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ABSTRACT

Accurate detection of artefacts is a core challenge in a wide-
range of endoscopic applications addressing multiple differ-
ent disease areas. Our work aims to localise bounding bboxes
and predict class labels of 8 different artefact classes for
given frames and clinical endoscopy video clips. To solve the
task, we use Cascade R -CNN[1] as network architecture and
adopt ImageNet pretrained ResNet101[2] as backbone with
Feature Pyramid Network (FPN) [3] structure. To improve
the network performance, methods like data augmentation
and multi-scale are also be adopted. In the end, we analyze
the major challenge of the task.

1. INTRODUCTION

Endoscopy is a widely used clinical procedure for the early
detection of numerous cancers (e.g., nasopharyngeal, oe-
sophageal adenocarcinoma, gastric, colorectal cancers, blad-
der cancer etc.), therapeutic procedures and minimally in-
vasive surgery (e.g.,laparoscopy). However, video frames
captured by an endoscope usually contain multiple artefacts,
which not only present difficulty in visualising the underly-
ing tissue during diagnosis but also affect any post analysis
methods required for follow-ups. Existing endoscopy work-
flows are not competent qualified for restoring high-quality
endoscopic frames because they can detect only one artefact
class in most cases. Generally, the same video frame can be
corrupted with multiple artefacts, e.g. motion blur, specular
reflections, and low contrast can be present in the same frame.
Besides, corruption varies with video frames in artefact types.
Therefore, improving detection accuracy is a core challenge
in a wide-range of endoscopic applications.

Recently, deep ConvNets have significant improved im-
age classification and object detection accuracy[4]. In deep
learning era, object detection can be grouped into two genres:
“two-stage detection” (e.g. RCNN[5]) and “one-stage detec-
tion” (e.g. [6])[7]. In this task, we use Cascade R-CNN[1]
as network architecture. It is a multi-stage object detection
architecture. The reason we adopt Cascade R-CNN as our
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network architecture is it achieves state-of-art detection per-
formance.

2. DATASETS

The 8 artefact classes in the dataset for “Endoscopic Arte-
fact Detection” include specularity, specularity saturation, ar-
tifact, blur, contrast, bubbles, instrument and blood. The vi-
sualization of ground truth bboxes are shown in Fig 2. The
artefact detection task will be evaluated based on the results of
the test dataset provided from a subset of the data collected for
training. Specifically, the training dataset for detection con-
sists in total 2200 annotated frames over all 8 artifact classes
and test dataset 100[8] [?] [9].

3. METHODS

3.1. Architecture

The model architecture is shown in Fig 1. We use Cascade
R-CNN[1] as network architecture and adopt ImageNet pre-
trained ResNet101[2] as backbone with Feature Pyramid Net-
work (FPN)[3] structure. Taking the areas of artefacts into
consideration, the anchors base areas are tuned from 162 to
5122 on P2 to P6 . Specifically, anchor scales, ratios and
strides are [8], [0.5, 1.0, 2.0] and [4, 8, 16, 32, 64], respec-
tively.

3.2. Implement Details

For data augmentation, each image will be horizontally
flipped with a 50 percent chance. We replace the nms opera-
tion with the soft-nms[10] operation in the architecture and
set the learning rate scheduling strategy as consine decay[11].
The classification and regression loss function are CrossEn-
tropyLoss and SmoothL1Loss, respectively. The model is
trained for 24 epochs.

In the experiment, we find that specularity, artifact and
bubbles are hard to classify. A probable reason is these three
artefacts have similar appearance (e.g. Some of them all ap-
pears as spots of light). To solve this problem, we modify
the loss function. In specific, we up-weight loss when model
mistakenly classify these three artefacts. The result turns out



Fig. 1. Model architecture based on Cascade R-CNN.

(a) specularity (b) saturation (c) artifact

(d) blur (e) contrast (f) bubbles

(g) instrument (h) blood

Fig. 2. Visualization of ground truth boxes.

to be an improvement of AP for these three artefacts but a
decline of mAP.

4. RESULTS

We randomly divide the data provided into 5 subsets and use
one of them for validation while others for training. The fol-
lowing metrics are based on the validation set.

4.1. Data augmentation of resizing

We report our results obtained from baseline in Table 1. Our
baseline achieves 0.26 mAP. To improve the model perfor-
mance, we added image resizing operation to the data aug-
mentation pipeline. Specifically, each image will be randomly
resized among the range from (512, 512) to (1024, 1024) with
the same aspect ratio as the original. Considering the image
size varies, we believe this operation will be effective.

The results are shown in Table 2. According to the re-
sults, we argue that resizing operation can obvious improve
the model performance with an increase in mAP of 0.017.
We notice that the improvement is mainly on APsmall. The
main reason is that in most cases the resizing operation en-
larges image size and thus makes it possible to detect more
small objects.

