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ABSTRACT

The Endoscopic Artefact Detection challenge comprises tasks
for detection and segmentation of artefacts found in endo-
scopic imaging, with a specific task for evaluating the gen-
eralization capacity of detection algorithms on external data.
For the detection of artefacts, we train RetinaNet and Faster-
RCNN models. To segment artefacts from the endoscopic im-
ages, we train a Deeplab v3 model and a U-Net model and
also implement post-processing techniques such as the usage
of an EAST text detector for detection of text artefacts and
pixel-wise voting ensemble after applying test time augmen-
tation. We observe that the RetinaNet model with a ResNet-
101 feature extractor is the best performing model across all
object detection tasks, while the U-Net performs best in the
segmentation tasks. We also implement a model agnostic ob-
ject tracking pipeline utilizing image correlation-based track-
ers to reduce the inference time of object detection models.
We believe that this pipeline can enable real-time analysis of
endoscopic images in systems with processing constraints.

1. INTRODUCTION

Endoscopy is an important clinical procedure that finds ap-
plication in the diagnosis of medical ailments. However, the
video footage captured through endoscopes may be riddled
with artefacts, due to variations in contrast, blurs, among
other artefacts. Therefore there is a requirement for algo-
rithms that can detect, localize, and segment these artefacts.
Detecting and localizing these artefacts would be of immense
help in applying image restoration techniques to correct them,
with the downstream benefits of reducing the impact of in-
strument errors in making medical diagnoses, ultimately
improving endoscopic imaging. The motivation of the Endo-
scopic Artefact Detection and Segmentation challenge is to
encourage research in this direction. Our work is an attempt
towards tackling these problems by implementing algorithms
specific to these tasks. Our main contributions in this work
are as follows:
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e A detailed analysis of the performance of RetinaNet
with two ResNet [1] based feature extractors (ResNet-
50 and ResNet-101) for the detection tasks, and the im-
pact of test-time-augmentation.

e A detailed analysis of the performance of Deeplab-v3
model [2]] and U-Net model [3] for the segmentation
task along with the post-processing techniques applied.

e Animplementation of a model agnostic tracking pipeline,
using existing image correlation trackers for real-time
inference of object detection models.

2. DATASETS

The artefact detection, sequence detection, and generalization
tasks include specularity, bubbles, artefact, saturation, con-
trast, blood, blur, and instrument as classes to be detected.
The training set for this challenge [4, |5, 6] was released in
phases, initially as a set of 2200 images with bounding boxes
annotations. Sequence data, taken from videos, was provided
as a total of 232 images in the next phase, with a set of 99
images provided in the final phase. The artefact segmenta-
tion dataset included instrument, specularity, artefact, bub-
bles, and saturation as artefact classes. The training data for
this comprised 474 images and their corresponding class wise
segmentation masks, with the other data releases being the
same data as released for detection, with masks for only these
five classes.

3. METHODS

3.1. Object detection

In this work, we train two RetinaNet models with ResNet-
50 and ResNet-101 feature extractors and a Faster-RCNN [7]
model with an Inception v2 [§]] feature extractor, for the de-
tection task. We use a Keras implementation of RetinaNet
[9] and the Tensorflow implementation of Faster-RCNN [10]
for training the models. We apply on the fly augmentation
techniques such as rotation, shear, random-image-flip, image
contrast, brightness, saturation, and hue variations randomly



during training, to improve generalization of the object de-
tection algorithm. During training, when augmentation is ap-
plied to the images on the fly, the model is not only exposed
to the actual raw image, but also to the transformed versions
of the data across iterations. The concept of Test Time aug-
mentation builds on this by providing augmented test images
to the model, in the assumption that the model would out-
put better predictions since it has learned features from im-
ages which have had the same transformations applied while
training. This technique is implemented at inference using
an ensemble framework [11], and the final output bounding
boxes are ensembled based on their Intersection-over-Union
values with a majority criterion. The augmentations applied
to the image at inference are horizontal flip and sharpening.
Both the RetinaNet models predict outputs for the augmented
image and for the image without augmentation. The outputs
from each model are then ensembled to get the final predic-
tion.

3.2. Sequence Detection

The other sub-task involved in this challenge is the detection
of image sequences. We observe that the problem of sequence
detection is primarily a video object detection problem. To
this end, we implement an object tracking pipeline using the
DIib Correlation Tracker [112}13]] and the Discriminative Cor-
relation Filter-with Channel and Spatial Reliability (CSRT)
tracker [14]] in tandem with an object detection model. We
design this as a baseline model agnostic pipeline, working
with any algorithm/model that outputs frame-wise bounding
boxes, scores, and classes. Some of the problems with us-
ing object detection directly for videos are the latency issues
involving the model, as detection has to be made once every
frame. This overhead may be unacceptable for deep mod-
els with high inference times, especially in systems with pro-
cessing constraints. Other issues may involve identifying and
associating one object across multiple frames. This contri-
bution is intended to explore building systems that can func-
tion even in resource-constrained setups, by reducing model
latency, where model predictions are required for only ev-
ery N frames, instead of every single frame. We design the
object tracking pipeline, such that the bounding boxes from
one frame are tracked across multiple frames, with minimal
drops in accuracy whilst being robust to movement artefacts,
and decreasing the overall processing time, as the model does
not have to predict over all the frames. We control the rate
at which the model needs to refresh the trackers with a pa-
rameter called the Window Size (W), which is the number of
frames after which the model re-initializes the trackers. This
is required for both the correlation trackers.

