
Petri Net Process Decomposition

with Application to Validation 1

by F.L. T� iplea a and J. Desel b

a Faculty of Computer Science
\Al. I. Cuza" University of Ia�si

6600 Ia�si, Romania
e-mail: fltiplea@infoiasi.ro

b Mathematisch{Geographische Fakult�at
Lehrstuhl f�ur Informatik

Katholische Universit�at Eichst�att
85072 Eichst�att, Germany

e-mail: joerg.desel@ku-eichstaett.de

Abstract

The aim of this paper is to show how any process of a Petri net which is a composition of

two nets can be decomposed in processes of the component nets, and vice versa. Therefore, we

introduce the concept of a process sample of a net with respect to a subnet and we claim that,

under some requirements, jumping nets are suitable to generate all the process samples of a net.

Then we give su�cient conditions under which a jumping Petri net can be simulated by a Petri

net. Finally, a methodology for validation of Petri net models based on process decomposition,

is proposed.

1 Introduction and Preliminaries

In designing a Petri net model for a complex system, it is desirable to decompose the system in
modules, based for example on their functionality, to design Petri net models for each module, and
then to compose these nets in order to get a Petri net model for the entire system. The behaviour
of the resulting net should be a composition of behaviours of the component parts. The aim of this
paper is to provide a framework for this approach, based on processes and jumping nets.

Among the many contributions with related topics we like to mention [4]. As we will do in our
approach, composition of modules is based on fusion of places in [4]. The corresponding composition
of processes representing the behaviour of a Petri net is de�ned by the intersection of process sets
of the respective modules, i.e., each process of a single module also speci�es the detailed behaviour
(possible or not) of other modules. In contrast to [4], we abstract from details of other modules
when de�ning the processes of a module; hence our composition operator of processes is based on
the union of cuts.

In Section 2 we show how processes of nets can be decomposed in processes of smaller nets
(subnets), and in Section 3 we argue that jumping nets can be successfully used as a tool for a
compact generation of Petri net processes. Section 4 gives some conditions under which jumping
Petri nets can be simulated by Petri nets. Finally, Section 5 presents some application of process
decomposition to the validation of Petri net models.

In the remaining of this section we will �x the terminology and notation that we use in this
paper (for details concerning Petri nets and processes the reader is referred to [1], [2], [5], [6]).

1This research was carried out while the �rst author was visiting Katholische Universit�at Eichst�att by a grant

from DAAD.

1

The sum of two functions fi from Ai into the set N of nonnegative integers, i = 1; 2, denoted
by f1 + f2, is de�ned as f1(a) for all a 2 A1 �A2, f2(a) for all a 2 A2 �A1, and f1(a) + f2(a) for
all a 2 A1 \ A2. For a function f : A ! B and a subset C � A, f jC denotes the restriction of f
to C, and f(C) the set of all images of c 2 C by f . By f�1 we denote the inverse-image function
associated to f , that is f�1(b) = fa 2 Ajf(a) = bg, for all b 2 B. For a binary relation R, R+

denotes the transitive closure of R.
A (�nite) P/T-net is a 4-tuple � = (S; T; F;W), where S and T are two �nite sets (of places and

transitions, resp.), S\T = ;, F � (S�T)[(T�S) is the ow relation andW : (S�T)[(T�S)! N

is the weight function of �, satisfying W (x; y) = 0 i� (x; y) =2 F . When W (x; y) � 1 for all
(x; y) 2 F , we may (and will) simplify the 4-tuple (S; T; F;W) to the 3-tuple (S; T; F). A marking
of � is a function M : S ! N, sometimes identi�ed with a vector M 2 NjSj. For x 2 S [T we set
�x = fyj(y; x) 2 Fg, x� = fyj(x; y) 2 Fg, and �x� = �x [x�. In this paper we assume that each
transition t of a P/T-net satis�es �t 6= ; 6= t�.

