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Abstract

Smart speakers and voice-based virtual assistants are core building blocks of modern
smart homes. For instance, they are used to retrieve information, interact with other
devices, and command a variety of Internet of Things (IoT) nodes. To this aim, smart
speakers and voice-based assistants typically take advantage of cloud architectures: vocal
commands of the user are sampled, sent through the Internet to be processed and trans-
mitted back for local execution, e.g., to perform an automation task or activate an IoT
device. Even if privacy and security is enforced by means of encryption, features of the
traffic, such as the throughput, the size of protocol data units or the IP addresses, can leak
important information about the habits of the users as well as the number and the type
of IoT nodes deployed. In this perspective, the paper showcases risks of machine learning
techniques to develop black-box models to automatically classify traffic and implement
privacy leaking attacks. We prove that such traffic analysis allows to detect the presence
of a person in a house equipped with a Google Home device, even if the same person does
not interact with the smart device. Experimental results collected in a realistic scenario
are presented and possible countermeasures are discussed.

1 Introduction

Smart speakers and voice-based virtual assistants are important building blocks of modern smart
homes. For instance, they can ben used to retrieve information, interact with other devices, and
command a wide range of Internet of Things (IoT) nodes. Moreover, they can be used as hubs
for managing IoT deployments or implementing device automation services, e.g., to perform
routines in smart lighting or provide remote connectivity for domestic appliances. According
to [17], there are over 200 million of smart speakers installed in private properties (with the
wide acceptation inside private houses and small office settings), and the trend is expected to
culminate in 2030 when the number will exceed 500 million of units. In general, smart speakers
and voice-based virtual assistants take advantage of cloud-based architectures: vocal commands
of the user are sampled and sent through the Internet to be processed. As a result, the smart
speaker or the appliance running the virtual assistant receives a textual representation as well
as optional, companion multimedia data. Then, it executes the command or route it to a proper
hub, e.g., to communicate via ZigBee or Bluetooth links with IoT nodes. To enforce privacy and
security, the prime mechanism is the encryption of traffic (see, e.g., reference [27] and references
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therein). However, features of the flows such as, the throughput, the size of protocol data units
or (address, port) tuples, can leak important information about the habits of the users [8] or
the number and the type of IoT nodes [4, 22]. As a consequence, an attacker can collect traffic
from the local IEEE 802.11 wireless loop or between the home gateway and the Internet and
then try to guess the type of IoT nodes and the state of sensors and actuators. With such a
knowledge, the malicious entity can launch a wide array of offensive campaigns, such as profile
users, plan attacks to the physical space or perform social engineering campaigns [4, 22].

Despite the underlying technology or the complexity of the deployment, there is an increasing
interest in investigating risks arising from the statistical analysis of the traffic exchanged by
a smart speaker and the cloud. For instance, in [4] authors showcase how passive network
analysis can be used to identify devices and correlate some user activities, e.g., traffic flows
produced by switches and health monitors can leak the sleep cycle of a user. In [12], the
traffic produced by state transitions of home devices (i.e., a thermostat and a carbon dioxide
detector) can be used to infer if a user is present in the home. Such idea is further refined in
[1], where passive measurements are used to develop models of the daily routine of individuals
(e.g., leaving/arriving home). Concerning works aiming at identifying devices, possibly by
adopting machine learning or statistical tools, in [22] several machine learning techniques are
used to identify IoT devices by exploiting “poor” information like the length of packets produced
during normal operations. Additionally, in [3] the risks of HTTP-based communications are
discussed, both from the perspective of inferring data about the devices (e.g., the state or the
intensity of a light source) and performing session-highjacking attacks.

