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ABSTRACT
In this work, we investigated off-policy policy evaluation (OPE)
metrics to evaluate Reinforcement Learning (RL) induced poli-
cies and to identify critical decisions in the context of Intelligent
Tutoring Systems (ITSs). We explore the use of three common
Importance Sampling based OPE metrics in two deployment
settings to evaluate four RL-induced policies for a logic ITS.
The two deployment settings explore the impact of using orig-
inal or normalized rewards, and the impact of transforming
deterministic to stochastic policies. Our results show that Per
Decision Importance Sampling (PDIS), using soft max and
original rewards, is the best metric, and the only metric that
reached 100% alignment between the theoretical and empirical
classroom evaluation results. Furthermore, we used PDIS to
identify what we call critical decisions in RL-induced policies,
where the policies successfully identify large differences between
decisions. We found that the students who received more criti-
cal decisions significantly outperformed those who received less;
more importantly, this result only holds on the policy that was
identified to be effective using PDIS, not on ineffective ones.

Keywords
Reinforcement Learning, Off-policy Policy Evaluation, Impor-
tance Sampling

1. INTRODUCTION
Intelligent Tutoring Systems (ITSs) are a type of highly interac-
tive e-learning environment that facilitates learning by providing
step-by-step support and contextualized feedback to individual
students [12, 30]. These step-by-step behaviors can be viewed
as a sequential decision process where at each step the system
chooses an action (e.g. give a hint, show an example) from a
set of options, in which pedagogical strategies are policies that
are used to decide what action to take next in the face of al-
ternatives. Reinforcement Learning (RL) offers one of the most
promising approaches to data-driven decision-making applica-
tions and RL algorithms are designed to induce effective policies
that determine the best action for an agent to take in any given

situation so as to maximize some predefined cumulative reward.
A number of researchers have studied the application of existing
RL algorithms to improve the effectiveness of ITSs [3, 26, 21,
4, 28, 8, 9, 34]. While promising, such RL work faces at least
two major challenges discussed below.

One challenge is a lack of reliable yet robust evaluation metrics
for RL policy evaluation. Generally speaking, there are two ma-
jor categories of RL: online and offline. In the former category,
the agent learns while interacting with the environment; in the
latter case, the agent learns the policy from pre-collected data.
Online RL algorithms are generally appropriate for domains
where interacting with simulations and actual environments is
computationally cheap and feasible. On the other hand, for
domains such as e-learning, building accurate simulations or
simulated students is especially challenging because human learn-
ing is a rather complex, poorly understood process. Moreover,
learning policies while interacting with students may not be fea-
sible, and more importantly, may not be ethical. Therefore, to
improve student learning, much prior work applied offline RL ap-
proaches to induce effective pedagogical strategies. This is done
by first collecting a training corpus and the success of offline RL
is often heavily dependent on the quality of the training corpus.
One common convention is to collect an exploratory corpus by
training a group of students on an ITS that makes random yet
reasonable decisions and then apply RL to induce pedagogical
policies from that training corpus. Empirical study is then
conducted from a new group of human subjects interacting with
different versions of the system. The only difference among the
system versions is the policy employed by the ITS. The students’
performance is then statistically compared. Due to cost limita-
tions, typically, only the best RL-induced policy is deployed and
compared against some baseline policies. On the other hand, we
often have a large number of RL algorithms (and associated hy-
perparameter settings), and it is unclear which will work best in
our setting. In these high-stake situations, one needs confidence
in the RL-induced policy before risking deployment. Therefore,
we need to develop reliable yet robust evaluation metrics to evalu-
ate these RL-induced policies without collecting new data before
being tested in the real world. This type of evaluation is called
off-policy evaluation (OPE) because the policy used to collect the
training data, also referred to as the behavior policy, is different
from the RL-induced policy, referred to as the target policy to be
evaluated. To find reliable yet robust OPE metrics, we explored
three Importance Sampling based off-policy evaluation metrics.

The second RL challenge is a lack of interpretability of the
RL-induced policies. Compared with the amount of research
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done on applying RL to induce policies, relatively little work has
been done to analyze, interpret, or explain RL-induced policies.
While traditional hypothesis-driven, cause-and-effect approaches
offer clear conceptual and causal insights that can be evaluated
and interpreted, RL-induced policies are often large, cumber-
some, and difficult to understand. The space of possible policies
is exponential in the number of domain features. It is therefore
difficult to draw general conclusions from them to advance our
understanding of the domain. This raises a major open question:
How can we identify the critical system interactive decisions that
are linked to student learning? In this work, we tried to identify
key decisions by taking advantage of the reliable OPE metrics
we discovered and the properties of the policies we induced.

2. MOTIVATION
Just like the fact that assessment sits at the epicenter of ed-
ucational research [2], policy evaluation is indeed the central
concern among the many stakeholders in applying offline RL
to ITSs. As educational assessment should reflect and rein-
force the educational goals that society deems valuable, our
policy evaluation metrics should reflect the effectiveness of the
induced policies. While various RL approaches such as policy
iteration and policy search have shown great promise, existing
RL approaches tend to perform poorly when they are actually
implemented and evaluated in the real world.