A marked P/T-net is a pair = (�;M0), where � is a P/T-net and M0, the initial marking of
, is a marking of �. A labelled marked P/T-net is a 3-tuple = (�;M0; l), where the �rst two
components form a marked P/T-net and l, the labelling function of , assigns to each transition
either a letter or the empty word �. In the sequel we shall often use the term \Petri net" whenever
we refer to a structure as above. In all the above de�nitions � is called the underlying net of .
A marking (place, transition, arc, weight, resp.) of a Petri net is the marking (place, transition,
arc, weight, resp.) of the underlying net of .

Pictorially, a Petri net is represented by a graph. The places are denoted by circles and
transitions by boxes; the ow relation is represented by arcs. The arc f 2 F is labelled by
W (f) whenever W (f) > 1. The initial marking M0 is represented by M0(s) tokens in the circle
representing the place s, and the labelling function is denoted by letters in the boxes representing
transitions.

Let be a Petri net and M a marking of it. The transition rule states that a transition t is
enabled at M , denoted M [ti , ifM(s) �W (s; t) for all s 2 S. If t is enabled at M then t may occur
yielding a new markingM 0 given by M 0(s) =M(s)�W (s; t)+W (t; s), for all s 2 S; we abbreviate
this by M [tiM

0. The transition rule is extended to sequences w of transition in the usual way. If
M0[wiM then M is called reachable; [M0i denotes the set of all reachable markings (including
M0 itself). The notation \[�i" will be simpli�ed to \[�i" whenever is understood from context.

A net N = (B;E; F) is called an occurrence net if j�bj � 1 and jb�j � 1 for all b 2 B, and
F+ is acyclic (i.e. for all x; y 2 B [E if (x; y) 2 F+ then (y; x) 62 F+). Usually the elements
of B are called conditions whereas the elements of E are called events. The partially ordered set
induced by N is (B [E;�N), where �N= F+. The initial (�nal) cut of N is �N = fb 2 Bj�b = ;g
(N� = fb 2 Bjb� = ;g). A V -labelled occurrence net is a couple � = (N; p), whereN is an occurrence
net and p is a total function from B [E into an alphabet V . The above de�nitions (partial order,
cut, initial and �nal cut) are transferred to labelled occurrence nets �; the corresponding notations
are obtained by changing \N" into \�" (e.g. ��,

��, ��). Let � = (S; T; F;W) be a P/T-net,
� = (N; p) an (S [T)-labelled occurrence net such that p(B) � S and p(E) � T , and C a subset
of conditions of �. De�ne the marking induced by C in � by MC(s) = jp�1(s) \ Cj, for all s 2 S.

There are two alternative de�nitions of a process of a Petri net, axiomatic and inductive, and
it is well-known that for �nite Petri nets they yields exactly the same objects ([1]). We adopt here
the axiomatic de�nition. A process of = (�;M0) is a (S [T)-labelled occurrence net � = (N; p)
satisfying:

(i) p(B) � S, p(E) � T ;
(ii) M0(s) = jp�1(s) \ oN j for each s 2 S;
(iii) W (s; p(e)) = jp�1(s) \ �ej and W (p(e); s) = jp�1(s) \ e�j for each e 2 E and s 2 S.

In order to obtain processes of labelled Petri nets = (�;M0; l) we consider each process � =
(N; p) of (�;M0) and replace the function p by p0, where p0(x) = p(x) for every condition x, and

2

p0(x) = (l � p)(x) for every event x. The set of all processes of a Petri net is denoted by �().

