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ABSTRACT

Medical image segmentation plays a key role in many generic
applications such as population analysis and, more accessi-
bly, can be made into a crucial tool in diagnosis and treatment
planning. Its output can vary from extracting practical clinical
information such as pathologies (detection of cancer), to mea-
suring anatomical structures (kidney volume, cartilage thick-
ness, bone angles). Many prior approaches to this problem
are based on one of two main architectures: a fully convolu-
tional network or a U-Net-based architecture. These methods
rely on multiple pooling and striding layers to increase the re-
ceptive field size of neurons. Since we are tackling a segmen-
tation task, the way pooling layers are used reduce the feature
map size and lead to the loss of important spatial information.
In this paper, we propose a novel neural network, which we
call OxEndoNet. Our network uses the pyramid dilated mod-
ule (PDM) consisting of multiple dilated convolutions stacked
in parallel. The PDM module eliminates the need of striding
layers and has a very large receptive field which maintains
spatial resolution. We combine several pyramid dilated mod-
ules to form our final OxEndoNet network. The proposed
network is able to capture small and complex variations in
the challenging problem of Endoscopy Artefact Detection and
Segmentation where objects vary largely in scale and size.∗

1. INTRODUCTION

Medical image segmentation [1, 2] is an important step in
many medical applications such as population analysis, di-
agnosis disease, planning treatments and medical interven-
tion, where the goal is to extract useful information such as
pathologies, biological organs and structures. In most clinics,
segmentation currently relies on the time consuming task of
drawing contours manually, by medical experts for instance
radiologists, pathologists, ophthalmologists, etc. This can
be challenging because features of interest (soft tissue, blood
vessels, cancer cells) can have large and complex variations
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(contrast, blur, noise, artifacts, and distortion). Automating
even part of the segmentation task is a good way of reducing
time spent on routine activities, as well as improving the han-
dling of larger volumes of data which are increasingly avail-
able from a large variety of modern scanners. Any such auto-
mated process should, of course, still allow for manual over-
ride by a human expert.

Recently, deep neural networks (DNNs), have been suc-
cessfully used in semantic and biomedical image segmenta-
tion. Long et al. [3] proposed a fully convolutional network
(FCN) to perform end-to-end semantic image segmentation,
which surpasses all the existing approaches. Ronneberger
et al. [4] developed a U-shaped deep convolutional network
called U-Net consisting of contracting path to capture context
and a symmetric expanding path that enables precise local-
ization. Using this (now widely cited) architecture, U-Net
outperforms all the previous models by a significant margin.
Based on U-Net, Chen et al. [5] developed a model called
DCAN, which won the 2015 MICCAI Gland Segmentation
Challenge.

Such approaches suffer from two main limitations: firstly,
with complex and large variations in the size of objects in
medical images, the FCN with single receptive field size fails
to deal with such variations. Secondly, like in the case of
object detection and classical semantic segmentation, in med-
ical image segmentation global context is also very important.
Classical networks such as U-Net and FCN miss some parts
of the images because they fail to see the entire image and
incorporate global context in producing the correct segmenta-
tion mask. For example, U-Net only has receptive fields that
spann 68× 68 pixels [4].

Our goal has therefore been to design a network that is
able to integrate global context in order to detect and assess
the interdependence of organs in medical images.

To address the issues described above, we propose the
novel OxEndoNet, a neural network architecture based on
dilated convolutions. This architecture tackles the challeng-
ing variations in the size of anatomical features in medical
images. OxEndoNet is used to address the problems of the
EAD2020 Challenge (a multi-class artefact segmentation in
video endoscopy).

Our network has a large receptive field that uses a novel



architecture module called the Pyramid Dilated Module
(PDM) to capture highly appropriate, robust and dense lo-
cal and global features, which directly influence the final
prediction and make it more accurate. The PDM module
consists of multiple dilated convolutions stacked in paral-
lel. Combining several PDM layers leads to our OxEndoNet
network, which is detailed in Section 3.3.

Unlike many methods used in other similar challenges, an
ensemble of models was not used in this case, which makes
our OxEndoNet a promising framework for the future.

2. DATASETS

In this challenge, we use the Endoscopy Artefact Detection
and Segmentation dataset1. Its goal is to capture the wide vi-
sual diversity in endoscopic videos acquired in everyday clin-
ical settings. For more details about the dataset, we refer the
reader to [6, 7, 8]. The training employed the released data
split into two sets: 80% of it was used for training per se,
whereas the remainder 20% was kept as validation data. The
final architecture is based on the results from the validation
data. The metrics around which the learning was based are
Accuracy and F1-score, hence our network scoring well in
the F1 measure in this challenge.

3. METHODS

Some background information about other networks is neces-
sary in order to describe our proposed architecture.

3.1. Dilated Convolution

Dilated convolution (or Atrous convolution) was originally
developed in algorithme à trous for wavelet decomposi-
tion [9]. The main idea of dilated convolutions is to insert
holes (trous in French) as zeros between pixels in convolu-
tional filters. As a result, we increase the image resolution,
which allows dense feature extraction in convolutional neural
networks. More formally, given 1-d input signal f and y
as the output signal at location i of a dilated convolution,
we represent dilated convolution in one dimension as the
following:

y[i] =

S∑
s=1

f [i+ d · s] · w[s] (1)

where w[s] denotes the sth parameter of the filter, d is the
dilation rate, and S is the filter size. When d = 1, dilated
convolutions correspond to standard convolutions. In other
words, dilated convolution is equivalent to convolving the in-
put f with up-sampled filters produced by inserting d − 1
zeros between two consecutive filter values. Therefore, a

1https://ead2020.grand-challenge.org

Fig. 1. Pyramid Dilated Module architecture. We stacked
four dilated convolutions with dilation rates of 1, 2, 3 and 4
in parallel. The results of convolutions are concatenated.

large dilation rate means a large receptive field. Its main
advantage is the ability to enlarge the receptive field size to
incorporate context without introducing extra parameters or
computation cost. Dilated convolution has been successfully
applied in many computer vision applications such as audio
generation [10], object detection [11], and semantic segmen-
tation [12].