In a series of prior studies on a logic ITS, RL and Markov De-
cision Processes (MDPs) were applied to induce four different
pedagogical policies, named MDP1-MDP4 respectively, on one
type of tutorial decision: whether to provide students with a
Worked Example (WE) or to ask them to engage in Problem
Solving (PS). In WEs, the tutor presents an expert solution to a
problem step by step, while in PSs, students are required to com-
plete the problem with the tutor’s support. When inducing each
of four policies, we explored different feature selection methods
and used Expected Cumulative Reward (ECR) to evaluate the
RL-induced policies. ECR of a policy is calculated by average
over the value function of initial states and generally speaking,
the higher the ECR value of a policy, the better the policy is
supposed to perform.

Figure 1: Post-test Score vs. ECR, showing no
seeming direct relationship.

Figure 1 shows the ECRs (blue dashed line) of the four RL-
induced policies, MDP1-MDP4 (x-axis) and the empirical results
of student learning performance (the solid red line) of the corre-
sponding policies. Here the learning performance is measured by
an in-class post-test after students were trained on the tutor with
corresponding policies (the mean and standard errors of post-

test scores are shown with a red solid line). Figure 1 shows that
our theoretical evaluation (ECR) does not match the empirical
results (post-test) evaluation in that there is no clear relationship
between the ECRs’ blue line and the corresponding post-test
in red line across the four policies. This result shows that ECR
is not a reliable OPE metric for evaluating RL-induced policy
in ITSs. Indeed, Mandel et al. [15] pointed out that ECR tends
to be biased, statistically inconsistent and thus it may not be
the appropriate OPE metric in high stakes domains. In recent
years, many state-of-the-art OPE metrics have been proposed
and many of them are based on Importance Sampling.

Importance Sampling (IS) is a classic OPE method for evaluat-
ing a target policy on existing data obtained from an alternate
behavior policy and thus can be handily applied to the task
of evaluating the effectiveness of an offline RL-induced policy
using pre-existing historical training datasets. Many IS-based
OPE metrics are proposed and explored and it was shown that
they gain significant performance in simulation environments
like Grid World or Bandit [29, 6]. Among them, three IS-
based OPE metrics, the original IS, Weighted IS (WIS), and
Per-Decision IS (PDIS), are the most widely used. However,
real-world human-agent interactive applications such as ITSs
are much more complicated due to 1) individual differences,
noise, and randomness during the interaction processes, 2) the
large state space that can impact student learning, and 3) long
trajectories due to the nature of the learning process.

In this work, we investigated the three IS-based offline OPE
metrics on MDP1-MDP4 to investigate whether the three IS-
based evaluation metrics are indeed effective OPE metrics for
evaluating the four RL-induced policies mentioned beforehand.
We believe an OPE is effective if and only if the theoretical
results from the OPE evaluations are completely aligned with
the empirical results from the classroom studies. Therefore, we
explored different deployment settings for the IS-based metrics
from two aspects: one is the transformation function used to
convert the RL-induced deterministic policy to a stochastic pol-
icy used in IS-based metrics and the other is reward functions:
the original reward function vs. the normalized reward function;
the latter is supposed to reduce the variance. Our results showed
that the theoretical and empirical evaluation results are aligned
more or less for different deployment settings using different
IS-based metrics. Only when using a soft-max transformation
function and original reward function, the theoretical results
of PDIS can reach 100% agreement with the empirical results.
Based on results from the OPE metrics, we further explored
using the properties of the RL-induced policy to identify critical
decisions and our results showed that the critical decisions can
be identified by using the theoretically “effective” policies that
were identified by using PDIS with soft-max transformation and
the original reward function.

In summary, we make the following contributions:

• We directly compared three IS-based policy evaluation
metrics against the empirical results from real classroom
studies across four different RL-induced policies. Our
results showed that PDIS is the best one and its results
can align with empirical results.

• As far as we know, this is the first study to compare dif-
ferent deployment settings (original/normalized rewards



or deterministic/stochastic policy transformation) on IS-
based policy evaluation metrics. Our results showed that
settings have a direct impact on the effectiveness of the
evaluation metrics. Only PDIS with soft-max transforma-
tion and the original reward function agreed 100% with
the empirical results.

• We investigated using information from the RL-induced
policies to identify critical decisions to shed some light on
the induced policies. As far as we know, this is the first
attempt to differentiate the critical decisions from trivial
ones.

3. RELATED WORK
3.1 Empirical Studies Applying RL to ITSs
In recent years, a number of researchers have applied RL to
induce effective pedagogical policies for ITSs [3, 5, 13, 23].
Some previous work treated the user-system interactions as fully
observable processes by applying Markov Decision Processes
(MDPs) [14, 27, 1] while others utilized partially observable
MDPs (POMDPs) [24, 32, 33, 15, 4], and more recently, deep
RL Frameworks [31, 18]. Most of the previous work, including
this work, took the offline RL approach in that it followed three
general steps: 1) to collect an exploratory corpus by training
a relatively large group of real and/or simulated students on
an ITS that makes some random yet reasonable and rational
tutorial decisions; 2) to apply RL to induce pedagogical pol-
icy directly from the historical exploratory corpus; and 3) to
implement the RL-induced pedagogical policy back to the ITS
and evaluate its effectiveness using simulations and/or in real
classroom settings to investigate whether RL fulfills its promise.
Oftentimes, when implementing and evaluating the RL-induced
policies in real world, they tend to perform poorly compared to
their theoretical performance.

