
Ontology Aided Smart Contract Execution for
Unexpected Situations

Farhad Mohsin1, Xingjian Zhao1, Zhuo Hong1, Geeth de Mel2, Lirong Xia1,
and Oshani Seneviratne1

1 Rensselaer Polytechnic Institute, Troy NY 12180, USA
2 IBM Research, Hursley Park, Hursley SO212JN, UK

Abstract. We describe an oracle for smart contracts for strengthening
the functionality of their execution, thus making them amenable to any
future changes that may be critical for sustained use. The oracle is sup-
ported by an ontology—specifically, constraints for transactions can be
represented by semantic rules, and as such, this ontology-based oracle
can help resolve break glass in case of emergency type scenarios that
require going beyond pre-defined rules in the smart contracts that are
already deployed in the distributed ledger platform. The issue of resolv-
ing an unexpected situation that was not explicitly considered in the
code can be thought of as dynamic changes to attributes of assets and
participants involved in a smart contract, which is equivalent to changing
rules for a transaction. One way to implement such changes could be by
having users vote on different proposals to change the rule. In our case,
such a change can be invoked using the ontology and contextual infor-
mation associated with the smart contract itself. The ontology also helps
constrain the voting system itself, imposing a form of access control to
allow only valid changes in rules.

Keywords: Blockchain · Smart Contracts · Ontology · Semantic Rules
· Unexpected Situations.

1 Introduction

A decentralized application (DApp) does not require an arbitrator due to
the implicit trust properties guaranteed by the immutable nature of the dis-
tributed ledger framework. Typically, DApps employ smart contracts to execute
a particular set of rules in a trusted way. However, smart contracts are usually
immutable, and thus requires prior consideration for different unexpected situ-
ations that may require change in rules. For example, in a decentralized course
selection system spanning multiple schools, there may be specific rules for stu-
dent enrollment in courses. A professor might employ a smart contract to reduce
the class size for the Summer semester, but there could be a capacity of students

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).



2 F. Mohsin et al.

needing to finish the course during the Summer since they are to start a work
placement in the Fall. Therefore, in the absence of a central authority, smarter
contracts with flexible structure are needed to manage unexpected situations.

Liu et al. [1] suggest smart contracts with a voting mechanism for users to
vote to resolve such situations. However, the approach could only deal with a
subset of situations by changing some asset attributes related to the transaction
that led to the situation. While voting easily gives a valid decentralized way to
select new attribute values, a more generalized solution is required to resolve
more complex situations.

We propose an ontology-based oracle, where transaction constraints are de-
fined by semantic rules. Since all participant and asset classes have structured—
and associated semantic definitions, we can execute complex rules and also mod-
ify the rules when necessary. The main contribution of this work is a solution
where unexpected situations of complex nature can still be resolved by voting.
Aggregating user votes on a new set of proposed rules, we can select a new
consistent rule that may resolve the situation.

2 Related Work

There have been attempts to define a formal ontology for blockchain and smart
contracts [3, 4]; others have attempted ontology-driven design of blockchain for
specific use cases such as provenance tracking [5]. Our work with ontologies is
similar to the method for auto-generating smart contracts from domain-specific
ontology models and semantic rules by Choudhury et al. [2]. In contrast to
the aforementioned work, we propose a dynamic ontology-aided oracle, that
extends the solution in [1] to adapt smart contracts when faced with unexpected
situations.

3 Preliminaries

3.1 Ontologies and Semantic Rules

An ontology contains definitions of concepts, properties, and relationships among
them for a particular domain—or system; an ontology also provides a com-
mon vocabulary among stakeholders, thus enabling data share and reuse. By
incorporating formal rules to such models (e.g., Semantic Web Rule Language
(SWRL) [6]) we can increase the model expressivity. Smart contracts essentially
enable DApps on blockchains to work based on pre-defined rules, and our pro-
posal is to make the rules be executed based on an ontology.

