
ANN 0.063 0.501 0.650 

Surprised 

Classifier Kappa Accuracy F1 Score 
SVM -0.236 0.632 0.040 
ANN 0.02 0.270 0.431 

Figure 3. Data pipeline for data fusion variations. 
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additional misclassifications. It is also possible that the EDA 
modality may not contain enough variance for the classifiers to 
distinguish between positive and negative instances of affective 
states. Additionally, the EDA classifiers face the task of 
distinguishing between different changes in the EDA 
measurements, and determining whether such changes can be 
attributed to a particular affective state or another cause. However, 
this proves to be more difficult than the posture modality due to the 
singular dimensionality of the EDA channel. To further illustrate 
this issue, a graphical representation of the change in EDA 
throughout a session is shown in Figure 4.    

The SVM was selected as the classifier used to implement and 
evaluate the data fusion methods discussed in Section 4.4. The 
same feature selection algorithm and classifier configuration were 
used as in the unimodal approach, and the same session-level 
groupings were also maintained. The three different data fusion 
approaches were evaluated for each affective state, and the results 
for each state are shown in Table 3.  
Early Fusion 2 returned the highest Kappa for bored, engaged, and 
frustrated. Early Fusion 1 returned the highest value for confused, 
while the Q-Sensor baseline was the highest value for surprised. 
One possible reason that Early Fusion 2 is the highest-performing 
data fusion method is because feature selection is performed 
separately on each modality prior to each classifier. This means that 
if each feature selection algorithm selects up to the kth best features, 
then the combined feature vector can contain up to 2*k features, 
twice as many features as allowed by Early Fusion 1. This increase 
in features may boost the performance of the classifier. Late Fusion 
can also work with 2*k features, but the features are split between 
the two unimodal classifiers before decision-level fusion. Early 
Fusion 2 also explores the correlations between various inter-modal 
attributes more deeply compared to Early Fusion 1. The complex 
relationships between various intra-modal features are explicitly 
modeled in the feature selection performed on each independent 
modality, while the correlations between the selected inter-modal 
features are explored when training the primary classifier following 
feature selection. However, these two stages are performed 
simultaneously in Early Fusion 1 and certain complex relationships 
may not be detected as a result.  
Late Fusion provides the ability to “correct” a possibly incorrect 
prediction across the two modalities. For example, if the postural 
classifier produces an incorrect prediction of TRUE with a 
confidence level of 0.6, but the EDA classifier produces an accurate 

prediction of FALSE with a confidence level of 0.8, then the EDA 
modality overrides the incorrect prediction because of our selected 
voting schematic. However, Late Fusion was not the optimal fusion 
method for any of the affective states, though its effectiveness as a 
multimodal fusion technique has been demonstrated in other 
affective computing tasks [14].  
Of note is the performance of the multimodal classifier on the 
frustration dataset compared to the other affective states, as the 
classifier achieved substantially higher Kappa scores. One possible 
explanation for this behavior is that negative, high-arousal 
emotions such as frustration or anger have been shown to occur 
relatively infrequently in students engaged with computer-based 
learning environments [13]. This may possibly mean that the 
recorded instances of frustration may contain more distinguishable 
features compared to other common, low-arousal affective states 
such as boredom and engagement, encouraging higher performance 
from the frustration-based classifier. Additionally, frustration has 
been demonstrated to illicit higher EDA levels [26], indicating that 
the inclusion of the EDA modality with the posture modality 
provides additional informative features to the feature vectors, 
contributing to the relatively high performance of the classifier. 
Although the multimodal classifiers generally outperformed 
unimodal classifiers, the highest-performing model returned a 
relatively low Kappa compared to the performance of a human 
BROMP labeler (~0.6). However, this threshold can vary 
depending on the affective state and intervention associated with 
each state. For example, identifying instances of engagement can 
be viewed as a lower priority than identifying instances of 

TABLE 3: Performances for Early Fusion 1, Early Fusion 2, and 
Late Fusion for Affective States using SVM 

Bored 

Classifier Kappa Accuracy F1 Score 

Early Fusion 1 -0.082 0.466 0.164 

Early Fusion 2 0.041 0.5318 0.356 

Late Fusion -0.056 0.583 0.145 

Confused 

Classifier Kappa Accuracy F1 Score 

Early Fusion 1 0.049 0.566 0.300 

Early Fusion 2 -0.004 0.515 0.321 

Late Fusion 0.032 0.597 0.148 

Engaged 

Classifier Kappa Accuracy F1 Score 

Early Fusion 1 -0.064 0.446 0.393 

Early Fusion 2 0.068 0.542 0.491 

Late Fusion -0.035 0.481 0.459 

Frustrated 

Classifier Kappa Accuracy F1 Score 

Early Fusion 1 0.191 0.657 0.656 

Early Fusion 2 0.246 0.594 0.483 

Late Fusion 0.119 0.5679 0.490 

Surprised 

Classifier Kappa Accuracy F1 Score 

Early Fusion 1 -0.021 0.590 0.053 

Early Fusion 2 0.013 0.682 0.080 

Late Fusion -0.192 0.514 0.124 
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Figure 4. EDA measured over duration of a single training 
session. 



frustration or boredom, as these affective states often necessitate a 
dynamic intervention to improve learning outcomes. However, the 
Kappas for most of the classifiers fall below 0.05, indicating 
significant difficulty for several classifiers in achieving consistent 
performance across multiple affective states. 
Previous research efforts have demonstrated that the EDA modality 
does not have a tightly-coupled relationship with different affective 
states when compared to other higher-dimensionality modalities 
such as facial expression and gesture [13]. The results of our work 
also indicate that the EDA modality resulted in at least one 
classifier returning a negative Kappa for all five affective states. 
Possible explanations for this behavior include an inadequate 
amount of training data, lack of variance or distinguishable trends 
across the observed time windows, or lack of useful features (17 
EDA features vs. 75 posture features). However, our results 
indicate that the EDA modality does generally improve classifier 
performance when used in conjunction with the posture modality. 

6. CONCLUSION 
In this paper, we demonstrate the effectiveness of a multimodal 
affect detection system based on sensor data capturing a user’s 
posture and EDA data while engaged with a game-based learning 
environment. We show the improvement that multimodal 
classifiers achieve compared with unimodal classifiers for both 
modalities. We also demonstrate that SVMs outperform ANNs as 
a unimodal classifier in this particular domain. Finally, we 
demonstrate that data fusion is an effective way to combine 
multiple modalities, either prior to or following classification.  
Results suggest several promising directions for future work. To 
improve model performance on smaller datasets or data containing 
instances of missing modalities, more sophisticated feature 
engineering approaches can be evaluated. The evaluation of our 
data fusion techniques with additional modalities can further 
indicate the effectiveness of this approach in a variety of 
multimodal systems. Additional exploration of generalizable 
multimodal systems should be undertaken to further utilize the 
flexibility of sensor-based systems. Further evaluation of 
classification algorithms can be investigated as well, in particular, 
algorithms designed for the processing of temporal data such as 
recurrent neural networks. The impact of additional biosignal 
modalities such as EEG or EMG data would provide a more in-
depth perspective of the effect such modalities have on multimodal 
affect detection systems. Finally, the integration of multimodal 
affect detection into a run-time learning environment would enable 
adaptive pedagogical functionalities that address potentially 
negative learning outcomes through the use of dynamic 
interventions and user-tailored feedback based on learners’ 
affective states.   
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