2 Process Decomposition

We recall an example from [3] concerning a Petri net model = (�;M0) of a vending machine for
beverages (Figure 2.1).

j
*

j j

j��*
--

HHj

j jHHY ��� HHY �

t5

s6

s5 s4 t3

t1s1
s2

s3t2

t4

s1 = ready

s2 = counter

s3 = inserted

s4 = accepted

s5 = warm

s6 = cold

t1 = insert

t2 = reject

t3 = accept

t4 = dispense

t5 = brew

Figure 2.1

q q

q q

�
})j

=

j
*

j
*j

j j
Y � Y

t5

s6

s5 s4

s1

t4

Figure 2.2

q q

q q

j j

j

--

j�

s4 t3

t1s1
s2

s3t2

q

0 = (�0;M
0
0) 1 = (�1;M

1
0)

}
��j

=

Initially, the machine is ready for the insertion of a coin. An inserted coin is checked (counterfeit
is rejected). When a coin is accepted, a beverage is dispensed and the control is returned to the
state ready.

The Petri net model in Figure 2.1 may be viewed as composed by two main parts: the control
part (concerned with accepting/rejecting coins) and the dispense part (concerned with dispensing
of a beverage). These two parts are connected by means of the places s1 and s4. We may separate
them into two Petri nets 0 and 1 by multiplying the places s1 and s4 togheter with their initial
markings (Figure 2.2).

j t1 j j j j jt3 t4 t1 t4

j

j

j

t3 j

j

j

j

t5

t5

j

j j

s6

s1 s3

s2

s4 s1

s5

s5

s6

s4s3s1

s2

s6

s5

s5

Figure 2.3

- - - - - - - - - - - -

- -

- -

6 -

-

6

� �
b1

b2

b3

b4

b14

b9

b15

b16

b6 b7 b8 b11 b12

b5 b10

e1 e2 e3 e4 e5 e7

e6

e8

b13

Let us consider now the process � of pictorially represented in Figure 2.3. This process can be
split into two parts (occurrence nets) �0 and �1 as in Figure 2.4, according to the decomposition of
. The initial cut of �0 generates a marking of 0 with two tokens in s4, which is neither reachable
in nor in 0, and similarly for �1 with respect to s1. However, �0 (�1) can become a process of
0 (1) if we increase the initial marking of 0 (1) by two tokens in s4 (one token in s1). This fact
is not a fortuitous one but it is a particular case of process decomposition as we will see later. We
recall �rst some concepts from [9].

3

j j j jt4 t4

j

j

j

j

j

j

j

t5

t5

js6

s1 s4 s1

s5

s5

s6

s4s1

s6

s5

s5

Figure 2.4

- - - -

- -

- -

6 -

-

6
b1

b2

b3

b4

b14

b9

b15

b16

b7 b8 b12e3 e7

e6

e8

b13

j t1 j j j j jt3 t1 t3

j j

s1 s3

s2

s4s4s3s1

s2

- - - - - - - -
� �

b1
b6 b7 b8 b11 b12

b5 b10

e1 e2 e4 e5
�1 :

�0 :

The only kind of subnets we will consider in this paper are those generated by subset of tran-
sitions. That is, if � = (S; T; F;W) is a net and T1 � T , then by the subnet generated by T1 we
understand the net �1 = (S1; T1; F1;W1), where S1 =

�T �
1 and F1 and W1 are the corresponding

restrictions of F and W to S1 and T1. If �1 is such a subnet, then the subnet generated by T � T1
will be called the di�erence of � and �1, and it will be denoted by � � �1. These two concepts
can be naturally extended to (labelled) marked Petri nets. For example, the Petri nets 0 and 1
in Figure 2.2 are subnets of in Figure 2.1, generated by T0 = ft4; t5g and T1 = ft1; t2; t3g, resp.;
moreover, 0 = � 1.

Let Sc be some �nite set (of places), and let PN(Sc) be the class of (labelled) marked Petri nets
possesing at least the places in Sc. Without loss of generality assume that, for each two Petri nets
in PN(Sc), the set Sc contains all common elements (places and transitions) of the nets. Consider
further the set PN(Sc;M c

0) = f 2 PN(Sc)jM0jSc =M c
0g, where M

c
0 2 NSc

.
For any two Petri nets 1 and 2, either both in PN(Sc) or both in PN(Sc;M c

0), their (compo-
nentwise de�ned) union will be called the catenation (along Sc) of 1 and 2, and will be denoted
by 1 � 2; the set S

c will be called the set of connecting places. In the case Sc = ;, the Petri net
1 � 2 consists of two disjoint subnets, 1 and 2. The net in Figure 2.1 is the catenation along
fs1; s4g of 0 and 1 in Figure 2.2.