Iglesias et al. [10] applied Q-learning to generate a policy in an
ITS that teaches students database design. Their goal was to
provide students with direct navigational support through the
system’s content. In the training phase, they used simulated stu-
dents to induce an RL policy and online-evaluated the induced
policy based upon three self-defined measures. In the test phase,
they evaluated the induced policy with real students. The results
showed that while students using the induced policies had more
effective usage behaviors than their non-policy peers, there was
no significant difference in student learning performance. Chi
et al. [17] applied an offline RL approach to induce pedagogical
policies for improving the effectiveness of an ITS that teaches
students college physics. They used ECR to evaluate the in-
duced policy in the training phase. However, when they applied
the induced policy to real students, the induced policy did not
outperform the random policy in empirical evaluation. Similarly,
Shen et al. [26] explored immediate and delayed rewards based
on learning gain and implemented an offline, MDP framework
on a rule-based ITS for deductive logic. They selected the policy
with the highest ECR and deployed it in an ITS for real stu-
dents. The empirical results showed that the RL policies were
no more effective than the random baseline policy. In addition,
Rowe et al. [22] investigated an MDP framework for tutorial
planning in a game-based learning system. They used ECR to
theoretically evaluate induced policies but in an empirical study
with real students, they found that students in the induced
planner condition had significantly different behavior patterns

from the control group but no significant difference was found
between the two groups on the post-test [23].

In short, prior work on applying offline RL in ITSs primarily
explored ECR as the OPE metric and one common phenomenon
is that the theoretical evaluation results do not align with the
empirical results from real students.

3.2 OPE Metrics
OPE is used to evaluate the performance of a target policy given
historical data generated by an alternative behavior policy. A
good OPE metric is especially important for real-world applica-
tions where the deployment of a bad or inefficient policy can be
costly [19]. ECR is one of the most widely used OPE metrics,
which is designed especially for the MDP framework. Tetreault
et al. [11] estimated the reliability of ECRs by repeated sampling
to estimate confidence intervals for ECRs. In simulation studies,
they showed the policy induced by the confidence interval of
ECR performed more reliably than the baseline policies but
this phenomenon did not hold when evaluating the RL-induced
policies in ITSs for empirical studies [17].

Importance Sampling (IS) [7] is a widely used OPE metric,
which considers the mathematical characteristics of the decision
making process and can be applied to any MDP, POMDP, or
DeepRL framework. Precup [20] proposed four IS-based OPE
metrics: IS, weighted importance sampling (WIS), per-decision
importance sampling (PDIS), and weighted per-decision impor-
tance sampling (WPDIS). They used the IS-based estimator as
the policy evaluation for Q-learning and then compared the ef-
fectiveness of estimators on a series of 100 randomly-constructed
MDPs based on the mean square error (MSE). Their results
showed that IS made the Q-learning process converge slowly
and caused high variance, and WIS performed better than IS;
but PDIS performed inconsistently and WPDIS performed the
worst. Similarly, Thomas [29] compared the performance of
several IS estimators using mean squared error in a grid-world
simulation, showing PDIS outperformed all others.

In summary, previous work has explored the effectiveness of
IS and its variants in simulation studies, which motivated the
work reported here. Different from previous work, we mainly
focus on comparing the theoretical evaluation with the empirical
evaluation in order to determine whether IS-based methods are
indeed reliable and robust for ITSs.

4. MARKOV DECISION PROCESS & RL
Some of the prior work on applying RL to induce pedagogical
policies used Markov Decision Processes (MDP) frameworks.
An MDP can be seen as a 4-tuple 〈S ,A,T ,R〉, where S denotes
the observable state space, which is defined by a set of features
that represent the interactive learning environment and A de-
notes the space of possible actions for the agent to execute. The
reward function R represents the immediate or delayed feed-
back from the environment with respect to the agent’s action(s);
r(s,a,s′) denotes the expected reward of transiting from state
s to state s′ by taking action a. Once 〈S ,A,R〉 is defined, T
represents the transition probability where P(s,a,s′)=Pr(s′|s,a)
is the probability of transitioning from state s to state s′ by
taking action a and it can be easily estimated from the training
corpus. The optimal policy π for an MDP can be generated
via dynamic programming approaches, such as Value Iteration.
This algorithm operates by finding the optimal value for each



state V ∗(s), which is the expected discounted reward that the
agent will gain if it starts in s and follows the optimal policy
to the goal. Generally speaking, V ∗(s) can be obtained by the
optimal value function for each state-action pair Q∗(s,a) which
is defined as the expected discounted reward the agent will gain
if it takes an action a in a state s and follows the optimal policy
to the end. The optimal value function Q∗(s,a) can be obtained
by iteratively updating Q(s,a) via equation 1 until convergence:

Q(s,a):=
∑
s′

p(s,a,s′)

[
r(s,a,s′)+γmax

a′
Q(s′,a′)

]
(1)

where 0≤ γ ≤ 1 is a discount factor. When the process con-
verges, the optimal policy π∗ can be induced corresponding to
the optimal Q-value function Q∗(s,a), represented as:

π∗(s)=argmax
a
Q∗(s,a) (2)

Where π∗ is the deterministic policy that maps a given state
into an action. In the context of an ITS, this induced policy
represents the pedagogical strategy by specifying tutorial actions
using the current state.

5. THREE OPE METRICS & TWO SETTINGS
The following terms will be used throughout this paper.

• H=s1
a1,r1−−−→s2

a2,r2−−−→s3
a3,r3−−−→···sL; denotes one student-

system interaction trajectory and HL denotes a trajectory
with length L.

