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1 Background and Objectives

This paper presents a summary of the IMPACT (Intrinsically Motivated Planning Ar-
chitecture for Curiosity-driven roboTs) project funded by the European Space Agency
(ESA). The project aimed at investigating the possibility of employing Artificial In-
telligence (AI) techniques to increase both the cognitive and operational autonomy of
artificial agents in general, and of robotic platforms targeted at the space domain in par-
ticular. The idea is based on the creation of a virtuous loop in which the agent increases
its learned capabilities through the direct interaction with the real environment, and
then exploits the autonomously acquired knowledge to execute activities of increasing
complexity: this process is cumulative and virtually open-ended [3] as the information
and abilities acquired up to a certain time are employed to further increase the agent’s
knowledge of the application domain, as well as the skills to adequately operate in it.
This self-induced tendency towards autonomously learning new skills, based on intrin-
sic motivations (IM) [16, 5], will enable the artificial agent to face situations and solve
problems not foreseeable when the agent is designed and implemented, especially be-
cause of the limited knowledge on the environment the agent will operate in.

The IMPACT software framework [11] aimed at extending the well-known three-
layered robot control architecture [1,4, 6] commonly accepted in general robotics to
support the Sense-Plan-Act (SPA) autonomous deliberation and execution paradigm.
Indeed, the IMPACT system implements a Discover-Plan-Act (DPA) cycle, which di-
rectly extends the SPA cycle with a more general open-ended learning step (Discover)
acquiring new knowledge from the external environment. In particular, within the three-
layer architecture we integrated the following new functionalities: (1) autonomous learn-
ing of new skills based on self-generated goals driven by intrinsic motivations (intrinsic
goals) [15]; (2) automatic translation of the newly acquired skills [12], from a low-level
sub-symbolic representation to a high-level symbolic representation (e.g., expressed in
Planning Domain Definition Language - PDDL [10]); (3) autonomous enrichment of
the planning domain by adding knowledge on new states and operators expressed in

* This research has been supported by the European Space Agency (ESA) under contract No.
4000124068/18/NL/CRS, project IMPACT - Intrinsically Motivated Planning Architecture for
Curiosity-driven roboTs. The view expressed in this paper can in no way be taken to reflect
the official opinion of the European Space Agency.

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).



l T |

Environment (Gazebo)

:
1
' i ROSPlan b
I Decisional ! . i
! ' LTA-M KB Planning System ! )
! layer ! P
1 i i
I [ [y pmppy————— Yy - T T T LT T rrrrrrrrr—— [ y——— ==t :
! |
! 1
G N N S SER __ |
! i [
1 1 1
: Executive | KoPro+ Executor ! :
. layer oFro b
1 Il Yy [T
H L R N . o
! 1
! l
! 1
! l
1 .

Functional !
! B 5 - 1
! layer GRAIL-IM-Learning GRAIL-C (Controller) :
i !
! 1
! 1
! l
! 1
! l
! |
! |

Fig. 1. IMPACT high-level software architecture

high-level symbols. Next section describes the IMPACT software architecture, whereas
Section 3 introduces two test scenarios using the Gazebo Robot Simulator [7] ': a plan-
etary rover and a robotic arm.

2 IMPACT Architecture

Figure 1 represents the IMPACT high-level software architecture. As introduced above,
it is based on the three-layer robot control architecture [1,4,6] commonly accepted
in general robotics to support the Sense-Plan-Act (SPA) autonomous deliberation and
execution paradigm. In this architecture, the decisional layer implements the high-level
planning, plan execution, and re-planning capabilities; the executive layer controls and
coordinates the execution of the functions distributed in the software, according to the
requirements of the high-level tasks that have to be executed; lastly, the functional layer
implements all the basic, built-in robot sensing, perception, and actuation capabilities.
In Figure 1 the new blocks are highlighted (in light grey) within the three layers to
represent the proposed extensions for including learning capabilities. In the following
subsections we describe in details the single blocks.

The Decisional Layer. Within the classical framework of the three-layer architecture
the decisional layer traditionally contains a task planner to generate a sequence of oper-
ations to reach a certain goal provided by the users. The IMPACT project has the main
challenge of integrating this planning capabilities with autonomous intrinsically mo-
tivated learning (IM-learning) features for increasing the number of known skills and
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extending the related high-level model in the robot’s knowledge base. We think that the
given extended vision of the three-layer architecture can be seen as one of the possible
ways for addressing the long-term autonomy (LTA) problem for robotic systems [9].
In general, LTA can be seen as: (i) the ability of a robotic system to perform reliable
operations for long periods of time under changing and unpredictable environmental
conditions; (ii) the capability of increasing its knowledge about the working environ-
ment as time passes. Within this framework of LTA, the integration of IM-learning
capabilities is one of the possible “enablers” for long-term robot autonomy[9]. For this
reason, within the decisional layer of the IMPACT architecture has a long-term auton-
omy manager (LTA-M), see Figure 1, which provides a set of strategies to coordinate
the achievements of both extrinsic and intrinsic goals, i.e., the mission goals, coming
from outside Vs. the internal goals generated by curiosity driven behaviours [16, 5].