The de�nition of catenation of Petri nets can be naturally extended to labelled occurrence nets
by requiring supplementary p1(s) = p2(s) for all s 2 Sc (p1 and p2 are the corresponding labelling
functions).

Before stating the main result of this section we will adopt one more notation. For a Petri
net = (�;M0; l) 2 PN(Sc;M c

0) and a marking M 2 NSc

, we denote by (+M) the Petri net
(�;M0 +M; l) 2 PN(Sc;M c

0 +M).

Theorem 2.1 (Process decomposition theorem)
Let 0; 1 2 PN(Sc;M c

0). For any process � 2 �(0�1) there are two markings M 0;M 00 2 NSc

and
two processes �0 2 �(0+M 0) and �1 2 �(1+M 00) such that � = �0 � �1 (where this composition
of processes is along some suitable set of common conditions).

The process �0 (�1) in the theorem above will be called a sample of � w.r.t. 0 (1). The set of
all process samples of w.r.t. 0 will be denoted by �(; 0). The processes �0 and �1 in Figure
2.4 are processes of (0 + (0; 2)) and (1 + (1; 0)), respectively (the order on connecting places is
s1, s4). Therefore, �0 is a sample of � w.r.t. 0, and �1 is a sample of � w.r.t. 1.

4

3 Jumping Nets { A Tool for Process Sample Generation

Given a Petri net = 0 � 1, where 0; 1 2 PN(Sc;M c
0), we may ask how to generate all the

process samples of w.r.t. 0. Of course, we may generate all the processes of and then split
these processes as in the proof of Theorem 2.1 (top-down). We shall describe in the sequel an
alternative method based on jumping nets which allows a bottom-up construction of processes.
First, let us look again to the nets in Figure 2.4. From the �0's point of view (in the context of),
the conditions b7 and b12 have been \pumped" by the environment (by �1). However, for these two
conditions, 0 has to pay with other two conditions, b1 and b8 (labelled by s1). More precisely, 0
gives a condition labelled by s1 to 1 and receives, not necessary immediately, a condition labelled
by s4. This exchange of conditions can be formally described by the binary relation

R0 = f((1; 0); (0; 0)); ((0; 0); (1; 0)); ((0; 0); (0; 1)); ((1; 0); (0; 1))g

onNSc

. For example, the pair ((1; 0); (0; 1)) 2 R0 states that whenever 0 has produced a condition
labelled by s1 then it can exchange it with a condition labelled by s4. A computation step associated
to the couple (0; R0) is an extension of the usual occurrence rule of 0 by:

M R0M
0 , M(s1) = 1; M(s4) = 0; M 0(s1) = 0; M 0(s4) = 1

for all markings M and M 0. For example, the following is a sequence of computation steps in
(0; R0):

(1; 0; 2; 1)R0(0; 1; 2; 1)[t4i(1; 0; 3; 0)[t5i(1; 0; 2; 1)R0(0; 1; 2; 1)[t4i(1; 0; 3; 0)[t5i(1; 0; 2; 1):
We shall prove that the set of all process samples of w.r.t. 0 is isomorphic to the set of processes
of (0; R0), which are to be de�ned. The reader can discuss in a similar way the case of 1 endowed
with the relation R1 = f((0; 1); (1; 0))g.

Now, we will introduce the concept of a jumping Petri net in a slightly di�erent way than in [7]
and [8].

De�nition 3.1 A jumping Petri net (marked jumping Petri net, labelled marked jumping Petri
net) is a couple J = (;R), where is a P/T-net (marked P/T-net, labelled marked P/T-net) and
R is a �nite union of sets, each of which being a binary relation on NS0

for some S0 � S.

