
Tight Integration of Java and Petri Nets

Olaf Kummer

Universität Hamburg, Fachbereich Informatik

Vogt-Kölln-Straÿe 30, D-22527 Hamburg

kummer@informatik.uni-hamburg.de

Abstract

In this paper we investigate how the Java programming language can be integrated in an

object-oriented Petri net formalism. It becomes apparent how a carefully designed uni�cation

algorithm supports this goal, despite the fact that Java itself is not based on uni�cation. Some

dedicated algorithms for a Petri net simulator are proposed.

1 Introduction

The basic net formalism discussed in this paper are reference nets. In reference nets, a net can
be instantiated arbitrarily often and references to net instances can be used as tokens in other net
instances. For details see [6]. Reference nets use a variant of Java as their inscription language. See
[2] for the original Java speci�cation.

This paper can be seen as a companion to the earlier work [4], where the reference net formalism
and the large scale architecture of the Petri net simulator Renew are described. Here we will discuss
some further aspects that were only very brie�y sketched in [4].

2 Tuples

The Java language has no support for tuples. The only case where tuples would come in handy
in Java would be multi-value returns. However, these occur not very often and can be substituted
by the return of a complex object that aggregates the return values. In other cases, when we have
multiple values that should be processed together, we can simply use multiple variables that hold
one value each.

But for Petri nets, tuples are more important. It is dangerous to store related values in multiple
places, because, if multiple tokens have to be put there, tokens for di�erent data sets can be mixed.
Tuples solve this problem.

Java's syntax o�ers two opportunities for adding tuples. Either a tuple is written (1,2,3)

or [1,2,3]. The �rst form has the disadvantage that it is impossible to write 1-tuples, because
they could be mistaken for grouping operations, e.g. "string"+(true|false)would be ambiguous.
Hence it was decided to use the square bracket notation. However, when we want to support lists
as well as tuples, we have to �ll both syntactic niches. In that case, 1-tuples might be considered
dispensable, but lists of length 1 would be mandatory, so that the decision would have been the
other way round.

[father,son]

father+
" is the father of "+
son

["Isaac","Jacob"]
["Jacob","Joseph"]

["Abraham","Isaac"]

Figure 1: The net tuples

As we have tuples in the languages, it seems sensible to provide a pattern matching capability
and thus uni�cation. In Fig. 1 you can see a simple example net. Each token in the place can be
uni�ed with the input arc inscription to assign values to the variables father and son.

It was decided to implement an occurrence check in the uni�cation algorithm, i.e., a tuple must
not contain itself. Due to e�ciency considerations, this check is often omitted. But this might lead
to undesirable behavior, especially dead loops, which was considered unacceptable.

Besides tuples, the uni�cation algorithm deals with variables and unknown objects. Variables
can hold a value, although they are not supposed to be used as values themselves. Unknown objects
are the initial value of variables. They represent the identity of values when the values themselves
are not yet known. Consider for example two unassigned variables x and y. After uni�cation, both
will reference the same unknown object as their value. After unifying x with 1, also y will be valued
with 1.

The uni�cation algorithmmust also unify ordinary Java values, which can appear as components
in tuples or as values of variables. Here uni�ablility could be based on identity or on equality. Java
provides a method equals(...) in its object model that is supposed to test objects for equality and
an operator == that checks identity. Identity is safe in the sense that it is a constant equivalence.
On the other hand, equality is supposed to be an equivalence, but this cannot be enforced, and the
equality can change over time.

Nevertheless, we chose equality as the basis of uni�cation. Firstly, it is not even guaranteed
that even two equal text strings are identical, so that unexpected results could occur. Secondly, all
existing container libraries are based on equality. As we had to use lots of container classes in the
design, we had to rely on the functionality of equals(...) in any case. It turned out that the
resulting problems are comparably minor, but still care has to be taken.

The uni�cation algorithm works in-place, i.e., the original tuples are modi�ed, if necessary.
Similarly, the contents of variables may be changed by a uni�cation. This way we can avoid excessive
copying during each uni�cation. Of course, we have to add a backtracking mechanism to undo
uni�cations, because the state before the uni�cation is destroyed. Backtracking is invoked whenever
a proposed binding of variables is discarded by the simulation algorithm.

All modi�cations to uni�able object like tuples and variables are collected in a so-called state
recorder. It is possible to have multiple state recorders that can concurrently record and undo
changes in di�erent uni�able objects. However, the uni�cations in a single uni�able objects have to
be undone in the correct order.