3.2. Pyramid Dilated Module

In a deep neural network, the size of receptive field plays an
important role in indicating the extent to which context infor-
mation is used. Previous work uses pooling layers and strided
convolution to enlarge the receptive field. These techniques
significantly improve the performance in applications like im-
age classification and object detection because they require a
single prediction per input image. However, in tasks requir-
ing dense per-pixel prediction such as image segmentation,
strided layers often fail to get better results because some de-
tails about the spatial information is lost, which influences the
pixel-wise prediction. An alternative solution to strided con-
volution is to increase the size of the filters.

A common limitation of this method is a severe increase
in the number of parameters to optimize and training time.

3.3. OxEndoNet Network

Motivated by the recent success of dilated convolution, we
propose a new pyramid dilated module (PDM), which empir-
ically proves to be a powerful feature extractor in endoscopy



Fig. 2. OxEndoNet architecture. O, r×c×d refer to the output of each PDM layer and dimensions respectively.

artefact detection and segmentation task. As shown in Fig-
ure 1, we stacked convolutions with different dilation rates
in parallel. In this case, PDM has four parallel convolutions
with 3 × 3 filter size and dilation rates of 1, 2, 3 and 4.
The activation function we used is the Rectified Linear Unit
(ReLU) [13]. The result of each convolution with dilation rate
produces the same number of output dimension. To form the
final PDM module, we concatenate the outputs of each dilated
convolution. By combining the dilated convolutions with dif-
ferent dilation rates, the PDM module is able to extract use-
ful features for objects of various sizes. All the previous ad-
vantages play a remarkable role in medical image segmenta-
tion, because medical images often feature organs of different
sizes.

Given this PDM, we propose the OxEndoNet network il-
lustrated in Figure 2. For each input image, we use ResNet-50
pretrained on ImageNet [14] as the base network to extract the
feature map followed by multiple PDM layers to form an end-
to-end trainable network. By using several layers, we increase
the receptive field size which allows our model to use context
information. In the final architecture, we use four PDM lay-
ers; each layer uses four parallel dilated convolutions with
filter size of 3 × 3 and dilation rates of 1, 2, 3, and 4. We note
that the number of PDM layers and the number of parallel
dilated convolutions are hyperparameters. The PDM layers
have 64, 128, 256, and 128 output channels where we use 16,
32, 64 and 32 filters respectively. We feed the final PDM layer
to a convolution layer followed by a bilinear interpolation to
up-scale the feature map to the original size of an image.

The architecture design followed two key observations.
Firstly, recognizing organs in medical images requires a high
spatial precision that is lost when applying pooling with strid-
ing layers. This is the main issue in FCN- and U-Net-based
models. Secondly, complex and large variations in the size of
objects in medical images lead to inaccurate prediction due to
the small or medium sized receptive field which fails to deal
with such variations. Therefore, an accurate model should
have a large receptive field to handle these complex varia-
tions of organs in images. Our OxEndoNet network produces
a large receptive field to incorporate larger context without
increasing the number of parameters or the amount of com-
putation while preserving full spatial resolution.

Model Overlap F2-score score-s
OxEndoNet 0.4901 0.5107 0.5194

Table 1. Results of OxEndoNet on phase 1 test data.

4. EXPERIMENTS AND RESULTS

We implemented OxEndoNet using the public framework Py-
Torch [15]. The number of PDM layers, learning rate and the
number of parallel dilated convolutions are the main hyper-
parameters that influenced our models performance. During
training, we used the Adam optimizer [16] with the default
initial learning rate of 3.10−3 and weight decay of 10−4. Fur-
thermore, we used the poly learning rate policy [17] by multi-
plying the initial rate with (1− epoch/maxEpoches)0.9 and
trained the models for 300 epochs. For the number of PDM
layers, we conduct experiments with 3, 4 and 5 layers. Con-
cerning the number of parallel dilated convolutions, we ran
experiments with 3, 4 and 5 parallel convolutions. It should
also be noted that all the hyperparameters were selected based
on performance on validation data.

We tested the performance of our model on the released
test data named as Test Data Phase 1, which consisted of 50%
of the overall test data. In Phase 1, the test data contained 80
images, the results of which we submitted to the challenge.
Table 1 shows the results of our model on this test data. The
overall results will specified after the workshop.

5. DISCUSSION & CONCLUSION

We have described OxEndoNet, a neural network designed to
tackle the challenging problem of Endoscopy Artefact Detec-
tion and Segmentation where objects vary largely in scale and
size. Its use of pyramid dilated module consists of parallel
dilated convolutions concatenated to provide additional con-
textual information. The need of pooling and striding layers,
considered a major drawback of other segmentation methods,
is fully eliminated. Both PDM and OxEndoNet will be useful
frameworks to explore by the community for other computer
vision tasks. In the future, we plan to test our model on a
wide variety of medical image volumes, as well as on generic



semantic image segmentation tasks.
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