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ABSTRACT

Video frames obtained through endoscopic examination can
be corrupted by many artefacts. These artefacts adversely af-
fect the diagnosis process and make the examination of the
underlying tissue difficult for the professionals. In addition,
detection of these artefacts is essential for further automated
analysis of the images and high-quality frame restoration. In
this study, we propose an endoscopic artefact detection frame-
work based on an ensemble of deep neural networks, class-
agnostic non-maximum suppression, and false-positive elimi-
nation. We have used different ensemble techniques and com-
bined both one-stage and two-stage networks to have a hetero-
geneous solution exploiting the distinctive properties of dif-
ferent approaches. Faster R-CNN, Cascade R-CNN, which
are two-stage detector, and RetinaNet, which is single-stage
detector, have been used as base models. The best results have
been obtained using the consensus of their predictions, which
were passed through class-agnostic non-maximum suppres-
sion, and false-positive elimination.

Index Terms Endoscopic artefact detection, Faster R-
CNN, Feature pyramid networks, RetinaNet

1. INTRODUCTION

Endoscopic imaging is a widely used clinical procedure to
inspect hollow organs and collect tissue samples for further
examination. However, video frames captured during endo-
scopic examination are corrupted by many artefacts due to
several factors such as lighting and shape of the organ. In or-
der to perform a detailed endoscopic procedure, it is required
to detect and localize these artefacts. This is also an essen-
tial process for high-quality frame restoration and developing
computer-assisted endoscopy tools.

There are many challenges in artefact detection in endo-
scopic images. Analysis of the dataset provided by EAD2020
Challenge [1, 2], reveals two major problems. Firstly, there is

Copyright c©2020 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

Fig. 1: Flowchart of the proposed method.

a class imbalance problem. While artefacts such as specular-
ity account for nearly 34% of all detections, instrument class
accounts for only 1.7%. Three classes (specularity, artifact,
and bubbles), in total, account for 82% of all bounding boxes.
Secondly, there is a scale imbalance problem. There are var-
ious bounding boxes that cover almost the entire frame and
various bounding boxes only have very few pixels. Hence,
the parameters of the object detection algorithms should be
chosen carefully in the light of these observations to detect
both small and large objects. We adopted an approach based
on an ensemble of object detectors. Despite being slower, we
mainly focused on two-stage networks due to their ability to
detect small and very close objects and used Faster R-CNN
[3] and Cascade R-CNN [4]. In addition, we used a single-
stage detector, RetinaNet [5], as a complementary model in
the ensemble.



2. PROPOSED METHOD

The flowchart of the proposed approach is given in Figure 1.
We use three base models. The outputs of these base mod-
els are then fed into a class agnostic non-maximum suppres-
sion algorithm independently before combining the results
through an ensemble model. Then a false-positive elimina-

Fig. 2: IoU histogram of each class with the other seven
classes Vertical axis is clipped to provide better visualization.
tion is applied to the output of the ensemble model. In the
remainder of this section, we describe these steps in more de-
tail.

2.1. Base Models

We use two two-stage models: Faster R-CNN [3], Cascade R-
CNN [4] and one single-stage model: RetinaNet [5] as base
models. Examination of the previous studies in this domain
reveals that feature pyramid network (FPN) [6] and ResNet
[7] architectures achieve promising results [8]. Therefore,
these networks have been selected as the basis for our models.

The first model is based on Faster R-CNN and uses FPN
as a backbone. Although FPNs are compute and memory
intensive, they are good at extracting features at different
scales. Since the dataset consists of objects in a wide variety
of sizes, FPNs are an important element of the proposed net-
work. We used a ResNet50 model with FPN as a backbone
of this model. Standard convolutional and fully connected
heads have been used for box predictions.

The second model is Cascade R-CNN. While it is a simi-
lar model to Faster R-CNN, it is claimed to alleviate the prob-
lem of overfitting at training. Cascade R-CNN consists of
consecutive detectors which are trained sequentially with in-
creasing intersection-over-union (IoU) thresholds. This ar-
chitecture is reported to be more selective against close false
positives. Again, we used a ResNet50 model with FPN as a
backbone.

In addition to these two-stage object detectors, we trained
and used a RetinaNet as our third model. RetinaNet is a
single-stage method and, as such, does not use a region pro-

Fig. 3: Blue: Ground-truth bounding boxes. Red: Bounding
boxes eliminated after the FP reduction step. Green: Remain-
ing predicted boxes after elimination.

posal network. It has one backbone network that extracts
features and two subnetworks for object classification and
bounding box regression. An important difference of this net-
work from other single-stage networks (e.g. YOLO, SSD)
is the use of focal loss. Focal loss is an extension to cross-
entropy loss that puts a focus on sparse hard examples. It
changes the weight of loss according to the performance of
the model on different examples.