Starting from the system proposed in [2], we extended the design of the ROSPlan
system with the integration of IM-learning capabilities as it follows. ROSPlan includes
two main ROS? [14] nodes: (1) the Knowledge Base (KB) and the (2) Planning System
(PS). KB is a collection of interfaces, and is intended to collate the up-to-date model of
the environment. The Planning System acts as a wrapper for the internal planner such
that: (1) builds the initial state automatically - as a PDDL problem instance - from the
knowledge stored in the Knowledge Base; (2) passes the PDDL problem instance to the
planner; (3) dispatches each action, deciding when to reformulate and re-plan. ROSPlan
substantially implements the above introduced Sense-Plan-Act (SPA) autonomous de-
liberation and execution paradigm, whereas we implement a Discover-Plan-Act (DPA)
cycle, which represents a significant extension of the SPA cycle by means of a more
general open-ended learning step (Discover) such that: (i) it refers (as in ROSPlan) to
the process of populating the Knowledge Base from sensor data; (ii) it represents also
the process of autonomous enrichment of the planning domain by adding knowledge on
new states and operators expressed in high-level symbols.

The Functional Layer. A functional layer (also called skill layer in [1]), which has
access to the system’s sensors and actuators and provides reactive behaviour which is
robust even under environmental disturbances, for example with the help of closed-
loop control. In IMPACT the GRAIL [15] system works as functional layer. In par-
ticular, as shown in Figure 1 GRAIL has a twofold role. On the one hand, within the
functional layer, the block “GRAIL-C” will provide the set of stable controllers (i.e.,
the experts, see [15]) available in IMPACT for action execution. On the other hand,
the block “GRAIL-IM-Learning” provides the autonomous learning component of new
skills based on self-generated goals driven by intrinsic motivations (intrinsic goals).

The Executive Layer. The executive layer mediates between the decisional and func-
tional layer, i.e. it activates or deactivates the reactive operations according to the de-
liberator’s specification. In general, it represents the interface between the decisional
and the functional levels. It controls and coordinates the execution of the functions dis-
tributed over the various functional level modules (i.e., the experts, see [15]) according
to the task requirements. The above role, that is, the process of mapping symbolic and
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abstract plans to continuous actions into the real working domain, is well recognised in
the literature [1, 4, 6]. However, we have also inserted at the same layer the subsystem
(called “KoPro+”, see [8]) for the automatic translation of the newly acquired skills,
from a low-level sub-symbolic representation (generated by “GRAIL-IM-Learning”) to
a high-level symbolic representation. In some sense, the “KoPro+” module has a dual
role in comparison to the Executor; in fact, the learning process can be seen as opposite
to the execution process, as it maps low-level sub-symbolic representation into abstract
symbolic representation.

3 Operational Evaluation

The validation and verification of the IMPACT framework was carried out in the form
of two demonstration test cases.

The Rover scenario, which demonstrates how the IMPACT system can discover new
ways to reach an already known effect by applying the procedure (called KoPro+, see
[8]) for the automatic translation of the newly acquired skills from the sub-symbolic
level to the PDDL (symbolic) level. This scenario proposes a situation where the ori-
entation mechanism of a planetary rover antenna has been damaged and the rover can
no longer use it to point the antenna and establish a stable communication. In this case,
our technology can be used to demonstrate how the rover is capable of enriching its
planning domain with the necessary knowledge to orient the antenna merely using the
locomotion capabilities, for example moving around the entire body in order to reach
the correct attitude to gain and maintain communication, possibly exploiting terrain
slopes and/or small rocks.

The Robot Arm scenario, which demonstrates the ability of the IMPACT system to
acquire new ways to interact with the environment and integrate them in its planning
domain. In this scenario, a robot equipped with a gripper actuator attached to a manoeu-
vrable arm tries to grasp a “vase shaped” rock whose size exceeds the max opening span
of the gripper. The robot is thus not able to pick-up the rock with its basic grasping skill
- however, upon failure, the IMPACT system will automatically trigger the learning of
a new skill and the robot will at the end be able to pick-up the “vase shaped” rock by
grasping it from its edge.

4 Conclusion and Future Work

We propose an extended version of the well-known three-layer architecture used in
system robotics, extending the SPA cycle with a more general open-ended learning
step (Discover) acquiring new knowledge from the external environment. Two differ-
ent functionalities has been added to the classical three-layers architecture: (i) we have
connected a goal-discovering and skill-learning robotic architecture (GRAIL) see [15]
to the symbolic abstraction procedure proposed in [8], creating a processing pipeline
from the low-level direct interaction of the agent with the environment, to the corre-
sponding symbolic representation of the same environment; (ii) we have integrated a
long-term autonomy manager (LTA-M) in the IMPACT architecture, which provides
a set of strategies to coordinate the achievement of both extrinsic and intrinsic goals.



Possible directions of future work are: (i) the integration of symbolic planning and
open-ended learning to increase the ability on one agent to autonomously acquire new
skills (bootstrap learning [3]) ; (ii) to use a different simulation engine, for example the
3DROV environment [13] developed by ESA.
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