
ENDOSCOPY ARTEFACT DETECTION AND SEGMENTATION USING DEEP
CONVOLUTIONAL NEURAL NETWORK

Haijian Chen, Chenyu Lian, Liansheng Wang

Department of Computer Science, School of Informatics, Xiamen University, China

ABSTRACT
Endoscopy Artefact Detection and Segmentation (EAD2020)
includes 3 sub-tasks: Multi-class artefact detection, Seman-
tic segmentation and Out-of-sample generalisation. This
manuscript summarizes our solution. The challenge can be
considered as two independent problems: object detection
and semantic segmentation. For the detection problem, we
use Cascade R-CNN with FPN and Hyper Task Cascade. For
the segmentation problem, we use DeepLab v3+ model with
bce+dice loss.

1. INTRODUCTION

Endoscopy is a widely used clinical procedure for the early
detection of numerous cancers. However, a major drawback
of these video frames is that they are heavily corrupted with
multiple artifacts. Thus, accurate detection and even segmen-
tation of artifacts are very helpful to improve the endoscopy
tools. This task aims to localise bounding boxes, predict
class labels and pixel-wise segmentation of 8 different arti-
fact classes for given frames and clinical endoscopy video
clips.

2. DATASETS

The details of Endoscopy Artifact Detection and Segmenta-
tion Dataset are described well in the original papers [1, 2, 3].
The following part gives a brief analysis of EAD2020 data.

2.1. Object detection

We combine the two phases of the dataset together. As shown
in Table 1, the distribution of different classes is very imbal-
anced. The counts of ‘blur’, ‘instrument’, and ‘blood’ are
significantly smaller than others, which could become hard
examples when training models. The counts of ‘specularity’
and ‘artifact’ are very big and the objects of them are very
small in size. Based on the condition, we pay attention to the
balance of each class when we divide 20% of data as valida-
tion set.

Copyright c©2020 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

Class Count Ratio Class Count Ratio
specularity 9791 36.2% contrast 1641 6.1%
saturation 1277 4.7% bubbles 4670 17.3%

artifact 8012 29.6% instrument 470 1.7%
blur 684 2.5% blood 491 1.8%

Table 1. Class distribution of detection dataset

Class fg bg fg/
∑

fg fg/(fg+bg)
Instrument 15997225 371567134 36.39% 4.13%
Specularity 4700063 382864296 10.69% 1.21%

Artefact 4100248 383464111 9.33% 1.06%
Bubbles 8967902 378596457 20.40% 2.31%

Saturation 10190545 377373814 23.18% 2.63%

Table 2. Pixel distribution of segmentation dataset (fg: fore-
ground, bg : background)

Size Count Ratio Size Count Ratio
512× 512 138 25.36% Smaller 129 23.71%
1349× 1079 118 21.69% Bigger 159 29.23%
Total 544 100%

Table 3. Image sizes of segmentation dataset (Smaller :
height <800, width <700, Bigger is the contrary)

2.2. Semantic segmentation

Many ground-truth pixel values are between 0 and 255 in the
dataset. After dividing all ground truth pixel values by 255
and using a threshold of 0.5 to classify foreground and back-
ground pixels, the results are shown in Table 2. Foreground
pixels are significantly fewer than background pixels. The
foreground pixels of different classes in ground-truth images
are imbalanced as well. As shown in Table 3, the most com-
mon size of images is 512×512 and 1349×1079. The others
contain different sizes. We shuffle the dataset randomly and
use 20% of the data as the validation set.



3. METHODS

3.1. Object Detection

3.1.1. Model Overview

We use Cascade R-CNN [4] with ResNetXt-101 [5] back-
bone and FPN [6] as the neck of the model. We also train a
Hyper Task Cascade model [7] with the same backbone and
neck.

3.1.2. Loss

We use Cross Entropy Loss for classification. Smooth L1
Loss is utilized to improve the precision of detection.

3.1.3. Augmentation

In training data, we perform random flip, normalization and
resizing. The images are resized to 512× 512.

3.1.4. Implementation Details

We extract candidate bounding box with RPN (region pro-
posal network) , and use non-maximum suppression (NMS)
to filter the useful bounding-box. Observing that some small
objects are ignored, NMS threshold is increased from 0.7
to 0.8. It slightly improves the recall rate and mAP. Soft-
NMS [8] is applied to avoid mistakenly discard the bounding-
box directly.

We use SGD optimizer with a momentum of 0.9 and a
weight decay of 0.0001. In order to get better results when
convergence, we add a warm-up period to make the training
rate linearly increase to 0.0025 in the first 500 iterations. The
network is trained for 13 epochs totally.