In addition, sensitive data contained in IoT nodes and smart speakers can be relevant for
forensics investigations [18], and traffic patterns can be manipulated by malware to exfiltrate
data, for instance through information hiding schemes [13] or covert channels [10, 19]. In this
vein, the paper discusses risks of machine learning techniques to develop black-box models for
automatically classifying traffic and to implement privacy leaking attacks. Differently from
previous works [1, 3, 12, 22], we focus on understanding whether it is possible to recognize the
presence of a user when no queries are performed. In fact, when a request is sent towards the
Internet, the produced traffic volumes or the appearance of specific network addresses trivially
leak the presence of a human operator in the house. To this aim, we empirically prove how
it is possible to detect the presence of a person in a house by analysing the traffic produced
by a Google Home device under the assumption that the person is not interacting with it.
Nevertheless, attention will be devoted in proposing ideas to mitigate such kind of threats by
acting at the traffic level. In fact, the design of suitable mitigation techniques is often neglected
(see, e.g., [3] for a notable exception) or addressed at an API-permission level [2], which is
definitely out of the scope of the paper.

Summing up, the contributions of this work are: i) to review the architectural blueprint
used by smart speakers and voice-based virtual assistants and elaborate an effective model to
conduct privacy leaking attacks, and ii) to evaluate the effectiveness of using machine learning
techniques for black-box modelling of traffic. We also sketch some design rules to mitigate
identification attacks in Section 5.

The remainder of the paper is structured as follows. Section 2 discusses the general archi-
tecture used by smart speakers to control IoT devices, introduces the threat model and the
machine learning mechanisms that can be exploited by the attacker. Section 3 deals with the
testbed used to collect data, while Section 4 presents numerical results and Section 5 concludes
the paper and showcases some possible future directions.
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2 Smart Speakers: Architecture and Threat Model

As hinted, smart speakers and voice-based virtual assistants are a core foundation for smart
homes. In essence, they provide a user interface to issue requests or commands in a natural
manner, i.e., by simply talking. Such devices can be also used as hubs for other IoT nodes and
network appliances or to perform tasks like playing music and video, purchasing items, and to
make recommendations. Besides, smart speakers and virtual assistants can provide a variety of
information including directions and weather forecasts.

As today, the most popular smart speakers implementing the aforementioned features are
Google Home1, HomePod2 and Amazon Echo3, whereases virtual assistants are Amazon Alexa4,
Apple Siri5 and Google Assistant6. Literature still lacks of a unified terminology for this class of
devices and services. In fact, smart speakers and virtual assistants are identified as intelligent
personal assistants, virtual personal assistants, home digital voice assistants, voice-enabled
speakers, smart speakers, and voice-based virtual assistants, just to mention the most popular
names. Therefore, in the following, we only use the terms smart speakers or Intelligent Virtual
Assistant (IVA) interchangeably, except when doubt may arise.

Even if each smart speaker is characterized by specific design choices and some setups are im-
plemented via a complex interplay of technologies and services, the core architectural blueprint
is quite standard and depicted in Figure 2. The overall set of components is often defined as the
ecosystem as to emphasize the end-to-end pipeline at the basis of such services, i.e., hardware or
software entities allowing the interaction of end users, computing and communication services,
and software running in IoT nodes. Even if each vendor usually implements its own blueprint,
the typical one is composed of four major components:

• Smart Speaker or IVA: it is in charge of collecting vocal commands, sample them and
transmit the data trough the Internet to a backend. Upon receiving a response, the smart
speaker or the software IVA agent can provide a feedback to the user or directly interact
with other devices. For instance, the smart speaker could start the playback of a music
stream received from a Content Delivery Network (CDN) or send through a ZigBee link
a command to a smart lightbulb. In some cases, it can also act as a sort of “router”,
thus delivering commands to the suitable hub. To avoid security and privacy threats,
communications are encrypted via the Secure Socket Layer (SSL) [8, 15].

• Client and IoT Devices: they are the targets of commands of the ecosystem. Typical
nodes deployed in a smart home are sensors, actuators, Bluetooth/ZigBee bridges, wireless
speakers or IoT-capable appliances. As previously said, some entities belonging to this
class can be colocated within the smart speaker.

