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José V. Jaramillo1, Roberto Capobianco2[0000−0002−2219−215X ],
Francesco Riccio2[0000−0002−9112−8143], and Daniele Nardi2[0000−0001−6606−200X ]

Sapienza University of Rome. Deptament of Computer, Control and
Management Engineering “Antonio Ruberti”

1josevicentejaramillo@gmail.com
2{lastname}@diag.uniroma1.it

Abstract. Semantic mapping is fundamental to enable cognition and high-level
planning in robotics. It is a difficult task due to generalization to different sce-
narios and sensory data types. Hence, most techniques do not obtain a rich and
accurate semantic map of the environment and of the objects therein. To tackle
this issue we present a novel approach that exploits active vision and drives envi-
ronment exploration aiming at improving the quality of the semantic map.
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1 Introduction

Simultaneous exploration and map building are fundamental skills for mobile robots.
However, building a comprehensive map of the environment – spanning from raw
sensory observation to high-level semantic concepts [12] – is an extremely difficult
task [13]. In literature, autonomous map building processes rely upon map exploration
techniques that provide robots with an effective strategy to visit unknown portions of
the environment. In this context, proposed approaches [14] maximize exploration, while
minimizing the time spent in building the map. However, standard solutions to this prob-
lem are limited to a geometric reconstruction of the environment and, most importantly,
they formalize the exploration strategy by only considering geometric and topological
landmarks of the environment [14]. Conversely, semantic mapping [6, 9] enhances geo-
metric, metric and topological knowledge about the environment by means of semantic
concepts, thus enabling improved robot cognition. In this context, classic exploration
techniques are still generally used, resulting in inaccurate and incomplete semantic
maps. To tackle this issue, and to improve robot capabilities in exhaustively exploring
the environment at the semantic level, we introduce S-AVE (Semantic-Based Active Vi-
sion Exploration), a new map exploration technique. We refer to map exploration as the
exploration of an environment with the goal of building an internal representation of it
including semantic knowledge. Standard map exploration techniques, such as frontier-
based exploration [4, 7], do not focus on object reconstruction and the strategy that the
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robot executes aims at maximizing the amount of visited portions of the environment
disregarding objects therein. Such approaches, moreover, do not exploit semantic labels
to influence the map exploration strategy and often result in incomplete and poorly de-
tailed maps, which limit robots’ autonomy and abilities. S-AVE, instead, explicitly uses
detected objects to drive exploration by means of active vision [2, 3, 1], and it addition-
ally combines semantic information to state-of-the-art map exploration techniques [8]
to improve the 3D representation of the environment. We validate S-AVE in five differ-
ent indoor environments in the Gazebo simulator against a frontier-based algorithm and
human-driven robots.

Summarizing, S-AVE is a novel technique that introduces a new paradigm in map
exploration. S-AVE explicitly reasons about objects in the environment and their se-
mantic label to improve its 3D reconstruction. The contributions to the-state-of-art are
twofold: (1) it represents a novel technique for object-centered map exploration; and
(2) it generates better semantic maps to support and improve robot reasoning and task
execution. Moreover, it is important to highlight that this work contributes to the com-
munity by providing a ready-to-use simulation environment for map exploration and a
first baseline for future benchmarking. We provide five simulated environments as free-
to-download packages which can be easily used to integrate new exploration strategies
to perform benchmarking1 of semantic mapping approaches. We additionally release
the source code for both S-AVE2, as well as the data collected during our user study3.

2 Semantic Active-Vision Exploration

Most of the approaches to active vision focus on evaluating a set of candidate poses
and ranking them by expected information gain [11]. To reduce the search space of
the theoretically infinite number of poses, [10] introduced the use of tessellation for
discretizing the search space. In this case, a candidate pose is generated in each vertex
of the tessellated sphere, directed towards the center. This method has been widely
adopted in literature [3, 5]. Since these studies have been designed to model similarly
sized objects located in the center of a platform, the tessellated sphere radius and center
can be constants, as the object is placed on a limited size platform. In order to use
the same algorithms in an open environment, we generate the candidate poses with a
tessellated sphere (or circle, depending on agent’s reachability) for each encountered
object. Hence, the first phase of S-AVE consists in extracting, for each object in its
current view, the objects sizes and centroids. We rely on a RGBD camera and an ideal
object detector algorithm to acquire an object-segmented point cloud. Then, the portion
of the point cloud corresponding to the closest object is used to compute the size of the
bounding box and the centroid of the object.

To compute the candidate pose, S-AVE generates a sphere, in the robot cartesian,
space that delimits the objects of interest. The radius R′ of such a sphere as R′ =√

X ′2 +Y ′2 where X ′=Xmax+o f f set+clearance and Y ′=Ymax+o f f set+clearance.
Fig. 1(a) provides a visual feedback on Equation ??. Xmax and Ymax are the coordinates

1 https://github.com/JoseJaramillo/lucrezio simulation environments
2 https://github.com/JoseJaramillo/lucrezio semantic explorer
3 https://github.com/JoseJaramillo/S-AvE ExperimentalEval
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(a) Top view of an object with its Next-
Best-View candidates poses

(b) Resulting object radius

Fig. 1. S-AVE adjusts the estimated radius of objects in accordance to a object ontology.

of the max 2D points of the bounding box (green). o f f set is used to allow generat-
ing unknown volumes outside of the bounding box limits, and clearance is a parame-
ter used so that the generated next-best-view candidates are separated from the object
(blue). However, due to a mismatch between the actual centroid and the size of the ob-
ject suuch an estimation can easily reveal inaccurate. To overcame this limit, we exploit
semantic information in the process of generating candidate poses, and specifically for
adjusting the radius and the center of the sphere.