The elements of R are called jumps of J . A jump (M;M 0), where M;M 0 2 NS0

and S0 � S, is
called local on S0. For technical reasons is necessary to extend jumps to the set S of places of , as
follows:

M RM 0 , M jS0 RM 0jS0 and M jS�S0 =M 0jS�S0;

for all markings M;M 0 2 NS, where S0 � S and (M jS0 ;M 0jS0) is a local jump on S0.
A computation step in a jumping Petri net J = (;R) is performed either by a transition, in

the usual way, or by a jump. That is,

M [xiM 0 , either x 2 T and M [xiM
0, or x 2 R and M RM 0.

Local jumps which do not a�ect all places of a Petri net can occur concurrently with each other
or concurrently with transition occurrences. This is formally reected in the following de�nition of
processes of jumping Petri nets (for convenience we will adopt an inductive de�nition).

Let J = (;R) be a marked jumping Petri net, t a transition and r = (M;M 0) a local jump on
a subset S0 � S. Then:

� an elementary occurrence net associated to t is a labelled occurrence net � = (N; p) with
the properties: � contains only one event e labelled by t, W (s; t) preconditions and W (t; s)
postconditions of e labelled by s, for all s 2 S, and no other element;

� an elementary occurrence net associated to r is a labelled occurrence net � = (N; p) with
the properties: � contains only one event e labelled by r, M(s) preconditions and M 0(s)
postconditions of e labelled by s, for all s 2 S0, and no other element. Pictorially, the event e
will be drawn by a double box;

� an initial occurrence net of is an occurrence net (N; p) which does not contain any event
and, for each s 2 S, it contains exactly M0(s) conditions labelled by s.

5

De�nition 3.2 Let J = (;R) be a marked jumping Petri net. The set of processes of J , denoted
by �(J), is the smallest set with the properties:

(1) �(J) contains all the initial occurrence nets associated to J ;
(2) if �1 2 �(J) and �2 is an elementary occurrence net associated to a transition t such that

��2 � ��
1, then the catenation along ��2 of �1 and �2, whenever it is possible, is in �(J);

(3) if �1 2 �(J) and �2 is an elementary occurrence net associated to a local jump r = (M;M 0)
on a subset S0 of places such that j��

1 \ p�1(s)j = M(s) for all s 2 S0, then the catenation
along ��2 of �1 and �2, whenever it is possible, is in �(J).

In cases (2) and (3) we say that �1 is extended, by catenation, by �2.

It is clear that for any such � there is at least a sequence �0; �1; : : : ; �m = �; where �0 is an
initial occurrence net and �i+1 may be constructed from �i as described in De�nition 3.2, for all
0 � i � m� 1. Processes of labelled jumping Petri nets are obtained as for labelled Petri nets.

Example 3.1 Let J0 = (0; R0) and J1 = (1; R1), where 0 and 1 are the nets in Figure 2.2,
and R0 and R1 are the relations given in the beginning of this section. Then, �0 (�1) in Figure 3.1
is a process of J0 (J1), where r0 = ((1; 0); (0; 1)) (r1 = ((0; 1)(1; 0))).

j j j jt4 t4

j

j

j

j

j

j

j

t5

t5

js6

s1 s4 s1

s5

s5

s6

s4s1

s6

s5

s5

Figure 3.1

- - - -

- -

- -

6 -

-

6
b1

b2

b3

b4

b14

b9

b15

b16

b7 b8 b12e3 e7

e6

e8

b13

j t1 j j j j jt3 t1 t3

j j

s1 s3

s2

s4s4s3s1

s2

- - - - - - - -
� �

b1
b6 b7 b8 b11 b12

b5 b10

e1 e2 e4 e5
�1 :

�0 :

r1- -

r0 r0- - - -

Now let us move our attention to the generation of process samples by jumping nets. First let
us note that a subnet 1 of a Petri net may induce some jumps for the net � 1. Moreover, it
may induce the same jump at di�erent markings of . If the jumps induced by 1 do not depend on
the internal con�guration of 1, but just on the marking of the connecting places, then is called
1-context free.