3.3. Semantic Segmentation

For artefact segmentation, we train a Deeplab v3 model with
an Xception backbone [[15], as well as a U-Net model with a
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Fig. 1: Flowchart of our tracker pipeline

ResNet-50 backbone pre-trained on Imagenet [16]]. We treat
this problem as a multi-label segmentation problem due to
multiple overlapping masks. We use Keras implementations
of Deeplab [17] and U-Net [18]] for this task. On analy-
sis of the images, we find text segments in images labeled
as artefacts and use a pre-trained EAST [19] text detector
to capture these regions. This is done after observing that
the models were unable to capture the text parts accurately
during segmentation. For the purpose of image augmen-
tation, we use scale variation, random flips, rotation, the
addition of noise, cropping, blurring, hue, saturation, contrast
changes, and sharpening. These augmentation techniques are
randomly applied on the fly during training, with only one
transformation applied for a batch of images. We perform
Test-Time-Augmentation for the Deeplab and U-Net models,
and ensemble their outputs using pixel-wise voting (major-
ity), and finally, add the text masks captured using the EAST
Detector to the result. We implement a custom pipeline that
ensembles the two segmentation models using Test-Time-
Augmentation and integrates the EAST text detector. We use
the imgaug library [20] for building train-time and test-time
augmentation pipelines.



Fig. 2: Object detection results of RetinaNet (R-101) on the
final test data. The box color representation for each class
are as follows. M Artefact s [ | Bubbles, [ | Saturation,

[ | Instruments, Contrast, Blur, [ | Specularity and
M Blood.
Method mAP IoU
RetinaNet (R-50) 0.15754 | 0.24115
RetinaNet (R-50) w TTA | 0.13515 | 0.29334
Faster-RCNN 0.06484 | 0.12803

Table 1: Object detection results on partially released detec-
tion data

4. RESULTS

In the tabulation of results, the RetinaNet with a ResNet-
50 feature extractor is mentioned as RetinaNet (R-50) and
the RetinaNet with ResNet-101 feature extractor as RetinaNet
(R-101). The use of Test-Time-Augmentation is abbreviated
as TTA.

4.1. Results on first phase of test data

From the results on the partial test data for object detection
provided in Table [T} we find that the usage of test-time aug-
mentation for the RetinaNet model increases the overall IoU
by almost 4 percent, but the overall mAP is reduced by 2
percent compared to the original model without applying this
method. The Faster-RCNN, however, performs poorly in
comparison with the RetinaNet model, in terms of both the

Method mAP IoU FPS

RetinaNet (R-50) 0.20061 | 0.25118 | 0.96667
RetinaNet (R-50) w Dlib tracker 0.15386 Nil 3.68767
RetinaNet (R-50) w CSRT tracker | 0.14286 Nil 2.30704

Table 2: Sequence detection results on partially released data

Method mAP deviation
RetinaNet (R-50) | 0.20713 | 0.12230
Faster-RCNN 0.10823 | 0.09380

Table 3: Object detection results on partially released gener-
alization data

Method Segmentation score | DSC score
Deeplab+Unet+East Ensemble 0.49666 0.42946
Deeplab 0.45742 0.39998

Table 4: Artefact segmentation results on partially released
segmentation data

Object detection method Sequence detection method | mAP | deviation

RetinaNet (R-101) RetinaNet (R-101)

(wio) TTA (wio) TTA 0.2151 0.0762

RetinaNet (R-101 and R-50) RetinaNet (R-101)

(w) TTA + 0.1537 0.0419
CSRT tracker

RetinaNet (R-101 and R-50) RetinaNet (R-101)

() TTA + 0.1502 0.0419
Dlib tracker

Table 5: Object detection results on the detection and se-
quence data

metrics.

Table 2] contains the results of the Retinanet (R-50) model
and the trackers used in tandem with it for the sequence de-
tection task on the partial data. The methods are also bench-
marked in terms of frames-per-second.

Table 3] contains the results of the models on partially re-
leased generalization data. We observe that the RetinaNet
performs better overall compared to the Faster-RCNN across
both metrics. This could in part be due to the better general-
ization of the RetinaNet as a result of applying augmentation
while training, whilst augmentations were not applied while
training the Faster-RCNN model. Table [] contains the re-
sults of the model on partially released segmentation test data.
We find that the ensemble of the Deeplab, the U-Net and the
EAST Detector has a significantly higher segmentation score
and DSC score, compared to the Deeplab model in isolation.
Here, the U-Net is not specifically benchmarked.