3.2 Oracles in Blockchain

A smart contract executes completely deterministic transactions and then up-
date the blockchain in an according way. Thus, communicating with an external
system becomes problematic as it is not possible to verify all external data in a



Ontology Aided Smart Contract Execution for Unexpected Situations 3

deterministic way. Oracles solve this problem by providing a trusted system for
information transfer. While an oracle may seem like a centralized component,
a mutable ontology-based oracle for holding transaction rules actually aids our
solution for decentralized handling of unexpected situations.

4 Ontology for Smart Contract Execution

Though smart contracts are useful in implementing decision rules in decentral-
ized applications, it might be desirable to some to keep intricate and complex
logic off-chain for ease of design[7]. Moreover, smart contracts are immutable,
which also makes it difficult to implement changes in logic, which can sometimes
be expected. Motivated by the barrier to change the logic in smart contracts,
we instead take the approach of implementing such logic off-chain on an Oracle,
building on a domain-specific ontology.

Fig. 1. Executing transaction aided by ontology

As depicted by Figure 1, the main idea is as follows: the blockchain itself
will act as a verifiable data structure, but most of the logic for each transaction
will be performed off-chain in this model. This is achieved by implementing an
oracle with a domain-specific ontology which holds all relations, and the rules of
transactions with respect to the semantic concepts found in the said ontology.
Each time a transaction is attempted by a user or a smart contract on the
network, a query will be made to the oracle about present constraints for the
particular transaction. The oracle will be provided with information about the
participants and assets involved in a given transaction, and an instance will be
created. The semantic rule defined for that transaction will then verify whether
this transaction will be completed or not.

4.1 Example: Decentralized Course Selection Problem

We demonstrate our model with the example case of a decentralized course se-
lection system. A registrar’s office usually acts as a governing body for the case
of students’ course selection. But in a decentralized system, there would be no



4 F. Mohsin et al.

such system. If we implement a smart contract for this, conditions like prereq-
uisites for a student joining a course or capacity for a course may be defined
by semantic rules. Figure 2 shows a section of the ontology on a decentralized
course selection (dcs) namespace. A basic transaction for the smart contract is
AddCourse, which a student uses to enroll in a course, if they fulfill necessary
prerequisites. Now, we can have a SWRL rule like the following to define this

Fig. 2. Decentralized Course Selection Ontology

condition.
Student(?s)∧hasGPA(?s, ?g)∧hasY ear(?s, ?y)∧Course(?c)∧hasRequiredGPA(?c, ?rg)∧
hasRequiredY ear(?c, ?ry)∧hasMaxCapacity(?c, ?mc)∧hasCurrentSize(?c, ?curr)∧
swrlb : greaterThanOrEqual(?g, ?rg)∧swrlb : greaterThanOrEqual(?y, ?ry)∧
swrlb : lesserThan(?curr, ?mc) → canAddCourse(?s, ?c)

Fig. 3. Examples of classes as instances in the decentralized course selection ontology

When trying to execute an addCourse transaction, the smart contract would
query to the oracle about whether the conditions meet. The oracle in turn queries
the necessary data from the blockchain and receive data in triples. For the in-
stance in Figure 3, the oracle would receive triples: student1 : hasGPA : 3.8,



Ontology Aided Smart Contract Execution for Unexpected Situations 5

student1 : hasY ear : 1, course1 : hasRequiredGPA : 3.0 etc. With these
triples, the query can be evaluated and a True/False value returned to the smart
contract for the AddCourse transaction.

In a case when a student does not have sufficient GPA, the professor may
consider their grade point in some specific course and modify the rules with
an alternate prerequisite. This could have been unforeseen while writing the
contract. In our solution, this can be resolved by updating the SWRL rule in
the oracle. Since changing the condition for a transaction shall impact other
participants than just the one professor and one student, any such change should
be made in a fair manner. To ensure this, we implement a voting system to
update the rules.