3.2. Semantic Segmentation

3.2.1. Model Overview

We use DeepLab V3+ network [9] with ResNet101 [5] back-
bone for semantic segmentation. DeepLab V3+ is an encoder-
decoder network with dilation convolution. ASPP modules
and decoder is implemented as the original paper does.

The output of the network is activated by sigmoid function
to get the probability map, since there may be overlap among
different channels of the mask. The segmentation problem is
considered as multiple binary segmentation tasks.

3.2.2. Loss

We evaluated different losses, including Binary Cross En-
tropy, Dice Loss, Lovsz-Hinge Loss [10], and their combina-
tion. Based on the testing results discussed in 4.2, we choose

bce+dice as the loss of our model at last, which simply means

L = Lbce + Ldice =− ygt log ypred − (1− ygt) log ypred

+ 1− (2
∑
ygt · ypred + ε∑

ygt +
∑
ypred + ε

)

(ε = 10−7, ygt and ypred are flattened tensors)

3.2.3. Augmentation

We apply random brightness and contrast changes, random
horizontal and vertical flip, random shift scale rotation, Gaus-
sian blurring, resizing and normalization to images of the
training set. All random transformations are applied by a
probability of 0.5 with the default parameters of Albumen-
tations library [11]. We apply image normalization in the
validation set.

The images are resized to 512 × 512 and 1024 × 1024
during the training phase, see 4.2.

3.2.4. Implementation Details

We load the weights pre-trained on the ImageNet for the back-
bone network. The network is trained using SGD with a mo-
mentum of 0.9 and a weight decay of 0.0001. We train the
model using mini-batches of size 4. The learning rate is in-
creased linearly over the warm-up period of 5 epochs, to the
maximum value of 0.01, then adjusted by cosine annealing
with warm restarts [12] by a period of 40 epochs. The images
are resized to 512× 512 to train 200 epochs and then resized
to 1024× 1024 to train another 100 epochs.

4. RESULTS

4.1. Object Detection

Table 4 shows mAPs of different classes in the validation set,
which are evaluated by COCO metrics. And Table 5 shows
more details of evaluation results. Metrics of both models
are pretty close to each other. In Figure 1, we find the HTC
model is good at detecting large objects while doing poorly
in some small objects, though its AP small metric is slightly
better than the other.

Class Cascade R-CNN HTC Faster R-CNN
instrument 0.64791 0.64965 0.56197

artifact 0.22540 0.22511 0.21733
blood 0.10594 0.12520 0.10998
blur 0.26506 0.26097 0.19428

bubbles 0.11302 0.10491 0.10600
contrast 0.40275 0.39182 0.38044

saturation 0.27912 0.24990 0.26373
specularity 0.09281 0.09485 0.08561

Table 4. mAPs of different classes in validation set



Metric Cascade R-CNN HTC Faster R-CNN
mAP 0.267 0.263 0.240
AP50 0.501 0.505 0.498
AP75 0.246 0.249 0.209

AP small 0.082 0.091 0.086
AP medium 0.162 0.166 0.166

AP large 0.337 0.337 0.299

Table 5. AP metrics of evaluation results in validation set

Model mAPd IoUd mAPg mAPsq
Cascade R-CNN 0.2238 0.1707 0.2405 0.3038
HTC network 0.2393 0.0674 0.2621 0.3214

Table 6. Detection scores in the first phase of test data

Model Score d dstd gmAP gdev
Cascade R-CNN 0.2193 0.0871 0.2485 0.0552
HTC network 0.2021 0.0901 0.2744 0.0556

Table 7. Detection scores in the final test

Size Score d dstd gmAP gdev
512× 512 0.2193 0.0871 0.2485 0.0552
1024× 1024 0.2156 0.0991 0.2659 0.0764

Table 8. Detection scores in the final test with Cascade mod-
els trained with different sizes

The results of Table 6,7,8 are provided by the official
leaderboard. Table 6 shows the detection scores in the first
phase of test data. The Hybrid Task Cascade network per-
forms better in mAP, while getting a lower score in IoU.

Table 7 shows the scores in the final test. We get a higher
detection score with the Cascade R-CNN network.

As shown in Table 8, resizing the image to 1024 × 1024
instead of 512×512 doesn’t give a better score but contributes
to generalization performance.

4.2. Semantic Segmentation

4.2.1. Experiments of losses in validation set

To evaluate the results of different losses, we train a DeepLab
V3+ model with ResNet101 backbone and a modified U-
Net [13] model with ResNet-34 backbone for 160 epochs.