• IVA Cloud: it is the backend in charge of processing data and delivering back tex-
t/binary representations of commands to be executed, including additional contents like
multimedia streams, geographical information or JSON files containing a composite vari-
ety of information. With the advent of open ecosystems promoting the interaction among
services provided by multiple vendors, the borders of the IVA cloud are blurring [8], [10],
[15]. For instance, vocal stimuli could be processed in a datacenter and sent back to

1https://store.google.com/product/google_home
2https://www.apple.com/homepod/
3https://www.amazon.com/echodot
4https://developer.amazon.com/alexa
5https://developer.apple.com/siri/
6https://assistant.google.com/
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the IVA while contents can be delivered by a third-part CDN and some IoT nodes could
establish a direct point-to-point connection with the computing infrastructure of their
manufacturer.

• Network: it connects the smart speaker or the IVA with IoT nodes as well as the Internet.
Typical deployments use a single local (wireless) network connected via a router/gateway
to the Internet. However, in most complex scenarios, different networks could be present,
e.g., a local access cabled network for some IoT nodes and hubs and multiple wireless
loops to connect smart devices and grant access to the user via a smartphone. Concerning
protocols used to exchange data between the IVA and the cloud, the TCP is the main
choice, with the multipath variant to optimize performances and reduce delays [8]. A
notable exception is the Google ecosystem. In fact, it exploits QUIC [6], a protocol
originally engineered to improve performance issues of HTTP/2 and based on transport
streams multiplexed over UDP. We point out that the presence of QUIC can represent a
signature to ease the identification of the ecosystem (e.g., Apple HomeKit vs. Google).
However, this requires to understand its behaviors, which can be highly influenced by the
underlying network conditions (see, e.g., [7] for a sensitivity/performance analysis of the
SPDY counterpart in different wireless settings).

Concerning the typical usage scenario, smart speakers rely upon a microphone to sense
commands, which are processed by a vocal interpreter running locally. In fact, only wake-
up commands are executed within the device, while others are transmitted remotely to the
cloud. Each IVA is activated via its own phrase or keyword and the most popular are “Ok
Google”, “Alexa”, and “Hey Siri”, for the case of Google Assistant, Amazon Echo/Alexa and
Apple/HomeKit ecosystem, respectively. As it will be detailed later on, a relevant fragility is
due to the continuous data exchange from the IVA and the cloud. Even if several frameworks
could be considered “secure” both from the architectural and technological viewpoints, still
they are prone to a variety of privacy-breaking attacks targeting a composite set of features
observable within the encrypted traffic flows [2, 4, 8, 27].

2.1 Threat Model

We aim at investigating the class of attacks targeting the encrypted traffic in a black-box
manner, i.e., without trying to decipher the payload of protocol data units. Literature abounds
of works dealing with techniques against SSL flows, for instance, [11] provides an extensive
survey on Man-in-the-Middle (MitM) attacks for SSL/TLS conversations as well as techniques
to highjack or spoof different protocol entities and nodes (e.g., BGP routes, ARP/RARP caches,
and access points). Moreover, [21] reports an MitM attack expressly crafted for the Alexa IVA.
Specifically, it targets “skills”, which are extensions introduced to integrate third-part devices
and services in the Amazon ecosystem. An attacker can redirect the voice input of the victim
to a malicious node, thus highjacking the conversation. However, such attacks are definitely
outside of the scope of this paper. Rather, we consider an adversary wanting to profile the
user, for instance, for reconnaissance purposes or to plan a physical attack. To this aim, the
adversary can exploit the traffic to infer “behavioral” information, e.g., when the victim is not
at home. Figure 3 depicts the reference threat model.