2.2. Class-Agnostic Non-Maximum Suppression (NMS)

In the original Faster R-CNN architecture, NMS operation is
performed on each class independently. Yet, these architec-
tures are generally designed considering non-medical datasets
such as COCO [9] or PASCAL VOC [10], which have high
overlap ratios among the bounding boxes of different classes.

However, it is not expected to have frequent overlaps be-
tween different objects in the endoscopic images. To validate
this assertion, we calculated the IoU values for each class with
the other classes. Figure 2 shows the IoU histogram of each
class with the other seven classes. As seen in this figure, EAD
Challenge dataset does not exhibit high number of overlaps
between class bounding boxes. On the other hand, the origi-
nal object detector predictions result in a high IoU between
classes. Therefore, we propose a class-agnostic procedure
where the model predictions are passed through the NMS pro-
cess together for all classes. As a consequence of this process,
if an artefact is detected by multiple models with high IoU,
the ones having the lower confidence scores are eliminated.
A threshold of 0.4 IoU has been used to perform this class-
agnostic NMS step.

2.3. Ensemble of Models

Two different ensemble methods, affirmative and consensus,
have been used [11]. In the affirmative method, the outputs of
different models are merged, and NMS operation is applied



Table 1: IoU thresholds for false-positive elimination.

Class Threshold Class Threshold
Specularity 0.13 Contrast 0.19
Saturation 0.21 Bubbles 0.12

Artifact 0.17 Instrument 0.24
Blur 0.4 Blood 0.11

on the result. It can be regarded as the union of all bounding
boxes. In the consensus method, only the bounding boxes
for which the majority of the models agree are kept. This
method is similar to the ensemble of models in classification
problems.

2.4. False-Positive (FP) Elimination

Although class-agnostic NMS discards the bounding boxes
that have high IoU with other bounding boxes in the detector
network, the IoU threshold (0.4) might be still too high for the
same class types. For example, if the intersection of two bub-
ble bounding boxes has very low probability but model pre-
dicts bounding boxes that have high IoU, it implies that there
is redundancy and one of them should be removed. Therefore,
we have examined the IoU histogram of each class individu-
ally and determined a class-specific threshold. When there are
bounding boxes with higher IoU values than the threshold, the
ones having lower confidence scores are removed. Thresholds
are determined according to the 1.5 interquartile range (IQR)
above the 3rd quartile. Thresholds for elimination are given
in Table 1. This process is applied after the ensemble opera-
tion. An example image demonstrating the effect of this step
is shown in Figure 3.

3. EXPERIMENTAL DESIGN

We have evaluated the performance of the individual models
and their combination through affirmative and consensus en-
semble models. In addition, we have evaluated the effect of
adding a false-positive elimination step on the outputs of these
models. We have used the EAD Challenge dataset through-
out the experiments. The dataset contains 2200 images and
1555 of them, corresponding to 70%, have a dimension of
512x512. Therefore, we rescaled all the images to that size
in order to fix the input size. In order to prevent overfitting,
10% of the overall dataset (∼250 images) has been set aside
for validation. The rest of the images in the dataset have been
used for training. The training dataset has been expanded by
image augmentation techniques. Each image has been trans-
formed by horizontal flipping and 90◦, 180◦, 270◦ rotations.
As a result, there was an eight-fold increase in the training
dataset size. We have observed that augmenting the dataset
results in better generalization.

For the best performance, anchor box sizes should match
the object bounding boxes. For this purpose, we calculated

the statistics of the ground-truth object bounding boxes. Fig-

Fig. 4: Histogram of normalized bounding box sizes, where
1.0 corresponds to an area of 512x512
ure 4 shows the histogram of the bounding boxes. Accord-
ing to this figure, most of the bounding boxes are located in
the region where bounding boxes are smaller than the median
area (256x512); therefore, 12, 25, and 80-pixel sizes for both
width and height have been used for smaller boxes. For the
mid-size and larger bounding boxes, 256 and 384 pixels have
been chosen respectively. Each anchor box size [12, 25, 80,
256, 384] was mapped to the corresponding feature map layer
in [P2, P3, P4, P5, P6] respectively where Pn is the nth fea-
ture map layer. Three different aspect ratios (width/height):
0.5, 1, and 2, were used for each anchor box.