The threshold to predict foreground pixels is 0.5. Other
configurations are the same as 3.2.4. In Table 9 and Table
10, ‘bce is Binary Cross Entropy loss, ‘dice is Dice Loss,
‘bce+dice’ is defined in 3.2.2. All ‘p’ and ‘r’ in the tables
stand for precision and recall.

In Table 9, the experiment shows that bce+dice gets the
best score in Dice, F2, and IoU score. The precision of
bce+dice is pretty close to dice, while not losing much recall.
In Table 10, we can see a significant improvement of UNet

Fig. 1. Predictions of two images (left: Hybrid Task Cascade;
right: Cascade R-CNN)

Fig. 2. Test image Fig. 3. Pred-512 Fig. 4. Pred-1024

using bce+dice, showing the effectiveness of this loss.
After 300 epochs, the DeepLabV3+ model using bce+dice

got 0.7927 in F1, 0.8386 in F2, 0.6857 in IoU, 0.7422 in pre-
cision and 0.887 in recall. The U-Net models don’t get much
better scores as they almost converge after 165 epochs.

We also tested Lovsz-Hinge loss. In our test, it is hard to
converge if the model is trained from the ground up. Hence,
we use Lovsz-Hinge loss to fine-tune the Deeplab model
trained with bce+dice for 300 epochs. Table 11 shows the re-
sults of the first 20 epochs (Epochs means the training epochs
with Lovsz). This model converges after 30 epochs but these
results are worse than the model before fine-tuning, so we
give up this method.

Metric F1 F2 IoU p r
bce 0.585 0.6754 0.4447 0.5014 0.8136
dice 0.5846 0.5881 0.4874 0.6755 0.601
bce+dice 0.6728 0.7042 0.5523 0.6699 0.7585

Table 9. The metrics of the validation set with different
losses in DeepLab V3+ model with ResNet101 backbone
(160 epochs)

Metric F1 F2 IoU p r
bce 0.4666 0.4346 0.3743 0.7201 0.4196
dice 0.561 0.5421 0.469 0.7188 0.5353
bce+dice 0.6138 0.5837 0.5057 0.7415 0.5709

Table 10. The metrics of the validation set with different
losses in a modified U-Net model with ResNet-34 backbone
(160 epochs)



We choose bce+dice to train the final model.

Epochs F1 F2 IoU p r
5 0.5491 0.5038 0.4486 0.8490 0.4828
20 0.5115 0.4610 0.4173 0.8927 0.4367
40 0.5373 0.4846 0.4387 0.8872 0.4594

Table 11. Using Lovsz-Hinge loss to fine-tune a model
trained with BCE + Dice loss

4.2.2. Experiments of backbones in validation set

Table 12 shows another experiment to compare different net-
works. We find that Xception-based DeepLabV3+ converges
significantly slower than ResNet101-based model, and does
not get better scores than the U-Net model.

Model F1 F2 IoU p r
D-X 0.4189 0.4248 0.3167 0.486 0.4388
D-R101 0.5823 0.5967 0.4717 0.6288 0.6313
U-R34 0.5535 0.5209 0.4507 0.7512 0.5078

Table 12. The metrics of validation set with different net-
work (85 epochs, D: DeeplabV3+, U:UNet, X:Xception,
R:ResNet)

4.2.3. Submission results

F1 F2 p r sscore sd
1 0.4872 0.5027 0.5250 0.5467 0.5154 0.2327
2 0.4802 0.5156 0.4836 0.5872 0.5167 0.2403
3 0.5012 0.5042 0.5817 0.5390 0.5315 0.2644

Table 13. Segmentation scores in the first phase of test data
(50% of final data)

Model sscore sstd
3 : DeepLabV3+/ResNet101/1024x 0.5459 0.2682

Table 14. Segmentation scores in the final test

The training parameters are listed in 3.2.4. All the results
above are provided by the official leaderboard. In Table 13,
Model 1 is trained with 512 × 512 images and a threshold
of 0.5. Model 2 is the same as model 1 except changing the
threshold to 0.7. Model 3 is trained with 1024× 1024 images
and a threshold of 0.7.

We resized the image to 512 × 512 at first. However, as
discussed in Table 3, there are many bigger images. This can
be found in the first phase of test images as well. Compared
with the models only trained with images resized to 512 ×

512, models trained with 1024× 1024 get better scores in the
validation set. Some predictions look smoother, as shown in
Figure 2,3,4.

