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ABSTRACT

Endoscopy is a widely used clinical procedure for the early
detection of numerous diseases. However, the images pro-
duced are usually heavily corrupted with multiple artifacts
that reduce the visualization of the underlying tissue. More-
over, the localization of actual diseased regions is also a com-
plex problem. For that reason, EndoCV2020 challenges aim
to make progress in the state-of-the-art in the detection and
segmentation of artifacts and diseases in endoscopy images.
In this work, we propose approaches based on U-Net and U-
Net++ architecture to automate the segmentation task of En-
doCV2020. We use the EfficientNet as our encoder to extract
powerful features for our decoders. Data augmentation and
pre-trained weights are employed to prevent overfilling and
improve generalization. Test-time augmentation also helps
in improving the results of our models. Our methods per-
forms well in this challenge and achieves a score of 60.20%
for the EAD2020 semantic segmentation task and 59.81% for
the EDD2020’s.

Index Terms— Endoscopy · U-Net++ · EfficientNet ·
Test-time augmentation · Segmentation · Detection

1. INTRODUCTION

Endoscopy is a widely used clinical procedure for the early
detection of cancers, therapeutic procedures, and minimally
invasive surgery in hollow-organs. Computer-assisted meth-
ods would improve diagnosis and assist in surgical planning.
These endoscopic applications face two main challenges: 1)
Endoscopy video frames are usually heavily corrupted with
multiple artifacts that reduce the visualization of the under-
lying tissue and affect post-analysis. Accurate detection of
these artifacts allows corrections of frames and is, therefore,
a core challenge in a wide range of endoscopic applications
[1]. 2) Even with uncorrupted video frames, temporally
consistently localizing and segmenting of disease ROIs is a
challenge due to non-planar geometries, variation in imaging
modalities, and deformations of organs. For these reasons,
after the success of EAD2019 [2], the endoscopy computer
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Fig. 1. Some output examples of our U-Net++ with Effi-
cientNet B1 and YOLOv3. The top row is the ground truths
(GT). a),b): EAD2020 detection and segmentation GT. c),d):
EDD2020 detection and segmentation GT. The bottom row is
the results for corresponding tasks on the top row.

vision challenges on segmentation and detection 2020 (En-
doCV 2020) are held to make progress in the state-of-the-art
further. It consists of two sub-challenges: Endoscopy Arte-
fact Detection and Segmentation (EAD2020), and Endoscopy
Disease Detection and Segmentation (EDD2020) [3]. Each
challenge is further divided into the detection and the seman-
tic segmentation tasks.

In this paper, we introduce our works on these challenges.
First, Sec. 2 presents our observations of the datasets. Then,
we describe our methods in Sec. 3. We participate in all tasks
of both challenges but focus mainly on the two semantic seg-
mentation ones using fully convolutional networks such as
U-Nets [4] and U-Net++ [5] with EfficientNet [6] backbones
(Sec. 3.1). We also did some experiments with the detection
tasks using our segmentation results or the YOLOv3 model
[7] (Sec. 3.2). Finally, we will present our results on the test-
ing data in Sec. 4 and conclude in Sec. 5.

2. DATASETS

2.1. About the dataset

The EndoCV2020 challenge consists of two datasets. The
EAD2020 dataset is an extended version of last year’s
EAD2019 challenge [8] with annotations corrected, and a



new class added. The EAD2020 train data were released
in four subsets. They consist of a total of 3005 images,
among which 2531 are annotated with bounding boxes for
eight classes (specularity, saturation, artifact, blur, contrast,
bubbles, instrument, and blood), and 643 come with segmen-
tation ground truth for five classes (instrument, specularity,
artifact, bubbles, saturation, and blood). The EDD2020
train data contains 386 images with boxes and segmentation
ground-truth for five disease classes (normal dysplastic Bar-
rett’s oesophagus (BE), suspicious area, high-grade dysplasia
(HGD), adenocarcinoma (cancer), and polyp).

2.2. Data correction

The ground-truth for these challenges contain some issues.
They can be classified into annotator disagreement and sys-
tematic error.

Some annotator disagreement was spotted in the EAD2020
detection dataset. For example, an artifact region is identified
in one frame but is not in the next frame, or one connected
region is marked with two bounding boxes in one frame but
only one in the other. There is also misclassified segmentation
mask. We consider this type of error as noises in the dataset
since we do not have the resource to make adjustments.

We corrected all the systematic errors that we noticed.
There are some small anomalies in bounding box ground
truths, likely due to rounding when converting from Pascal-
VOC to Yolo format. There is also a line at the bottom
of some EAD2020 segmentation ground-truths that do not
correspond to any artifact.