De�nition 3.3 Let 0; 1 2 PN(Sc;M c
0), = 0 � 1, and let M be a reachable marking of .

(1) A jump (M c;M
c
) on Sc is induced by 1 at M in if there is a marking M 2 [M0i such

that:

(i) M jSc =M c and M jSc =M
c
;

(ii) M is reachable from M only by occurrences of transitions in 1, but at least by one
occurrence.

(2) is called 1-context free if for any jump (M c;M
c
) induced by 1 and for any reachable

marking M in , if M jSc =M c then 1 induces (M c;M
c
) at M .

The jumps induced by the Petri net 1 in Figure 2.2 are those from the set R0, and the only
jump induced by 0 is that from R1. The Petri net in Figure 2.1 is both 0- and 1-context free.

Let J = (;R) be a jumping Petri net. From each process � of J we de�ne a new occurrence
net by removing all the events labelled by jumps (and the corresponding arcs). Let �0(J) be the

6

set of all these occurrence nets. The occurrence nets in Figure 2.4 are obtained, as described above,
from the processes in Figure 3.1.

Theorem 3.1 (Process sample generation theorem)
Let 0; 1 2 PN(Sc;M c

0) and = 0 � 1. If is 1-context free then �(; 0) = �0(J), where
J = (0; R0) and R0 is the set of jumps induced by 1 in .

Theorem 3.1 gives us a speci�cation tool for all the process samples of a Petri net w.r.t. a
subnet 1 in the case that is 1-context free.

4 Jumping Petri Nets Versus Petri Nets

It is clear that any Petri net can be viewed as a jumping Petri net by taking the empty set as the
set of jumps. Consequently, processes of Petri nets are particular cases of processes of jumping
Petri nets. In [7] it has been proved that jumping Petri nets are strictly more powerful, from the
interleaving semantics point of view, than Petri nets even if �nite sets of jumps are considered.
Clearly, this result holds true for the case of process semantics as well. In some particular cases,
as we shall see below, jumping Petri nets can be simulated by Petri nets.

De�nition 4.1 Let S be a non-empty set and R be a �nite union of sets, each of which being a
binary relation on � NS0

�NS0

for some set S0 � S. We say that R is �-�nite if there is a �nite
set V of vectors with integer components such that for any (M;M 0) 2 R we have M 0 �M 2 V .

Remark 4.1 All jumping Petri nets obtained by decomposing bounded Petri nets (that is, Petri
nets with a �nite set of reachable markings) are �-�nite.

De�nition 4.2 Let J be a jumping Petri net. Its set of jumps R is said to be complete if for any
reachable marking M of and for any jump (M1;M2) 2 R, if (M1;M2) is local on S0 � S and
M jS0 �M1 then there is a marking M 0 2 NS0

such that (M jS0 ;M 0) 2 R and M 0�M jS0 =M2�M1.

In order to compare processes of jumping Petri nets with processes of Petri nets we need the
concept of (j; �)-isomorphism. A process �1 = (N1; p1) of a labelled jumping Petri net is (j; �)-
isomorphic to a process �2 = (N2; p2) of a labelled Petri net if there is a bijection ' : B1 [E1 !
B2 [E2 such that:

(1) p1(x) = p2('(x)) for all x 2 B1 and for all x 2 E1 with the property that p1(x) is not a jump;
if p1(x) is a jump then p2('(x)) is �;

(2) x ��1 y i� '(x) ��2 '(y) for all x; y 2 B1 [E1.

This notion of isomorphism of processes is a slight modi�cation of the classical one: it is an
isomorphism of occurrence nets preserving all the condition-labels and all the non-jump event-labels;
the events labelled by jumps are mapped into events labelled by � (this justi�es our terminology
of (j; �)-isomorphism).