The total number of iterations was 200000 for Faster R-
CNN and Cascade R-CNN and 90000 for RetinaNet. Learn-
ing rate scheduling by a factor of 10 was used for all three
models. Scheduling has been done at iterations 130000 and
180000 for Faster R-CNN, at iterations 150000 and 190000
for Cascade R-CNN and at iterations 60000 and 80000 for
RetinaNet.

We used PyTorch [12] and Detectron2 API [13] to train
the models on a workstation with two NVIDIA RTX2080
GPUs. Faster R-CNN and Cascade R-CNN models took 15
hours to train, and RetinaNet model took 11 hours to train
using a single GPU. We used the other GPU to train different
models in parallel. For all three models, weights of pretrained
models on COCO dataset have been used.

The results are given in Table 2. In addition to the results
using different network types, ensemble models and their ver-
sion with class-agnostic NMS and FP elimination steps are
also provided. Ensemble methods utilize all three networks.

4. EXPERIMENTAL RESULTS & DISCUSSION

According to the results in Table 2, while the individual
networks have very similar mAP values, the Faster R-CNN
model has a higher mIoU. The affirmative ensemble gives the



Table 2: Experimental results.

Method Without Class-Agnostic NMS With Class-Agnostic NMS
mAP mIoU mAP mIoU

Faster R-CNN with FPN 45.66 40.78 44.20 42.82
Cascade R-CNN with FPN 45.98 32.23 44.07 35.03

RetinaNet 45.09 36.44 43.91 41.22
Ensemble (affirmative) 47.91 26.03 47.12 30.28
Ensemble (consensus) 47.29 42.89 45.96 45.19

Ensemble (affirmative) with FP elimination 46.92 32.21 46.54 34.25
Ensemble (consensus) with FP elimination 46.86 44.65 45.71 45.91

highest mAP score, which is expected as some true positives
missed by a model can be detected by the other models. On
the other hand, a higher number of false positives are gener-
ated, which adversely affects its mIoU score. The consensus
ensemble has the highest mIoU value among the methods not
utilizing FP elimination. Although class-agnostic NMS and
FP reduction steps decrease the mAP values marginally, they
eliminate many false-positives and give higher mIoU scores,
resulting in a more balanced mAP and mIoU scores. For
example, when FP elimination is applied to the ensemble (af-
firmative) result, in return to a 0.99 points decrease in mAP,
there is a 6.18 points increase in mIoU. Increasing mIoU by
such an elimination mechanism adversely affect mAP. Be-
cause, in some cases, object detectors do not perform well;
models may detect artefacts incorrectly and boxes which
have true classes but low confidence scores are suppressed by
wrongly detected high confidence boxes. It is observed that
FP elimination works better if there is a lower mIoU. Since
there is a trade-off between mAP and mIoU, these steps can
be utilized to have more robust object detectors. Different
score metrics are used for different object detection tasks. In
this work, we have used post-processing techniques to have a
balanced mAP and mIoU scores.

The highest scores are obtained using the consensus en-
semble of the classifiers, which were passed through a class-
agnostic NMS, and FP reduction as the final step.

Object detectors are generic and they are not developed
considering the domain-specific challenges. In addition, these
networks have many internal parameters and these parameters
need to be tuned for the particular application. Hence, it is not
sufficient to use more advanced models and a comprehensive
understanding of the characteristics of the data is of essence.

To integrate the domain knowledge into detection archi-
tecture, we have qualitatively observed that some classes such
as specularity and saturation have bounding boxes overlap-
ping with each other. While removal of the one that has less
confidence seems to be a solution, this is not ideal since, in a
number of cases, the one that has less confidence is the true
class. Therefore, specific algorithms should be included in
the detection framework to tackle this problem.

5. CONCLUSIONS

In this study, we have trained three different object detectors
for endoscopic artefact detection. We have used ensemble
techniques to utilize all three individual networks. Applying
a class-agnostic NMS to each of them independently resulted
in a better trade-off between mAP and mIoU scores. As a
final step, FP elimination is applied, which resulted in more
robust results.

In this work, we have focused on using lighter networks
and taken ensemble of weak classifiers approach. Use of
lighter networks made the hyperparameter tuning possible in
feasible time periods and allowed us to experiment with vari-
ous network parameters. In the future, more sophisticated net-
works, such as ResNeXt or ResNet152, which require more
time to train and tune parameters could also be investigated.
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