Pattern matching is useful for input arcs inscribed with tuples. Here one component of the
tuple might already be known to the Petri net simulator, and there might be very few tuples in the
place that match this value compared to the number of all tokens. Therefore indexes allow a quick
lookup of partially speci�ed tuples. However, due to performance considerations only single tuple
components are used as indexes.

If all combinations of tuple components were maintained as indexes, a combinatorial explosion
would result. Of course this means that arc inscriptions like ["Joe","Average",phone] do not
allow an extremely e�cient lookup of Joe Average's phone number in the place that contains all
phone numbers, because two components would have to be respected. However, the simulator will
still limit its search to all Joes or all Averages, whichever constitutes the smaller set. To help the
simulator, you could use nested tuples for storing the data. Now, [["Joe","Average"],phone]
does give you a constant time lookup, because the �rst component of the tuple, a pair actually, is
completely known and forms a valid index.

A similar indexing algorithm might be contained in several other simulators, but literature on
this topic is very sparse. Only [3] gives information on a related approach, which is somewhat less
�exible and not as e�cient as the proposed scheme, however.

3 Actions

Many high-level Petri net formalisms support the execution of some additional code during the
�ring of a transition that does not in�uence the enabledness of a transition. Reference nets support
this concept by so-called action inscriptions, which can trigger side e�ects, but may also be used
to determine the value of output arc variables. A common use would be the transition inscription
action x=y.aLongMethodCall(u,v) to initiate a long method call that has no in�uence on the
activation of the transition.

Because the result of an action is unknowable, we must make sure that every result will lead to
a legal �ring of the transition. The simulator should detect the following illegal situations:

� A variable is calculated by an action but is already computed during the search for a binding.

� A variable is calculated by two di�erent actions.

� A cyclic dependency between the actions exists where each action requires a value that has to
be computed by a di�erent action.

Luckily, we can integrate the detection algorithm into the already implemented uni�cation algo-
rithm. We represent an action call by a calculator object that is uni�able only with itself. This
object references its arguments, which might be Java objects, tuples, unknown, or even other calcu-
lator objects. The occurrence check can thus detect even those cycles that arise out of recursively
embedded tuples and calculator objects.

x

y

u

v

Figure 2: A data structure of uni�able objects

Fig. 2 visualizes the actual data structure generated by action x=y.aLongMethodCall(u,v).
The variables are denoted by rectangles, the calculator object by a circle, the unknowns by rhombi.
There are two tuple objects depicted as triangles that result from the internal representation of the
expressions. One tuple groups the arguments and one tuple combines the target object and the
other tuple. This simpli�es some internal procedures.

At this point, it would be impossible to unify x and y, because a cycle would arise. It would be
impossible to unify x with 1, because the calculator object can only be uni�ed with itself.

Another part of the uni�cation algorithm detects when a calculated value is required for the
evaluation of an input arc. In that case the transition cannot be enabled, because the value is
required early to see if an appropriate token is available, but on the other hand, the value must not
be computed early, because it results from an action.

But what happens during the �ring of the transition? A value must be assigned to x, therefore
the variable must no longer be bound to a calculator object. The removal of the calculator objects
is done immediately after a successful search. Imagine that the search algorithm has found a valid
binding. An output arc expression has been computed, resulting in a tuple. We cannot put that
tuple directly into the place, because the tuple's content might be subject to backtracking. Therefore
we make a copy of all variables and tuples and ensure that the copies are immutable. During this
process, which has to be done in any case, we can safely remove all calculator objects without further
ine�ciencies. They served their purpose of ensuring uniquely calculated values and are no longer
needed.

4 Calling Nets from Java

In [5] an architecture was discussed that allows the integration of Java and Petri nets that are
implemented with the Design/CPN tool. Using Java-inscribed Petri nets we can provide an even
smother transition between the two worlds. In fact we have already seen that calls to Java pose no
problems even in the presence of side e�ects when we use action inscriptions.

When we want to call nets, we must de�ne methods for nets. The wish to implement net methods
is not new and plenty of schemes have already been devised, [7] could be named as an example.

In reference nets, the only means of communication with nets are synchronous channels. Chan-
nels are parameterized and allow a bidirectional information transfer. In order to synchronize, two
transition instances have to agree on a channel and on a sequence of matching arguments. The tran-
sition instance that initiates the synchronization must explicitly reference the net instance where the
target transition is located. E.g., net:channel(2,3,5)would be an invocation through the channel
channel of a transition in the net net with three parameters. The target transition would have to
provide an inscription like :channel(x,y,z) to signal that it wants to engage in synchronizations
through that channel. This concept is essentially based on the channels proposed in [1].