• G(HL) =
∑L
t=1 γ

t−1rt is the discounted return of the

trajectory HL, which generally reflects how good the
trajectory is supposed to be.

• D = {H1,H2,H3, ...,Hn} denotes the historical dataset
containing n student-system interaction trajectories.

• πb denotes the behavior policy carried out for collecting
the historical data D.

• πe denotes the target policy to be evaluated.

• ρ(πe) represents the estimated performance of πe.

5.1 Three IS-based OPE Metrics
Importance Sampling (IS) is an approximation method that
allows the estimation of the expectation of a distribution, p, from
samples generated from a different distribution, q. Suppose that
we have sample space x and random variable f(x) which is a
measurable function from sample space x to another measurable
space. We want to estimate the expectation of f(x) over a
strictly positive probability density function p(x). Suppose also
that we cannot directly sample from distribution p(x), but we
can draw Independent and Identically Distributed (IID) samples
from probability density function q(x) and evaluate f(x) for
these samples. The expectation of f(x) over probability density

function p(x) can be calculated as:

Ep[f(x)] =

∫
f(x)p(x)dx (3)

=

∫
f(x)

p(x)

q(x)
q(x)dx (4)

= Eq[f(x)
p(x)

q(x)
] (5)

where p is known as the target distribution, q is the sampling dis-
tribution, Ep[f(x)] is the expectation of f(x) under p, p(x)/q(x)
is the likelihood ratio weight and Eq[f(x)p(x)/q(x)] is the ex-
pectation of f(x)p(x)/q(x) under q. We can then approximate
the expectation of f(x) over probability density function p(x)
using the samples drawn from probability density function q(x).
In the context of OPE, the target distribution, p, is a probability
event whose density function is determined by the target policy,
and the sampling distribution, p(x), is a probability event whose
density function is determined by the behaviour policy.

Following the general IS technique, we approximated the ex-
pected reward of the target policy using the relative probability
of the target and behavior policies. Because of the nature of the
underlying MDP, samples in RL are sequential. Therefore, we
assumed that each trajectory is a sequence of events whose prob-
ability density function is determined by its corresponding policy.
Assuming the independence among trajectories and following
the multiplication rule of independent events, the probability
of occurrence of a trajectory, HL, under policy π is

Pπ(HL)=P1(s1)

L∏
t=1

π(at|st)PT (st+1|st,at) (6)

where Pπ(HL) is the probability of occurrence of the trajectory
HL following a policy π, P1(s1) is the probability of occurrence
of the state s1 in the beginning of the trajectory and PT is the
state transition probability function.

Similar to the original IS technique, the proportional probability
of each trajectory occurring under the target policy, πe, and
behavior policy, πb, is used as the likelihood ratio weight for that
trajectory. Thus, following the importance sampling technique,
the importance sampling discounted return is defined as:

IS(πe|HL,πb) =
Pπe(HL)

Pπb(HL)
·G(HL) (7)

=

L∏
t=1

πe(at|st)

L∏
t=1

πb(at|st)
·G(HL) (8)

Substituting G(HL) with the discounted return and we have:

IS(πe|HL,πb)=(

L∏
t=1

πe(at|st)
πb(at|st)

)(

L∑
t=1

γt−1rt) (9)

After having the individual IS estimator for each trajectory, we
can calculate the expected reward of the dataset D by averaging



the individual IS estimators for each trajectory as

IS(πe|D)=
1

nD

nD∑
i=1

(

Li∏
t=1

πe(a
i
t|sit)

πb(ait|sit)
)(

Li∑
t=1

γt−1rit)

 (10)

where sit, a
i
t, and rit refer to the ith trajectory at time t and nD

is the number of trajectories in D.

Weighted Importance Sampling (WIS) is a variant of the
IS estimator, a biased but consistent estimator which has lower
variance than IS. It normalizes the IS in order to produce a lower
variance. At first, it calculates the weight WD for the dataset
as the summation of the likelihood ratios for each trajectory as
shown in equation 11. Then, it normalizes the IS estimator as
shown in equation 12. Finally, the WIS is simply the weighted
average of the estimated reward for each sequence in the dataset
D, as shown in equation 13.

WD=

nD∑
i=1

(

Li∏
t=1

πe(a
i
t|sit)

πb(ait|sit)
) (11)

WIS(πe|HL,πb)=
IS(πe|HL,πb)

WD
(12)

WIS(πe|D)=

nD∑
i=1

[
(
Li∏
t=1

πe(a
i
t|

ist)

πb(a
i
t|s

i
t)

)(
Li∑
t=1

γt−1rit)

]
nD∑
i=1

(
Li∏
t=1

πe(a
i
t|s

i
t)

πb(a
i
t|s

i
t)

)

(13)

Per-Decision Importance Sampling (PDIS) is also a vari-
ant of IS. Like IS, it is also unbiased and consistent. IS has very
high variance because for each reward, rt, it uses the likelihood
ratio of the entire trajectory. However, the reward at step t
should only depend on the previous steps. The variance can be
reduced by using the likelihood ratio of the trajectory before
step t for the reward rt. It means that the importance weight

for a reward at step t is
t∏
j=1

πe(aj|sj)
πb(aj|sj)

. Therefore, the individual

PDIS estimator for a trajectory is given in equation 14 and the
PDIS for the whole historical dataset D is given in equation 15.