3. OUR APPROACHES

We focus mainly on the two segmentation tasks with models
in the U-Net family. In the case of disease detection, we will
take advantage of our segmentation results. For the artifacts
detection tasks, we train a separate YOLOv3 [7] network due
to the difference in the number of classes (eight classes for
detect and five classes for segmentation), and due to disagree-
ment between EAD2020 segmentation and detection ground-
truths (e.g, Fig 1(a) and Fig 1(b)).

3.1. Segmentation of Diseases and Artifacts

3.1.1. Models

The state-of-the-art of semantic segmentation are meth-
ods based on encoder-decoder architecture such as U-Net,
U-Net++. These encoder-decoder architectures use skip-
connections to combine low-resolution, semantically-rich
at deeper feature maps with shallower, fine-grained ones to
recover fine detail of region of interest.

Instead of using the original U-Net encoder, we use Effi-
cientNet [6], which claims to be balanced between network
depth, width, and resolution. This architecture achieved bet-
ter accuracy on ImageNet [9] with fewer parameters and re-
quires fewer FLOPS than other networks such as ResNet [10]

or DenseNet [11]. EfficientNet is available with different ver-
sions, starts from B0 at 5.3 million parameters to B7 at 66
million. We extract five feature maps at different scales from
EfficientNet as the input of our decoders. An illustration of
the EfficientNet B1 encoder and where intermediate feature
maps are extracted is in Fig. 2(a).

We start our experimentations with the U-Net architecture
and the EfficientNet B5. Subsequent tests show that a deeper
encoder is not needed, so we transit to a larger decoder (U-
Net++) with smaller encoder (EfficientNet B2 and latter B1).
An illustration of our networks could be found in Fig. 2

We speed up the training process with pre-trained weights.
Although it was trained on ImageNet, which is a database of
natural images, the pre-trained weights do improve the train-
ing and local validation scores.

3.1.2. Data augmentation

Input images are resized (while keeping their aspect ratio) and
zeros-padded to fit into 512x512 pixels. We randomly apply
these augmentation techniques with 50% probability: Rota-
tion with random angle, RGB value shift, horizontal or ver-
tical flipping, random scaling, elastic deformation [12], crop-
ping.

3.1.3. The loss function

The semantic segmentation tasks are evaluated with four met-
rics: F1 (i.e., Dice score), F2, precision, and recall. The se-
mantic segmentation score is the average of these four metrics
[3]. Let us remind that Fβ = (1 + β2) · precision·recall

(β2·precision)+recall

weights recall β times as important as precision. Therefore
the final score places more emphasis on recall. As a result,
we will train our network using F2-loss, which is defined sim-
ilarly to Dice-loss: F2-loss = 1-F2. We also apply L2 regular-
ization with a factor of 0.0001.

3.1.4. Training

We train on 80% of the train set and use the other 20% for
validation. We start by fixing the pre-trained encoder and train
the decoder part for 80 epochs using Adam optimizer with a
learning rate (LR) of 10−3. From the 41st epochs, we train
the whole network, starting at LR=10−3 and decrease with a
factor of 0.5 if the validation score does not decrease after 40
epochs. We trained for a total of 1000 epochs. The training is
early stopped if the training score could not be increased after
88 epochs. We select the weights that maximized the score on
the validation set for evaluation of the test set.

3.1.5. Prediction and Post-processing

Test images are resized and zero-padded to 512x512. We keep
the aspect ratio and do not enlarge small images. Since our
prediction sometimes contains small holes which rarely ap-
pear in the EAD2020 train set, a small hole-filling operation
is applied at the end of the pipeline. This hole-filling process
did not make a significant improvement in the final score.



(a) EfficientNet B1 encoder and extracted intermediate feature maps (Xi)

(b) Building blocks (c) U-Net (d) U-Net++

Fig. 2. Illustration of our version of U-Net and U-Net++. 2(a): EfficientNet B1 encoder. 2(b) EfficientNet building block
MBConv and the building block ouf our decoder Dec. 2(c), 2(d): our version of U-Net and U-Net++

3.1.6. Test-time Augmentation

The segmentation results could be further improved with Test-
time augmentation (TTA). This approach has been demon-
strated in the literature (e.g., in semantic segmentation of
brain tumor [13]). In short, we will make predictions on
the test image and several of its transformed versions and
then combine these results. We use five transformations:
horizontal, vertical flipping, rotations of 90◦, 180◦, and 270◦.