4.2 Voting Mechanism

We give a sketch of the voting mechanism here, Figure 4 depicting the basic
flow. The voting system itself would be explicitly guided by the ontology as it
would not be tractable to allow all users to vote on all proposal or make all
attributes changeable by voting. A form of access control is implemented on the
voting system, again utilizing the semantic rules with respect to the ontology
so that concerns like who could invoke a startVote transaction, how proposals
are gathered or how proposals are aggregated to a single desirable outcome can
be addressed properly. The voting mechanism may initiate transactions that
request new proposals and votes from users.

5 Implementation Challenges and Future Work

We present specific implementation considerations, drawing examples from the
course selection scenario when necessary.

– The ontology will help maintain the extent to which rules and attributes are
changeable. For example, while attributes such as course.MaxCapacity may
be changeable, student.GPA cannot be changed, overriding proper rules for
updating student grades, by voting.

– For privacy concerns, the oracle would receive data necessary for forming
instances for each transaction and never store a complete knowledge graph.

– The oracle consists of both an ontology and a reasoner that helps respond
to queries. Updates on the rules should only occur from the smart contract,
each transfer of data will also need to ensure that the oracle has not been
externally tampered, using a mechanism like change signatures.

Having some rules off-chain may pose a modicum of new security threats that
we would like to investigate. Also, we understand that the implementation may
also lead to growth in transaction completion time, so a complexity analysis is
also due. Another point of interest would be different ways to aggregate propose
rules based on different voting rules.



6 F. Mohsin et al.

Fig. 4. Implementing the voting mechanism to update rules of a transaction

6 Conclusion

Our proposal of an ontology-based oracle not only makes execution of complex
logic in smart contracts easier, but coupled with the voting system, also allows
for a way to update the contracts. Empowered with the ontology, we could make
use of the data that from update requests for the rules. The voting data may be
leveraged towards learning preferences of voters, and proper utilization of this
may lead towards creating smarter contracts able to auto-generate proposals for
voting or have intelligent proxies for voters to speed up the updating process.

References

1. Liu S., Mohsin F., Xia L., Seneviratne O.: Strengthening Smart Contracts to Handle
Unexpected Situations. In: 2019 Proceedings of IEEE International Conference on
Decentralized Applications and Infrastructures, CA, USA (2019)

2. Choudhury O., Rudolph N., Sylla I., Fairoza N., Das A.: Auto-Generation of Smart
Contracts from Domain-Specific Ontologies and Semantic Rules. In: 2018 Proceed-
ings of IEEE International Conference on Internet of Things and IEEE Green Com-
puting and Communications and IEEE Cyber, Physical and Social Computing and
IEEE Smart Data, Halifax, NS, Canada, 2018, pp. 963-970.

3. de Kruijff J., Weigand H.: Understanding the Blockchain Using Enterprise Ontology.
In: Dubois E., Pohl K. (eds) Advanced Information Systems Engineering. CAiSE
2017. Lecture Notes in Computer Science, vol 10253. Springer, Cham

4. de Kruijff J., Weigand H.: Ontologies for Commitment-Based Smart Contracts. In:
Panetto H. et al. (eds) On the Move to Meaningful Internet Systems. OTM 2017
Conferences. OTM 2017. Lecture Notes in Computer Science, vol 10574. Springer,
Cham



Ontology Aided Smart Contract Execution for Unexpected Situations 7

5. Kim, HM, Laskowski, M.: Toward an ontologydriven blockchain design for
supplychain provenance. Intell Sys Acc Fin Mgmt. 2018; vol 25: pp 18 27.
https://doi.org/10.1002/isaf.1424

6. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B. and Dean, M.,
2004. SWRL: A semantic web rule language combining OWL and RuleML. W3C
Member submission, 21(79), pp.1-31.

7. Desrosiers L., Olivieri R., 2018. Extend your blockchain smart contracts with
off-chain logic. https://developer.ibm.com/articles/cl-extend-blockchain-smart-
contracts-trusted-oracle/