In more detail, we assume an adversary (denoted as malicious user in the figure) that can
only perform a passive attack, i.e., he/she can observe and acquire the traffic produced by the
victim but cannot alter or manipulate it. To this aim, the adversary should access the home
router. However, this is not a tight constraint as he/she can abuse the IEEE 802.11 wireless
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loop to gather information to be sent to the IVA (see, e.g., [9] for an analysis of threats that
can be done by moving throughout the attack surface). We also assume that the adversary is
not able to use the contents of the packets to launch the attack: in other words, he/she is not
able to attack the TLS/SSL or VPN schemes usually deployed. Therefore, by inspecting the
traffic produced by the smart speaker, the adversary can only rely on statistics and metadata
of conversations. As an example, the attacker inspects (or computes by performing suitable
operations) values like the throughput, the size of protocol data units, the IP address, the
number of different endpoints, flags within the headers of the packets, or the behavior of the
congestion control of the TCP. Finally, as it’s usually done in similar works, we assume that the
attacker is able to isolate and recognize traffic that comes from different IoT devices [5, 20, 24].

Even if the deployment of encryption schemes is not sufficient to prevent the leakage of
important information about the habits of users [8] and the number or the type of IoT nodes
deployed [1, 3, 4], this was a suitable countermeasure to mitigate a wide variety of threats.
Alas, the advent of computational-efficient statistical tools brings into a feasibility zone a new
wave of attacks. As a prototypal example, the work in [26] demonstrated how to leak the
language of the talker by inspecting the bit rate of VoIP conversations. In essence, authors
used a sort of “signatures” produced by the variable bit rate codec to feed various classifiers,
such as the k -Nearest Neighbors, Hidden Markov Models, and Gaussian Mixture Models and
a computational-efficient variant of the χ2 classifiers, to identify the language with different
performances (e.g., they can discriminate between English and Hungarian and from Brazilian
Portuguese and English with a 66.5% and 86% of accuracy, respectively). We then review
the most suitable tools that the adversary can use to extract information obtained from the
gathered traffic and then unhinge the privacy of smart speakers and part of the IoT subsystem.

2.2 Machine Learning Techniques for Attacking the IoT Ecosystem

Nowadays, gathering and analyzing traffic is a core technique used during the reconnaissance
phase of an attack [25], e.g., to enumerate devices or to fingerprint hosts for searching known
vulnerabilities. In this work we consider the attacker wanting to infer high-level information, for
instance to launch social engineering campaigns or plan physical attacks. Literature showcases
different machine learning approaches and their adoption to solve networking duties is becoming
a de-facto standard (see, [23] for a recent survey on the use of deep learning for different traffic
classification problems). However, in the perspective of endowing an attacker with the suitable
tools to gather information on the state of the smart speaker or the IVA, we shortlisted the
following most promising algorithms.

• Decision Tree (DT) is a family of non-parametric supervised learning methods suitable
for classification and regression problems [16]. The DT builds classification or regression
models in the form of a tree structure. To this aim, it breaks down the data into smaller
subsets while developing an associated decision tree. The process is iterated by further
splitting the dataset and the final result is a tree with decision nodes and leaf nodes.

• Adaptive Boosting - AdaBoost (AB) exploits the the idea of creating a highly accurate
prediction rule by combining many relatively weak and inaccurate rules [16]. AdaBoost
can be used in conjunction with many other types of learning algorithms to improve
performance. In this case, the output of the other learning algorithms (defined as weak
learners) is combined into a weighted sum that represents the final output of the boosted
classifier.
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3 Experimental Testbed

To prove the effectiveness of privacy threats of smart speakers leveraging machine learning
techniques, we developed an experimental testbed. Due to the lack of public datasets con-
taining network traffic of smart speakers, we have also developed an automated framework for
generating and collecting the relevant network traffic.

Concerning the device under investigation, we used a Google Home Mini7 since it is one of
the most popular smart appliances. Our version is equipped with an IEEE 802.11 L2 interface,
an internal microphone to sense commands and the surrounding environment, and a loudspeaker
for audio playback and LEDs for visual feedbacks. The configuration of the device must be
done via a companion application8. To this aim, we provided the SSID and the password of
our test network, which allowed the smart speaker to communicate remotely with the cloud
running Google services and to exchange data with other devices connect to the same network
(e.g., smart tv, smart light bulbs, etc.). We did not performed other tweaks as to reproduce an
average installation usually accounting for the device deployed by the user in an out-of-the-box
flavor.