4.2. Results on full test data

Table [3] contains the results of the models on the complete
detection and sequence data. For the results on the final test
data, only the combined mAP scores of the detection and se-



Fig. 3: Semantic Segmentation Results of U-Net on the final
test data. The color representation for each class are as fol-
lows. .Instrument, [ | Specularity, £ Artefact, B Bubbles
and M Saturation.

Method FPS

RetinaNet (R-101) + Dlib tracker 2.57412083
RetinaNet (R-101) + CSRT tracker | 1.19047612
RetinaNet (R-101) w/o tracker 0.68269294

Table 6: Frames per second results of the tracking and detec-
tion systems

quence task was provided whilst other metrics were not pro-
vided. There is some ambiguity in analyzing the exact impact
of the techniques. In one submission, we apply the RetinaNet
with ResNet-101 feature extractor for both tasks. In the other
two submissions, we apply the ensemble of RetinaNet mod-
els separately for the detection tasks, and the object tracking
solutions for the sequence tasks. We find that our RetinaNet
model with ResNet-101 feature extractor has a higher mAP
score, compared to the results of ensembling RetinaNet with
ResNet-50 and ResNet-101 feature extractors using test-time
augmentation.

We observe that the complete sequence detection test data
was released as one folder comprising frames belonging to
two different videos. Since our tracking pipeline takes frames
belonging to one video as input for processing, we group
the sequence data frames based on the video they belonged
to and run inference individually for each batch of frames.
We benchmark the frames-per-second performance of the

Method mAP | deviation
RetinaNet (R-50) w/o TTA 0.2121 0.2188
RetinaNet (R-101) w/o TTA 0.2020 0.1920
RetinaNet (R-101 and R-50) w TTA | 0.1481 0.1250

Table 7: Object detection results on generalization data

Method Segmentation Score | deviation
Unet 0.5012 0.2648
Deeplab+Unet+East Ensemble 0.4863 0.2751
Deeplab 0.4314 0.2985

Table 8: Artefact segmentation results on full test data

RetinaNet-101 with both the trackers, similar to the one car-
ried out in Table 2] We benchmark the performance on an
Intel(R) Core(TM) i7-8750H CPU with 6 CPU cores by aver-
aging the frames-per-second across five runs on the sequence
data. A window size parameter of 5 was set for running the
tracker pipeline. The results are shown in Table [ We also
carry out the inference of the RetinaNet model on the CPU.
We find that the DIib and CSRT trackers are significantly
faster than just the RetinaNet model. This can be attributed
to two reasons:

1. We take the model’s inferences once every five frames
for the tracker pipelines as compared to per frame for
the RetinaNet model without the tracker.

2. The tracking process carried out across the frames is
faster than the model’s inference time per frame. This
validates our assertion that a tracking system can be
more reliable for building systems on endoscopic anal-
ysis where memory and processing resources may pose
constraints.

Table [/| contains the results of the models on the fully
released test data for the generalization task. We observe
that the RetinaNet (R-50) without test time augmentation per-
formed the best in the generalization task compared to the
other two results.

Table@] contains the results of the Deeplab model, the U-
Net Model, and the ensembled model for the segmentation
task on the full test data. For the final test data, only the seg-
mentation score is provided, without the additional metrics
as provided for the partial release data. The U-Net model is
benchmarked only for the full test data. While the ensemble
model is a considerable improvement over the results of the
Deeplab model, the U-Net model outperforms the others on
the segmentation score.

However, a key area where our ensemble model is lim-
ited is in the segmentation of instruments from endoscopic
images.

As observed from Fig. [4] the ensembled model is unable
to pick out metal bands linking the edges of the instruments.



Fig. 4: Images of instruments and mask predicted by the en-
semble model

This is observed across multiple instances and is a limitation
in the predictions that are output by the model. Methods to
tackle these could include the usage of image processing tech-
niques involving region growth to link the edges.

5. DISCUSSION & CONCLUSION

We present the results of the models trained for the purpose
of detecting, localizing and segmenting endoscopic artefacts.
We train RetinaNet and Faster-RCNN models to detect and
locate endoscopic artefacts, and Deeplab v3 and U-Net mod-
els for the purpose of segmenting endoscopic artefacts. We
implement a model agnostic object tracking pipeline for the
sequence detection task, utilizing image correlation-based
trackers, and observe its impact on model inference time. We
also implement post-processing techniques, such as test-time-
augmentation, ensembling, and text detection, and present a
study of their impact on the released test data. Further work
could concentrate on improving the segmentation of instru-
ments from images, as well as exploring the performance of
different models for segmentation in general.
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