The main idea consists first extracting the object missing parameters (i.e. bound-
ing box size and centroid of the obejct) from the current view, and then searching the
knowledge base of the object categories for the object’s typical size. Then S-AVE ad-
justs the object parameters in accordance with a basic decision tree: if the observed
object dimensions are smaller than expected, parameters are tuned accordingly; oth-
erwise detected size and estimated centroid are preserved. The typical size of objects
can be determined using several sources. In our case, we choose to simply compute the
mean size among those provided on multiple online furniture stores.

It is important to notice that, in case the height of the object is much less than typical
height, the robot can compute the next-view in a position where the field of view can
fully cover the expected height. To this end, we compute the minimum distance to cover
the object with the camera’s field of view as Dmin = max(Dmintop, Dminbottom) where
Dmintop = (H−H)/tan(β +θ and Dminbottom = H ′/tan(β +θ). top and bottom refer
to the minimum distance to cover the top and bottom of the object with the camera’s
field of view. H is the typical height of the object, H ′ is the camera height. θ is the
camera pitch, and β = α/2. α is the camera vertical viewing angle. Hence, we can
recover the radius R as R = d + max(X ,Y )

2 , where d = min(Dmin, Dmax) and X , Y are
the planar object sizes found on the object’s typical size database. For big objects or
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tilted cameras, the computed minimum distance can be extremely large or even infinite.
Hence, a maximum distance Dmax is set according to the environment.

Then, to approximate the extracted centroid of a point cloud to the true centroid
of the object. We compute the adjusted center in the direction formed by the camera
center and the object point cloud’s centroid, as shown in Fig.fig:distances. To compute
the position of the center δ as δ = σ + l[cos(α),sin(α)]T , where α is the angle formed
from the camera center σ to the point cloud’s centroid ε , computed as α = atan2(ε.Y −
σ .Y, ε.X−σ .X). Here, l is the length from camera center σ and to the object center δ ,
which is computed as l = R−R′+d′, where d′ is the distance from the camera center
to the point cloud centroid, and R′ is the radius previously computed.

Finally, in order to get the goal pose, we evaluate the candidate poses by an active
vision method. In this work, we use the unobserved voxel volumetric information in-
troduced in [3], which returns the set of candidate poses ranked by information gain.
Hence, by evaluating the poses in rank order, the next-best-view is the first reachable
pose by the robot.

3 Experimental Evaluation

S-AVE is evaluated in five different scenarios, and each of them is a replica of real
world environments – Fig.fig:sim-real-env compares a real environment (top) and its
simulated world (bottom). Moreover, in order to validate the performance improvement
of our approach, we include in the experimental evaluation two baseline methods: a
frontier-based exploration (FE) technique [4]; and results of a user-study (Human) in
which we let humans drive the robot to explore the environment. In particular, FE aims
at showing the improvement of our solution with respect standard in map exploration
techniques – in which no semantic knowledge is exploited; while Human is used to
define an interval on the spectrum of possible strategies. In fact, as observed during
the user-study, humans rely on spatial semantic knowledge and perform differently to
standard FE methods and disregard metric information. We include in the evaluation
also a stripped down version of S-AVE which only considers the detected object size to
leverage the exploration algorithm. We refer to such an algorithm as AVE.

To assess S-AVE performance we rely on the object reconstruction index (ORI)
which is computed against the groundtruth of the environments which contains the true
number of objects, and objects shapes and dimensions as voxels. We compute the ORI
index as in: ORI = 1

N ∑
N
n=0 pv(n)/Vn where n denotes the n-th object, N is the total

numbe r of objects, Vn is the total number of voxels representing n and pv(·) is a func-
tion that returns the number of perceived voxels of n. Each environment has a different
structure, topology and a varying number of objects. Respectively for each environ-
ment the robot is challenged with 7, 12, 17, 18 and again 18 objects. All objects are
common indoor objects such as, chairs, desks, cabinets, tables, fridges and other alike
furniture. To evaluate our solution, in each of these environments we deploy a simu-
lated differential-drive wheeled robot equipped with a depth camera sensor and laser
range-sensor. The robot is configured to execute each of our competing algorithms (one
at time) and to store metrics parameters. The plots in Fig. 2 report the results in recon-
structing all the objects for each of the environment. As it can be notice, S-AVE has a
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(a) env 0 (b) env 1

(c) env 2 (d) env 3

(e) env 4 (f) Sim. vs Real

Fig. 2. Object reconstruction index (ORI). The plots represent the results obtained in reconstruct-
ing the objects in the environments by each of the used approaches: user-study results (Human,
red); frontier-based exploration (FE, orange); active-vision exploration (AVE, green); and seman-
tic active-vision exploration (S-AVE, blue). Fig.fig:sim-real-env shows the comparison between
a real world environment and its virtual replica.

better performance in all of them. It is worth mentioning that, the last scenarion resem-
bles a common apartment composed by three areas with a less predictable structure and
characterized by different object categories. In is worth noticing that AVE is not able to
reach the usual performance and compares with the FE approach. Conversely, humans
perform better and compare with S-AVE both in reconstructing the objects. Intuitively,
the two top-scoring approaches are the ones that explicitly model object semantics and
estimate object dimensions to navigate the environment. This suggests that in richer
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scenarios, only relying on object appearance is not enough to exhaustively explore the
environment. Moreover, by looking at the profile of the ORI and ONI indexes, S-AVE
is able show a better performance with respect to all baselines.

4 Conclusion

Our paper introduces a novel approach that integrates active-vision and autonomous
map exploration and that enables a robot to generate more accurate and complete se-
mantic maps. To alleviate the computational demand of AV methods, we aim at enhanc-
ing S-AVE with generative networks that can be used to infer object dimensions after
their classification.
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