PDIS(πe|HL,πb)=

L∑
t=1

γt−1(

t∏
j=1

πe(aj|sj)
πb(aj|sj)

)rt (14)

PDIS(πe|D)=
1

nD

nD∑
i=1

[ Li∑
t=1

γt−1(

t∏
j=1

πe(a
i
j|sij)

πb(aij|sij)
)rit

]
(15)

5.2 Two Different Settings
To evaluate the three IS-based metrics, we explored different
deployment settings from two aspects: one is the transformation
function to convert the RL-induced deterministic policy to a
stochastic policy used in IS-based metrics and the other is re-
ward functions: the original reward function vs. the normalized
reward.

5.2.1 Three Transformation Functions:
As described above, IS-based metrics require the policy to be
stochastic but our MDP induced policies are deterministic, i.e.
given the current state s, the agent should take the deterministic

optimal action a∗ following the optimal policy π∗. To transform
the deterministic policy into a stochastic policy, we explore three
types of transformation functions: Hard-code, Q-proportion, and
Soft-max. The basic idea behind them is: for any given state s,
the assigned stochastic probability for an action a should reflect
its value of Q(s,a).

1. Hard-code Transformation

π(a|s)=

{
1−ε optimal action

ε otherwise
(16)

In eqn 16, ε is a fixed small probability like ε = 0.001
which is assigned to actions with smaller Q-value while
1−ε is assigned to the action with the largest Q-value.

2. Q-proportion Transformation

π(a|s)=
Q(s,a)∑

a
′∈AQ(s,a′)

(17)

As shown in eqn 17, the probability to take action a given
state s is the proportion of a’s Q-value among all possible

actions a
′

in the state s. Thus, the action which has the
highest Q-value is guaranteed to have the highest probabil-
ity. In practice, because some of the Q-values are smaller
than 0, we add a constant to Q-values in the same state
so that Q(s,a)≥1.

3. Soft-max Transformation

π(a|s)=
eθ·Q(s,a)∑

a
′∈Ae

θ·Q(s,a
′
)

(18)

Soft-max is a classical function used to calculate the prob-
ability distribution of one event over n possible events. In
our application, given state s, the soft-max function will
calculate the probability of action a over all possible ac-
tions using equation 18. The main advantage of soft-max
is the output probability range is 0 to 1 and the sum of
all the probabilities will be 1 and it can handle negative
Q-values. θ is a weight parameter to the Q-value.

5.2.2 Two Types of Reward Functions:
The effectiveness of RL-induced policies is very sensitive to
the reward functions. In our application, the range of the re-
ward function is very large [−200,200], which may cause large
variances for IS, especially when a trajectory is long. One effec-
tive way to reduce this variance is to use normalized rewards.
Therefore, both original rewards and normalized rewards are
considered. More specifically, the normalized reward z is defined

as: z= x−min(x)
max(x)−min(x) where min and max are the minimum

and maximum values of original reward function x and z∈ [0,1].

6. ITS & FOUR MDP POLICIES
6.1 Our Logic Tutor
Figure 2 shows an interface of the logic tutor, which is a data-
driven ITS used in the undergraduate Discrete Mathematics
(DM) course at a large university. It [16] provides students
with a graph-based representation of logic proofs which allows
students to solve problems by applying rules to derive new state-
ments, represented as nodes. The system automatically verifies
proofs and provides immediate feedback on logical errors. Every
problem in the tutor can be presented in the form of either



Figure 2: Tutor Problem Solving Interface

WE or PS. By focusing on the pedagogical decisions of WE
and PS, the tutor allows us to strictly control the content to be
equivalent for all students.

6.2 Four MDP Policies and Empirical Study
Four MDP policies, MDP1 - MDP4 were induced from an
exploratory pre-collected dataset following different feature se-
lection procedures. The detailed descriptions on our policy
induction process are described in [26, 25] and must be omitted
here because of page limits. The effectiveness of each MDP
policy was empirically evaluated against the Random policy in
strictly controlled studies during three consecutive semesters. In
each strictly controlled study, students were randomly assigned
to two conditions: MDP policy, or a Random baseline policy
which makes random yet reasonable decisions because both PS
and WE are always considered to be reasonable educational
interventions in our learning context. Moreover, all students
went through the identical procedure on the tutor and the only
difference was the pedagogical policy employed. After complet-
ing the tutor, students take a post-test which involved two proof
questions in a midterm exam. They were 16 points each and
graded by one TA using a rubric. Overall, no significant differ-
ence was found between our four RL-induced policies and the
Random policy on students’ post-test scores across all studies.

There are many possible explanations for our results. First,
while the Random policy is generally a weak policy for many RL
tasks, in our situation both of our action choices: WE vs. PS are
considered reasonable and more importantly for each decision
point, there is a 50% chance that the random policy would carry
out the better of the two. Second, non-significant statistical
results do not mean non-existence. Small sample size may play
an important role in limiting the significance of statistical com-
parisons. A post hoc power analysis revealed that in order to be
detected as significant at the 5% level with 80% power, MDP1
vs. Random needed a total sample of 1382 students; MDP2 vs.
Random needed 1700 students; MDP3 vs. Random needed 212
students; MDP4 vs. Random needed 394 students. However, in
each empirical study, our student sample sizes are much smaller,
59, 50, 57, and 84 respectively. And last but not least, it turned
out that all four RL-induced policies were only partially carried
out. All of the training problems in our tutor are organized into
six strictly ordered levels and in each level students are required
to complete 3–4 problems. In level 1, all participants receive
the same set of PS problems and in the levels 2–6, our tutor
has two hard-coded action-based constraints that are required
by the class instructors: students must complete at least one
PS and one WE and the last problem on each level must be

PS. Therefore, over the entire training process, only ∼50% of
actions are actually decided by the pedagogical policy and the
rest are decided by hard-coded system rules.