Note that the scales of test images are often larger than
train images, i.e. images in testset often with height and width
larger than 1000 while images in trainset around 500, so the
resizing operation can solve the scale mismatch problem be-
tween training images and testing images.

4.2. Difficult classification among specularity, artifact
and bubbles

In the experiment, we found that network has some difficul-
ties in distinguishing classes among specularity, artifact and
bubbles. To demonstrate the problem clearly, we calculated
the confusion matrix, which is shown in Table 4. According
to the Table 4, the network has two drawbacks. Firstly, the
network tends to confuse specularity, artifact and bubbles in
the classification procedure. Secondly, the network has poor
performance in detecting blur.

To solve the first problem, we modified the loss func-
tion. Specifically, we increased the loss weights to the mis-
classification of specularity, artifact and bubbles. The result



Table 1. Baseline performance on validation set.

Artefacts AP AP IoU=.50 AP IoU=.75 AP small APmedium AP large

specularity 0.123 0.319 0.063 0.064 0.193 0.202
saturation 0.197 0.670 0.217 0.040 0.210 0.345

artifact 0.225 0.486 0.170 0.129 0.218 0.421
blur 0.184 0.275 0.167 0 0 0.191

contrast 0.414 0.760 0.416 0.033 0.187 0.439
bubbles 0.124 0.345 0.061 0.094 0.128 0.216

instrument 0.531 0.801 0.624 / 0 0.551
blood 0.181 0.454 0.103 / 0.079 0.221
mean 0.260 0.514 0.228 0.060 0.127 0.323

Table 2. Model performance on validation set with resizing operation.

Artefacts AP AP IoU=.50 AP IoU=.75 AP small APmedium AP large

specularity 0.138 0.380 0.062 0.091 0.216 0.199
saturation 0.295 0.669 0.246 0.050 0.212 0.338

artifact 0.243 0.516 0.185 0.140 0.239 0.427
blur 0.181 0.279 0.178 0 0 0.188

contrast 0.422 0.760 0.424 0 0.224 0.443
bubbles 0.153 0.384 0.085 0.125 0.151 0.254

instrument 0.569 0.830 0.649 / 0.044 0.587
blood 0.212 0.495 0.172 / 0.130 0.244
mean 0.277 0.539 0.250 0.068 0.152 0.335

Table 3. Final result on leaderboard.
dataset dscore

50% testset 0.2603
100% testset 0.2036

turned out to be an improvement of AP for these three arte-
facts but a decline for mAP.

4.3. Qualitative Results

To find out what kinds of artefact our model can successfully
detect, we show some qualitative results in Fig 3 and Fig 4.
The qualitative results indicate a). for artefacts with not so
small size, our model tends to generate accurate detections;
b). more artefacts in an image lead to more difficulties in de-
tecting; c). our model generates a fair number of true negative
blur. We are not sure the reason for problem c) mentioned
above is whether the shortcomings of the model itself or the
absence of annotation blur, because the corresponding images
show blur characters.

4.4. Leaderboard Result

We added image resizing operation to the data augmentation
pipeline and fine-tuned the maximum box number per image

to 300. Then we used the model to obtain the testset results
and the performance is shown in Table 3.

5. DISCUSSION & CONCLUSION

In our work, we found the major challenge in “Endoscopic
Artefact Detection” task is the difficult classification among
specularity, artifact and bubbles. One intuitive explanation is
that some of them all appears as spots of light, sharing a high
degree of similarity. In the future, we intend to train 3 separate
classifiers for these 3 artefacts and adopt more advanced fea-
ture extraction networks, which may solve this challenge to
some extent. Boxes ensemble method was performed in our
experiment. However, it seemed this method caused lower
mAP.

To sum up, we constructed a Cascade R-CNN based
model to solve the “Endoscopic Artefact Detection” task.
We adopted several methods to improve the network perfor-
mance, including data augmentation, modifying loss function
and boxes ensemble. We also identified the major challenge
in this task.
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Table 4. Confusion matrix of 8 classes
Labels

specularity saturation artifact blur contrast bubbles instrument blood

Predicted
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Fig. 3. High quality detection examples (i.e. Model generates accurate detections). The first row shows ground truth where
artefacts are annotated with blue bounding boxes . The second row shows results where detected artefacts are annotated with
yellow bounding boxes.

Fig. 4. Low quality detection examples (i.e. Model generates inaccurate detections). The first row shows ground truth where
artefacts are annotated with blue bounding boxes . The second row shows results where detected artefacts are annotated with
yellow bounding boxes. The last two columns represent false positive blur.
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