Since we are focusing on privacy leakages related to the behavior of the microphone when
disabled or when sensing various situations, i.e, the presence of humans or a quiet condition,
we performed three different measurement campaigns, each one lasting 3 days. In particular,
for the first round of tests, the microphone of the smart speaker was manually set off as to
investigate the traffic exchanged between the device and the remote cloud datacenter. Then,
for the second round, the microphone was manually set on and the device put in a quiet
condition, i.e., the microphone did not receive any stimuli from the surrounding environment,
which was completely without noise or voices. For the last round of tests, we set the microphone
on and we simulated the presence of humans speaking each others or background noise. We
underline that human talkers will not issue the “Ok Google” phrase or will not inadvertently
activate the smart speaker. In the following, we denote the different tests as mic off for the
case when the microphone is disabled, mic on and mic on noise for tests with the microphone
active and the smart speaker placed in a silent or noisy environment, respectively. To the aim
of having proper audio patterns, we selected videos from YouTube in order to stimulate the
smart speaker with a wide variety of talkers and settings (e.g., female and male speakers of
different ages).

To capture data, we prepared a standard computer to act as the IEEE 802.11 access point
and we deployed ad-hoc scripts for running tshark9, i.e., the command line interface provided
by the Wireshark tool. To process the dataset and perform computations, we used a computer
with an Intel Core i7-3770 processor, with 16 GB of RAM running the Ubuntu 16.04 LTS
operating system.

To implement the machine learning algorithms presented in Section 2.2, we used the scikit-
learn10 library. In essence, it is an open-source library developed in Python that contains the
implementation of the most popular machine learning algorithms.

3.1 Data Handling

As said, we only collected traffic without performing any operation aimed at breaking the
encryption scheme. In other words, we consider a worst-case scenario where the attacker is

7https://store.google.com/it/product/google_home_mini
8https://play.google.com/store/apps/details?id=com.google.android.apps.chromecast.app
9https://www.wireshark.org/docs/man-pages/tshark.html

10http://scikit-learn.org/
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not able to perform deep packet inspection or more sophisticated actions (e.g., pinning of SSL
certificates). Instead, the threat model we investigate deals with a malicious entity wanting
to infer the smart speaker state by only using statistical information observable within the
encrypted network traffic. To this aim, the attacker can extract/compute indicators by using
two different “grouping” schemes, as depicted in Figure 1. In more detail, we computed the
desired metrics by considering a suitable amount of packets obtained according to the windowing
mechanisms considered as follows:

• time spans of length ∆t (see Figure 1a);

• bursts of a fixed length of N (see Figure 1b).

tt1 t2

Δt =  t2-t1

(a) Packets grouped in a window of ∆t seconds

t

NN - 11 2

(b) Packets grouped in a window of N data units

Figure 1: Different policies for grouping packets used for the computation of statistical infor-
mation.

We point out that the size of the windows affect the amount of information to be processed by
the machine learning algorithm. In fact, even if the dataset sill remains unchanged, the number
of windows is directly proportional to the volume of information offered to the statistical tool
(i.e., for each window a statistical indicator is computed). Concerning the statistical indicators
that an attacker can obtain from the traffic exchanged between the IVA and the cloud, we
consider:

• Number of TCP, UDP and ICMP packets: allow to quantify the composition of the
traffic in terms of observed protocols. For instance, UDP datagrams indicate the presence
of signaling carried by the QUIC protocol, whereas TCP segments can represent the
exchange of additional data such as multimedia material.

• Number of different IP addresses and TCP/UDP ports: the presence of different endpoints
could be used to spot interaction between the smart speaker and the IVA cloud, including
actions requiring to contact third-part entities or providers, IoT nodes, private datacenters
or CDN facilities.

• per -window Inter packet time (IPT) or packet count: allow to consider how traffic dis-
tributes within the two windows used to group packets described in Figure 1. Aggres-
siveness of the source could be used to reveal user activity or stimuli triggered by a vocal
input.