In short, despite the fact that ECR showed that our four RL-
induced policies should be more effective than the Random,
empirical results showed otherwise because of various potential
reasons. So we explored other OPE metrics to evaluate MDP1

- MDP4.

7. EXPERIMENT SETUP
Our dataset contains a total of 450 students’ interaction logs
involved in the strictly controlled studies mentioned above. The
goals of our experiment were to: 1) investigate whether any of
the three IS-based metrics can be used to align the theoretical
and empirical results for our four MDP policies and 2) identify
critical decisions that are linked to student learning.

7.1 Three IS-based Metrics Evaluation
We will describe how we determine whether or not the three IS-
based metrics can align the theoretical results with the empirical
results for MDP1-MDP4.

For a given RL-induced policy π, we first split all students into
High vs. Low based on the actual carry-out percentages accord-
ing to π. Since there are only two tutorial choices: WE vs. PS,
there is a possibility that each actual decision that the tutor
made would agree with the decision according to π. For the
Random policy, for example, the probability is 50-50. In other
words, we can measure each trajectory by the percentage of the
tutorial decisions that agree with π. If π is indeed effective, we
would expect that the more the tutorial decisions in a trajectory
agree with π, the better the corresponding student performance
would be. We thus treat all 450 students’ interaction log data
equally regardless of their original assigned conditions and for
each student-ITS interaction log we can calculate a carry-out

percentage for π using the formula: percentage=
Nagree

Ntotal
, where

Ntotal is the total number of tutorial decisions in the trajec-
tory and Nagree is the number of decisions that agree with π.
Then, students are divided into High Carry-out (High) vs. Low
Carry-out (Low) by a median split on carry-out percentages.

Then we empirically evaluate the effectiveness of π by checking
whether there is a significant difference between the High and
Low groups on their post-test scores. Similarly, we compare
the High and Low groups’ theoretical results. To do so, for
each student-ITS interaction trajectory, we estimate its reward
by exploring different combinations of the three IS-based OPE
metrics with the three policy transformation functions and the
two reward functions. More specifically, we treat all the trajec-
tories as generated by Random policy regardless of their original
behavior policy. So for each student, we have a total of 18
theoretical evaluations for a given π. If π is indeed effective and
our OPE metric is reliable, we would expect that the more the
tutorial decisions in a trajectory agree with π, the higher the
corresponding theoretical rewards would be and vice versa.

Finally, for each of the 18 OPE metric settings, we conduct an
alignment test between the theoretical and empirical results on
π. This is done by comparing the empirically evaluated results
and the theoretical rewards using the corresponding OPE metric.
More specifically, they are considered to be aligned when:



1. Both empirical and theoretical results were not significant,
that is p>=0.05, or

2. Both results were significant, and the direction of the
comparison was the same, that is p<0.05, and the sign
of the t values are both positive or both negative.

All the remaining cases are considered as not aligned. Thus,
for each of 18 OPE metrics, we can test whether its theoreti-
cal results would align with the empirical results for π. Since
we have four RL-induced policies, MDP1-MDP4, robust and
reliable OPE metrics should align the two types of evaluation
results across all four policies.

7.2 Critical Decision Identification
Next, we will explain how the critical interactive decisions are
identified and empirically examined. Note that, there may be
critical decisions over which the RL policies have no influence.
Hence, we focus only on interactive decisions that are critical.
For many RL algorithms, the fundamental approach to induce
an optimal policy can be seen as recursively estimating the Q-
values: Q(s,a) for any given state-action pair until the Bellman
equation is converged. More specifically, Q(s,a) is defined as
the expected discounted reward the agent will gain if it takes an
action a in a state s and follows the corresponding optimal policy
to the end. Thus, for a given state s, a large difference between
the values of Q(s,“PS”) and Q(s,“WE”) indicates that it is
more important for the ITS to follow the optimal decision in
the state s. We, therefore, used the absolute difference between
the Q-values for each state s to identify critical decisions. Our
procedure can be divided into two steps:

Step 1: Identify Critical Decisions: Given an MDP policy,
for each state, we calculated the absolute Q-value difference
between the two actions (PS vs. WE) associated with it. Fig-
ure 3 shows the Q-value difference (y-axis) for each state (x-axis)
sorted in descending order for MDP1-MDP4 policies respectively.
It clearly shows that, across the four MDP policies, the Q-value
differences for different states can vary greatly. We used the
median Q-value difference to split the x-axis states into critical
vs. non-critical states. The states with the larger Q-value dif-
ferences were critical states and the rest were non-critical ones.
For a given RL-induced policy, the critical decisions are defined
as those in critical states where the actual carried-out tutorial
action agreed with the corresponding policy.