3.2. Detection of Diseases and Artifacts

3.2.1. Detection of Diseases (EDD2020)

For this task, we will take advantage of our segmentation re-
sults. The bounding boxes of connected components (CCs)
larger than 0.5% of the image area are presented as our detec-
tion results. This approach is not optimal because it cannot
handle slit-and-merge of detection bounding boxes, that is the
cases where a single CC is marked with more than one box,
or a single box marks several CCs.

3.2.2. Detection of Artifacts (EAD2020)

For reasons stated earlier, we have to train a separate detector
for this task. We choose YOLOv3 because this model’s ef-
fectiveness has been shown in this type of data [1]. It is also
relatively faster than two-states detectors such as RetinaNet
[14]. We have tried to address the class imbalance issue with
focal loss [14]. However, it did not improve our local valida-
tion mAP, similar to the remark in [7].

Table 1. Number of images in test data for each task
Detection Segmentation Out-of-sample detection

EAD2020 317 162 99
EDD2020 43 43 0

We train our standard YOLOv3 on 416x416 inputs. We
start by training the last three detection layers for 20 epochs
at LR=10−2, then the upscaling part of the network for 40
epochs at LR=10−3. Finally, we train the whole network at
LR =10−5 and reduce the LR by a factor of 0.5 if validation
loss does not decrease after five epochs.

4. EVALUATION

As presented in Sec. 3.1.3, the semantic segmentation are
evaluated by the mean of F1, F2, precision, and recall. The
detection tasks are evaluated by a combination of mean aver-
age precision (mAP), and intersection over union (IoU). How-
ever, how these metrics are weighted was not disclosed until
after the challenge ends.

The evaluation was done online at https://endocv.grand-
challenge.org/. It is divide into two phases. The first
test-phase only evaluate 50% of the test data. The size of
EAD2020 and EDD2020 test data is summarized in Tab. 1.
The EAD2020 detection task includes an out-of-sample set,
which contains images provided exclusively from the training
or other test datasets.

The quantitative results of our models are presented in
Tab. 2 and Tab. 3. Our segmentation models performed well

https://endocv.grand-challenge.org/
https://endocv.grand-challenge.org/


Table 2. Quantitative results of our segmentation models on
EAD2020 and EDD2020 test data. (4) TTA using the first
four transformations mentioned in Sec. 3.1.6, (5) TTA using
all transformations in Sec. 3.1.6, (F) apply holes filling, (U-
Net++512): model with same architechture as in Fig. 2(d) but
with double the number of decoder filters, i.e., Dec(x, 2) be-
comes Dec(2x, 2), (-): information is not available because
that method was not submitted to that test phase.

Endoscopy Diseases and Artifacts Segmentation
50% of Test Set Full Test SetModel F1 F2 Precision Recall Score Final Score
EAD 2020

Unet++B15F - - - - - 0.6020
Unet++B14F 0.5777 0.5629 0.6584 0.5661 0.5913 0.5989
Unet++B14 0.5766 0.5624 0.6556 0.5659 0.5901 -
Unet++B1 0.5305 0.5246 0.5963 0.5391 0.5476 -
Unet++B2 0.5210 0.4921 0.6586 0.4872 0.5397 -
Unet B5 0.5126 0.5093 0.5767 0.5436 0.5355 -

EDD2020
U-Net++512B15F - - - - - 0.5981
Unet++B14 0.4956 0.5676 0.4280 0.6562 0.5369 0.5436

Table 3. Quantitative results of our detection models on
EAD2020 and EDD2020 test data.

Endoscopy Diseases and Artifacts Detection
Method Score Out-of-sample score

EAD2020
YOLOv3 0.1702 ± 0.0567 0.1130 ± 0.0752

EDD2020
U-Net++512B15F 0.1565 ± 0.0547 -
Unet++B14 0.1487 ± 0.0578 -

and consistently on both test subset. In Tab. 2, we can observe
that the hole-filling operator adds a small boost while TTA
improves the final score significantly. Our best approach is
U-Net++ with B1 encoder, ran with TTA and post-processed
with holes-filling. We could also see that our detection model
needs improvements.

5. CONCLUSION AND PERSPECTIVE

In this work, we demonstrate the effectiveness of U-Net and
U-Net++ with pre-trained EfficientNet backbone for the seg-
mentation of disease and artifact in endoscopy images. Our
experiments also show that TTA can provide better segmen-
tation results compared to only predicting on original images.

For further works, we intend to improve the generaliza-
tion of our segmentation and detection models by applying
more data augmentation techniques and using synthetic data.
We are also considering to improve further the decoder of our
models with an attention mechanism.
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