• Average value and standard deviation of the TCP window: describe the behavior of
the flow in terms of burstiness and bandwidth usage. Such information could lead to
indications about how the IVA and its cloud exchange data.

• Average value and standard deviation of the IPT: similarly to the previous case, they
can be used to complete information inferred from the packet rate. For instance, the
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IPT could be used to recognize whether a flow is generated by an application with some
real-time constraints.

• Average value and standard deviation of the packet length: hint at the type of the appli-
cation layer, for instance, small packets can suggest the presence of voice-based activities
requiring a low (bounded) packetization delay.

• Average value and standard deviation of the TTL: can be used to mark flow belonging to
different portions of the network and possibly indicating that the smart speaker has been
activated for a task also requiring the interaction with additional providers or actuators
(e.g., IoT nodes).

We point out that many indicators are intrinsically “privacy leaking” as they allow a ma-
licious observer to infer some information about the smart home hosting the device [4]. For
instance, counting different conversations and the number of protocol data units in a timeframe
could reveal the presence of specific IoT nodes or the type of the requested operation, e.g.,
retrieving a summary of the news. At the same time, considering such values could impact on
the performance of the classification framework owing to the exploitation of interactions among
the different architectural components, which are difficult to forecast.

4 Preliminar Results

In this section, we showcase numerical results obtained in our trials. First, we provide an
overview of the collected dataset, then we present the performances of machine learning al-
gorithms used to leak privacy of users with particular attention on the time needed for the
training phase.

4.1 Dataset Overview

As presented in Section 3, the dataset has been generated in a 9 day long measurement cam-
paign composed of three trials of 3 days with different conditions of the microphone of the
smart speaker. Specifically, for the mic off case, we collected 203, 596 packets for a total size
of 69 Mbytes. Instead, when the microphone is active, we collected 216, 456 packets in the
mic on scenario and 282, 656 packets mic on noise one, for a total size of 74 and 173 Mbytes,
respectively. The overall dataset has been processed with the StandardScaler, thus leading to
a statistical population with average equal to 0 and standard deviation equal to 1.

Figure 4 depicts the average values characterizing the dataset in each scenario. It is worth
noting that the average packet length and the average size of the TCP window for the mic off

and mic on cases are very similar. Instead, for the mic on noise case, the average packet length
doubles, whereas the average TCP window size halves.

4.2 Classifying the State of the Smart Speaker

We now show the results obtained when trying to classify the state of the smart speaker to
conduct a privacy leaking attack.

The first experiment aimed at investigating whether it is possible to identify if the micro-
phone of the smart speaker or the device hosting the IVA is turned on or off. We point out that
this can be also viewed as a sort of side-channel, where the attacker can identify if users are
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in the proximity of the device. In this perspective, Figure 5 shows the accuracy of the classi-
fiers adopted to infer from the traffic whether the microphone is ON or OFF, i.e., discriminate
among mic on or mic off cases. To better understand the performances, we also investigated
when the different “grouping” strategies presented in Section 2.2 are used to feed the machine
learning algorithms.

As shown, best results are achieved by using the AdaBoost algorithm (denoted as AB in the
figure). However, it is important to note that, for identifying the state of the microphone with
an acceptable level of accuracy, the attacker has to collect about 500 s of traffic or 500 packets.
Therefore, a real-time classification could be not possible in the sense that the attacker has
to wait a non-negligible amount of time before he/she has the knowledge to launch the attack
(e.g., force the physical perimeter where the smart speaker is deployed).

The second experiment aimed at discriminating between the two different behaviors of the
surrounding environment, i.e., the mic on and mic on noise states. We recall that such states
can be used by the attacker to infer if the smart speaker operates in a silent environment or in
the presence of noise, e.g., people are talking to each other or the television is turned on. In
both cases, there is not a direct interaction, that is, in the case of Google Home, any user did
not issue the “Ok Google” phrase. Then, the malicious user cannot exploit “macro” features of
the traffic, such as the number of TCP connections, the IP range or the traffic volume [4, 22].