Step 2: Evaluate Critical Decisions: For each of the four
RL-induced policies, we counted the number of critical decisions
that each student encountered during his/her training. Then for
each policy, students were split into: More vs. Less groups, by
a median split on the number of critical decisions experienced
in the training process. A t-test was conducted on the post-test
scores of More vs. Less groups to investigate whether the stu-
dents with More critical decisions would indeed perform better
than those with Less.

8. RESULTS
8.1 Three IS-based Metrics Evaluation

Figure 3: Q-value difference in MDP1-MDP4

Table 1 shows the empirical evaluation results by comparing the
High vs. Low carry-out groups’ post-test scores based on the cor-
responding RL-induced policy. The motivation is that, if a policy
is indeed effective, students in the High group should significantly
out-perform their Low peers on the post-test. In Table 1, the first
column indicates the name of the RL-induced policy; columns
2 and 3 show the mean and standard deviation of classroom
post-test scores for High and Low carry-out groups, respectively,
and the last column shows the t-test results when comparing
post-test between groups. Rows 2-4 show that there is no sig-
nificant difference between the High vs. Low groups in terms of
post-test scores for MDP1, MDP2, and MDP3 policies, but there
is a significant difference between the two groups for the MDP4
policy (row 5): t(448)=2.19,p= .029. This result suggests that,
among the four MDP policies, only MDP4 seems to be effective
in that the students in MDP4’s High carry-out group performed
significantly better than those in the Low carry-out group.

Table 2 shows the overall IS-based metrics evaluation results
showing the impact of policy transformations and original versus
normalized rewards on the outcomes of each IS metric. The first
column indicates the type of policy transformation applied and
the second column shows whether the rewards are normalized.
The third through fifth columns show the performance of each
IS metric, where performance is determined by the percent align-
ment between the IS policy predictions and empirical post-test
results. Among the three policy transformations, Q-proportion
is the worst, with none of its six performance results better than
the corresponding results of Soft-max or Hard-code. Hard-code
performs slightly better than Soft-max in most cases but never
reaches a 100% match. For reward normalization, the original
reward performs better than the normalized reward for the
PDIS metric, but there was no effect on IS or WIS.

Comparing the three IS metrics, PDIS shows the greatest per-
formance with all 12 of the performance results being the best.
For the last two metrics, IS and WIS, the results are exactly
the same because WIS is much like multiplying IS by a con-
stant and this kind of re-scale won’t change the result of the
t-tests. The metric with the best performance is PDIS with
Soft-max policy transformation and the original reward, whose
performance is 100%. This means that all the t-test results on
the PDIS predictions aligned with those on the empirical results



Table 1: Empirical Post-test Evaluation Results for High and Low Carry-out Groups
Policy High Low T-test Result

MDP1 79.06(24.64) 83.13(23.69) t(448)=−1.78,p= .076
MDP2 81.46(24.90) 80.44(23.66) t(448)= .44,p= .658
MDP3 82.55(23.48) 79.30(25.00) t(448)=1.24,p= .156
MDP4 83.43(22.83) 78.43(25.44) t(448)=2.19,p= .029∗∗

bold and ** denote significance at p<0.05.

Table 2: Policy Transformation and Normalization Impacts on IS Metric Alignment to Post-test Outcomes

Policy Rewards Metrics

Transformation IS WIS PDIS

Soft-max
Original 50% 50% 100%∗

Normalized 50% 50% 50%

Q-proportion
Original 25% 25% 75%

Normalized 25% 25% 25%

Hard-code
Original 75% 75% 75%

Normalized 75% 75% 75%

Table 3: Detailed IS-based Metrics Evaluation Results Using Original Reward

Transform Policy Empirical Result IS & WIS Result PDIS Result

MDP1 t(448)=−1.78,p= .076 t(448)= .89,p= .376 t(448)= .89,p= .375

MDP2 t(448)= .44,p= .658 t(448)=2.60,p= .010∗∗ t(448)=1.84,p= .067

MDP3 t(448)=1.42,p= .156 t(448)=2.50,p= .013∗∗ t(448)= .53,p= .594
Soft-max

MDP4 t(448)=2.19,p= .029∗∗ t(448)=2.18,p= .030∗∗ t(448)=3.23,p= .001∗∗

MDP1 t(448)=−1.78,p= .076 t(448)=3.78,p<.001∗∗ t(448)=1.77,p= .077

MDP2 t(448)= .44,p= .658 t(448)=3.26,p= .001∗∗ t(448)=2.13,p= .034∗∗

MDP3 t(448)=1.42,p= .156 t(448)=2.71,p= .007∗∗ t(448)= .31,p= .760
Q-proportion

MDP4 t(448)=2.19,p= .029∗∗ t(448)=3.69,p<.001∗∗ t(448)=2.32,p= .021∗∗

MDP1 t(448)=−1.78,p= .076 t(448)=1.19,p= .233 t(448)= .96,p= .337

MDP2 t(448)= .44,p= .658 t(448)= .71,p= .479 t(448)= .84,p= .404

MDP3 t(448)=1.42,p= .156 t(448)=2.34,p= .020∗∗ t(448)=2.06,p= .040∗∗
Hard-code

MDP4 t(448)=2.19,p= .029∗∗ t(448)=2.83,p= .005∗∗ t(448)=3.73,p<.001∗∗

Electric-blue cells denote that the theoretical t-test results align with the empirical t-test results (Column 3);
Grey cells denote misaligned t-test results.

in terms of significance match.