Theorem 4.1 Let J = (;R) be a labelled marked jumping Petri net. If R is �-�nite and complete
then there is a labelled marked Petri net 0 such that �(J) and �(0) are (j; �)-isomorphic.

5 Application of Process Decomposition to Validation

One aim of simulation is to validate the model w.r.t. some desired behavioural properties (that is,
to check whether the desired properties are reected or not in the simulated runs of the model). As
we could expect, many problems are encountered when dealing with simulation of a Petri net model:
fairness, alternatives (solving conicts), termination conditions, visualization and property checking

7

for large processes, etc. All these problems could be grouped into two main classes: generation and
analysis of processes (for a detailed discussion the reader is referred to [3]). Therefore, it turns out
to be an important task to look for an adequate tool to represent and generate processes as well
as for an e�cient strategy for analyzing them. In this section we will show how the mechanism
developed in the last two sections can be used for validation of Petri net models.

Suppose that a net can be decomposed as follows:
 = 0 �

0
0 (Sc;0)

00 = 1 �
0
1 (Sc;1)

� � �
0n�2 = n�1 � n (Sc;n�1)

(the sets of connecting places in brackets). Formally, we may write

 = 0 � (1 � � � � � (n�1 � n) � � �):
We suppose that the net n is of reazonable small size such that it supports an ad hoc validation.

Then, we can de�ne the jumping net Jn�1 in order to generate process samples and validate n�1 in
the context of n. If this step is successfully performed then we may consider valid the net (n�1�n)
and continue validation. The main problem we encounter when dealing with the construction of
jumping Petri nets (as above) is to �nd a convenient way to describe the set of jumps. In fact, this
problem has two main aspects:

1. decide whether is it possibe to de�ne a jumping Petri net Ji (as above);
2. if the answer to the question above is positive, then �nd a convenient way to describe the set

of jumps.

For the �rst question, the only good result we have is that from Theorem 3.1. The answer to the
second question seems to be more complicated and we do not have yet any answer.

However, in practice it could be not necessary to construct a priori the jumping Petri nets Ji.
We may take i and generate processes of it until a jump is necessary. Then, we take the current
marking of connecting places and, togheter with the current marking of the internal places of 0i
we generate a jump for i (and save the current marking on the internal places of 0i).

References

[1] E. Best, C. Fernandez: Nonsequential Processes. A Petri Net Point of View, EATCS Mono-
graphs on Theoretical Computer Science, Springer-Verlag, 1988.

[2] J. Desel, W. Reisig: Place Transition Systems, in: Lectures on Petri Nets I: Basic Models,
Lecture Notes in Computer Science 1491, 1998, 122{173.

[3] J. Desel: Validation of System Models Using Partially Ordered Runs, to appear in: Busi-
ness Process Management-Models, Techniques and Empirical Studies (W.M.P. van der Aalst,
J. Desel, A. Oberweis, eds.), Lecture Notes in Computer Science, 1999.

[4] E. Kindler: A Compositional Partial Order Semantics for Petri Net Components, in: Proc.
of the 18th International Conference on Application and Theory of Petri Nets (P. Azema,
G. Balbo, eds.), Lecture Notes in Computer Science 1248, 1997, 235{252.

[5] W. Reisig: Petri Nets. An Introduction, EATCSMonographs on Theoretical Computer Science,
Springer-Verlag, 1985.

[6] W. Reisig: Elements of Distributed Algorithms. Modeling and Analysis with Petri Nets,
Springer-Verlag, 1998.

[7] F.L. T� iplea, T. Jucan: Jumping Petri Nets, Foundations of Computing and Decision Sciences
19, 1994, 319{332.

[8] F.L. T� iplea, E. M�akinen: Jumping Petri Nets. Speci�c Properties, Fundamenta Informaticae
32, 1997, 373{392.

[9] F.L. T� iplea, J. Desel: Proving Correctness of Petri Net Transformations by Replacement Tech-
niques, submitted.

8