Figure 6 depicts the obtained results. Compared to the previous experiment, to reach a
good level of accuracy, it is sufficient to use a reduced amount of packets. As an example, for
the case of the Decision Tree, good degrees of accuracy to decide whether the smart speaker is
in the mic on or mic on noise states are achieved by using time-windows with ∆t = 15 seconds
or a burst of N = 20 packets. From the perspective of understanding the security and privacy
of voice-based appliances, this result reveals a potential exploitable hazard. In fact, when the
user does not directly interact with the smart speaker (e.g., the “Ok Google” phrase is not
issued), the traffic generated towards the remote cloud should be the same for both the mic on

and mic on noise conditions. In other words, it is expected that the network traffic does not
exhibit any signature. Even if we did not have access to the internals of the Google Home
Mini used in our testbed, the different traffic behaviors could be due to the fact that the smart
speaker is always in an “awake” mode and selected stimuli are sent to the cloud as to identify
activation phrases like “Ok Google” or “Hey Siri”. However, this could partially contradict the
believing that such phrases are completely handled locally by the smart speaker or the IVA.

To assess the performances of the different classifiers in a comprehensive manner, Figure
7 shows the confusion matrices of the AdaBoost and Decision Tree classifiers when used to
discriminate between the mic on - mic on noise cases. It is possible to notice how the confusion
matrices show the goodness of the chosen algorithms having the highest values distributed on
the diagonal. Similar considerations can be done for the other techniques but they have been
omitted here for the sake of brevity.

5 Conclusions and Future Works

In this paper, we investigated the feasibility of adopting machine learning techniques to breach
the privacy of users interacting with smart speakers or voice assistants. Different from other
works discovering the presence of the user via intrinsically privacy-leaking activities (e.g., the
activation of a IoT node and the related traffic flow), we concentrated on discriminating how
the internal microphone is used. Results indicate the effectiveness of our approach, thus making
the management of silence and noise époque as major privacy concerns. To increase the user’s
privacy a possible countermeasure could be the insertion of suitable padding inside the packets
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to normalize the average length, as well as the standard deviation moreover, using a unique
protocol for the transport, could add another layer of privacy. Another possible countermeasure
could be an of appropriate noise, for instance by exploiting some form of traffic camouflage or
morphing [14]. Therefore, suitable traffic morphing or protocol manipulation techniques should
be put in place within the device or, at least, in-home routers as to reduce the attack surface
that can be exploited by malicious entities.

Future work will aim at refining our framework by considering smart speakers from other
vendors. Besides, we are working towards the implementation of a sort of “warden” able to
normalize traffic generated towards the IVA cloud.
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A Appendix

A.1 General smart home scenario and threat model

Smart Speaker Devices

Intelligent Virtual Assistant (IVA)
Cloud

NETWORK NETWORK

Client and IoT DevicesUser

 User voice-command  

Response

Figure 2: General system architecture used by smart speakers to control nodes in smart home
scenarios.
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Figure 3: Reference threat model targeting the encrypted traffic for privacy-breaching attacks.
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A.2 Dataset Overview and Classifiers Results

(a) Mean Packet Length (b) Mean TCP window

(c) Mean IPT (d) Mean TTL

Figure 4: Average values for the Packet Length, TCP Window, IPT and TTL computed over
the entire dataset.

(a) Grouping in a window of N packets (b) Grouping in a window of ∆t seconds

Figure 5: Accuracy of the classifiers for the mic off and mic on cases.
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(a) Grouping in a window of N packets (b) Grouping in window of ∆t seconds

Figure 6: Accuracy of the classifiers for the mic on and mic on noise cases.

(a) AdaBoost: ∆t = 500 - mic off vs
mic on

(b) Decision Tree: N = 15 - mic on vs
mic on noise

Figure 7: Confusion matrix showing the best results obtained in different use-cases.
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