We find that adding segmentation data of EAD2019 to the
training set also helps a little, although there is potential val-
idation data leakage, making validation metrics unbelievable.
However, it does not help in the detection task.

We chose Model 3 to predict the final test data and got
scores as Table 14 shows.

5. DISCUSSION & CONCLUSION

In task 1, we compare Cascade R-CNN with Hyper Task Cas-
cade to get a better detection model. FPN and Soft-NMS are
used to improve the detection precision due to class imbal-
ance. A proper threshold of NMS is helpful to improve the
recall rate of small objects.

In task 2, we select DeepLabV3+ to solve the problem.
We select bce+dice as the loss function to balance precision
and recall. Image sizes of the dataset is a noticeable part at
the training phase. Adjusting the threshold of predicting also
contributes to a more balanced model.

6. REFERENCES

[1] Sharib Ali, Felix Zhou, Christian Daul, Barbara Braden,
Adam Bailey, Stefano Realdon, James East, Georges
Wagnieres, Victor Loschenov, Enrico Grisan, et al. En-
doscopy artifact detection (ead 2019) challenge dataset.
arXiv preprint arXiv:1905.03209, 2019.

[2] Sharib Ali, Felix Zhou, Adam Bailey, Barbara Braden,
James East, Xin Lu, and Jens Rittscher. A deep learn-
ing framework for quality assessment and restoration
in video endoscopy. arXiv preprint arXiv:1904.07073,
2019.

[3] Sharib Ali, Felix Zhou, Barbara Braden, Adam Bai-
ley, Suhui Yang, Guanju Cheng, Pengyi Zhang, Xiao-
qiong Li, Maxime Kayser, Roger D. Soberanis-Mukul,
Shadi Albarqouni, Xiaokang Wang, Chunqing Wang,
Seiryo Watanabe, Ilkay Oksuz, Qingtian Ning, Shu-
fan Yang, Mohammad Azam Khan, Xiaohong W. Gao,
Stefano Realdon, Maxim Loshchenov, Julia A. Schn-
abel, James E. East, Geroges Wagnieres, Victor B.
Loschenov, Enrico Grisan, Christian Daul, Walter Blon-
del, and Jens Rittscher. An objective comparison of de-
tection and segmentation algorithms for artefacts in clin-
ical endoscopy. Scientific Reports, 10, 2020.

[4] Zhaowei Cai and Nuno Vasconcelos. Cascade R-CNN:
delving into high quality object detection. CoRR,
abs/1712.00726, 2017.



[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition,
2015.

[6] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming
He, Bharath Hariharan, and Serge J. Belongie. Fea-
ture pyramid networks for object detection. CoRR,
abs/1612.03144, 2016.

[7] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xi-
aoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jian-
ping Shi, Wanli Ouyang, Chen Change Loy, and Dahua
Lin. Hybrid task cascade for instance segmentation.
CoRR, abs/1901.07518, 2019.

[8] Navaneeth Bodla, Bharat Singh, Rama Chellappa, and
Larry S. Davis. Improving object detection with one
line of code. CoRR, abs/1704.04503, 2017.

[9] Liang-Chieh Chen, Yukun Zhu, George Papandreou,
Florian Schroff, and Hartwig Adam. Encoder-decoder
with atrous separable convolution for semantic image
segmentation, 2018.

[10] Maxim Berman, Amal Rannen Triki, and Matthew B.
Blaschko. The lovsz-softmax loss: A tractable surro-
gate for the optimization of the intersection-over-union
measure in neural networks, 2017.

[11] E. Khvedchenya V. I. Iglovikov A. Buslaev, A. Parinov
and A. A. Kalinin. Albumentations: fast and flexible
image augmentations. ArXiv e-prints, 2018.

[12] Ilya Loshchilov and Frank Hutter. SGDR: stochastic
gradient descent with restarts. CoRR, abs/1608.03983,
2016.

[13] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-net: Convolutional networks for biomedical im-
age segmentation. In Medical Image Computing and
Computer-Assisted Intervention –MICCAI 2015, pages
234–241, 2015.


	 INTRODUCTION
	 Datasets
	 Object detection
	 Semantic segmentation

	 Methods
	 Object Detection
	 Model Overview
	 Loss
	 Augmentation
	 Implementation Details

	 Semantic Segmentation
	 Model Overview
	 Loss
	 Augmentation
	 Implementation Details


	 Results
	 Object Detection
	 Semantic Segmentation
	 Experiments of losses in validation set
	 Experiments of backbones in validation set
	 Submission results


	 Discussion & Conclusion
	 References