Table 3 shows the detailed results for metric evaluations using
the original reward, providing t-test results when comparing
post-test results between High and Low carry-out groups. The
first column in table 3 shows the type of policy transformation
functions applied. The second column shows the four MDP
policies considered when splitting the dataset into High and Low
carry-out groups. The third column shows the t-test results
of the empirical evaluation of High vs. Low carry-out, which
served as the ground truth. The fourth and fifth columns show
the t-test results for the prediction of the three IS metrics: IS,
WIS, and PDIS respectively. In the tables, electric-blue cells
denote that the theoretical t-test results align with the empirical
t-test results (Column 3) while grey cells denote mismatched
t-test results. From this table, we can see that only PDIS with
soft-max transformation and the original reward results in all

four t-tests aligning with the corresponding empirical results.
IS and WIS are more likely to predict the significant difference
between High vs. Low. Meanwhile, Q-proportion tends to
cause the metric to predict more significant difference, while
Hard-code tends to predict less.

In summary, when comparing groups in the RL-induced policy,
our results showed that for the MDP4 policy, the students in the
High carry-out group significantly outperformed the students
in the Low group, but no significant difference was found in the
other three policies. This suggests that the MDP4 policy is an
effective policy in that the more it is carried out, the better it
performs. However, the partially carry-out situation reduced
the power of the MDP4 policy so that it did not significantly
outperform the baseline random policy. When comparing the
empirical evaluation results with theoretical evaluation results,
PDIS is the best among the three IS-based metrics, reaching



Table 4: Critical Decision Evaluation Results
Policy More Less T-test Result

MDP1 78.49(23.08) 83.01(25.44) t(448)=−1.97,p= .049

MDP2 83.22(23.53) 78.86(24.79) t(448)=1.91,p= .057

MDP3 79.45(24.59) 82.08(24.00) t(448)=−1.14,p= .257

MDP4 83.54(22.89) 78.74(25.21) t(448)=2.10,p= .036∗∗

bold and ** denote significance at p<0.05.

100% agreement. Our results suggested that proper deployment
settings have an impact on the performance of IS-based metrics.
When transforming the deterministic policy to stochastic policy,
soft-max is the best one, while Q-proportion is the worst, and
Hard-code is stable. The comparison between the original reward
and normalized reward indicates that the original reward can
better reflect the empirical results despite having larger variance.

8.2 Critical Decision Identification
Recall that each policy impacts its own critical decisions: those
with higher differences between Q-values for possible decisions
are considered to be critical, and we split each group of students
according to whether the student received More decisions aligned
with the critical decisions. Table 4 shows the t-test results
comparing the post-test scores between the More vs. Less
critical decisions groups. The first column indicates the MDP
policies considered when identifying the critical decision. The
second and third columns show the average post-test scores
of students in the More and Less groups, showing mean(sd).
The fourth column shows the t-test results when comparing the
post-test scores of the More and Less critical decisions groups.
The MDP1 row shows a significant difference between the More
vs. Less critical decisions groups for the MDP1 policy, with
t(448)=−1.97,p= .049. However, the students in More group
perform worse than the Less critical decisions group. The MDP2
and MDP3 rows show that there is no significant difference
between the two critical decisions groups in terms of post-test
scores for the MDP2 or MDP3 policies. Finally, the MDP4 policy
shows a significant difference between the two groups, t(448)=
2.10,p = .036, which means that students with More critical
decisions performed significantly better than students with Less.

For the MDP4 policy, the identified critical decisions comprised
25% of all decisions. This shows that, although critical decisions
are a small proportion of all decisions, they can significantly im-
pact the outcome. Also, the results also show that the Q-values
in the MDP4 policy can be used to identify critical decisions
aligned with empirical results, but the other three cannot. Based
on the results from Table 1, MDP4 was identified as the only
effective policy, since its empirical post-test results aligned, with
students in the High carry-out group performing significantly
better than the Low carry-out group. The critical decisions
results suggest that MDP4 is also the only policy where larger
differences in Q-values had larger impacts on post-test results.
Taken together, these results suggest that only Q-values in ef-
fective policies work to influence decisions that impact actual
post-test performance. This further inspires us to investigate
whether we could verify the effectiveness of a policy in reverse:
Given a policy, if the decisions with larger Q-value difference
are significantly linked to the student performance, then this
policy may be more likely to be effective.

9. CONCLUSION AND FUTURE WORK
In this work, we explored three IS-based OPE metrics with two
deployment settings in a real-world application. Through com-
paring the effectiveness of four RL-induced policies empirically
and theoretically, our results showed that PDIS is the best one
for interactive e-learning systems and appropriate deployment
settings (i.e., where policy decisions are carried out) are required
to achieve reliable, robust evaluations. We also proposed a
method to identify critical decisions by the Q-value differences
in a policy. In order to verify our method, we investigated the re-
lationship between the number of identified critical decisions and
student post-test scores. The results revealed that the identified
critical decisions are significantly linked to student learning, and
further, that critical decisions can be identified by an effective
policy but not by ineffective policies. In the future, we will apply
the PDIS metric with soft-max transformation and original re-
wards to help us induce better RL policies which further improve
students’ learning in the ITS. Also, when inducing policies, we
will consider constraints to avoid the partially carry-out situation
that limits the impact a policy can have on outcomes. Further-
more, with the identification of critical decisions, we can reduce
the size of resulting policies still further by focusing only on the
most monumental decisions rather than meaningless ones.
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