0
old :deposit(amount)

old+amount

:amount(amount)

amount

:withdraw(amount)
this:deposit(-amount)

moneyamount deposit

withdraw

Figure 3: The net account

The net from Fig. 3 models a very simple bank account. The customer can only deposit and
withdraw money and view the current amount. What we need now is a wrapper class that converts
method calls to channel invocations, so that we can use the net as an ordinary Java object. We
have describe how the conversion is done.

package samples.call;

class Account for net account {

void deposit(int amount) {

this:deposit(amount);

}

void withdraw(int amount) {

this:deposit(amount);

}

int currentAmount() {

this:amount(return);

}

}

The declaring package samples.call is given in a special statement. A compiler can now be invoked
that converts the description into Java code. The resulting class Account will be known as a stub

class.
Each time you generate a stub object, the associated net is automatically created, too. This is

the reason for listing the net name after the keywords for net in the header.
The body of a class description consists of a sequence of method descriptions and constructor

inscriptions. In our example we do not have constructors, such that a default constructor will be
automatically inserted. The body of each method consists of a sequence of channel invocations and
variable declarations, separated by semicolons.

As in reference nets, variables need not be declared. If variables are declared, they must be
declared before they are used. In our example there are no variables except for the input parameters
and the special variable return, which is used in the last method currentAmount(). This variable
is automatically declared in each method that has a non-void return type. A non-void method
returns the value of return at the end of its body.

[]

acc
acc

acc

action acc=new
 samples.call.Account()

action
 acc.deposit(500)

action amount=
 acc.currentAmount()

account

init created deposited amountamount

create deposit query

Figure 4: The net customer

The net from Fig. 4 exempli�es the use of the stub class. During the execution of a method,

the invoking transition is blocked and cannot yet process its output arcs. The stub object pro-
vides a synchronization request to the search algorithm. The search algorithm can then try to
�nd an appropriate synchronization or �re additional spontaneous transitions in the case that the
synchronization is not possible at the moment. After the synchronization succeeds, the stub object
is informed, so that the method can return.

It is important to note that a method call can consist of multiple synchronization requests, so
that you are not limited to actions that can be performed atomically by a single transition. It is
allowed to start large subprocesses during the execution of a net method. Typically, exactly two
synchronizations are required, one to start the method, and one to collect he results, but this may
vary. A common method description might be

type method(type0 arg0, type1 arg1, type2 arg2) {

this:method(instance,arg0,arg1,arg2);

this:result(instance,return);

}

Here we provide an additional argument instance that is set by the invoked net during the �rst
synchronization. It can be used during the second synchronization to collect the correct return
value just in case multiple method calls have been made. We do not specify the type of instance,
but it might be a unique call number or a reference to a net instance that is created to process the
request.

5 Types

Although in the application domain of rapid prototyping it is desirable to have a type free system
where variables do not have to be declared, it is also useful to have the security of type checking,
if desired. Therefore reference nets provide both a typed and an untyped formalism. Not only
variables, but also places may be typed. In both cases a type guarantees that only values of that
type may be stored in the typed object.

Number n;
Integer i;

n

n

Integer

Integer

Number
i

i
Number

Figure 5: The net types

The net from Fig. 5 illustrates a key problem while implementing a type system. Which conver-
sions should be allowed for input and output arcs? If the arc type and the place type are neither
supertypes nor subtypes of each other, is seems plausible to report an error. If the developer knows
that all transported values belong to both types, this should have been indicated with a cast.

If the type of the output arc inscription is a subtype of the place type, everything is correct. But
if it is not, we cannot be sure that the token that is put in the place satis�es the type constraint.
Therefore we have to report an error for the lower left transition in the �gure, because a number is
not necessarily an integer.

Perhaps surprisingly, we allow both supertype and subtype relations for input arcs. If the result
of an input arc expression turns out to be of the wrong type, it is guaranteed that no appropriate
token is in the place, so that this binding is not enabled anyways. On the other hand, if the input
arc is inscribed with a subtype of the place type, we simply have to make sure that only those values
that are permissible are uni�ed with the variable. Other tokens in the place are simply ignored.

The Java type system is relatively straightforward, but it has a few rough edges that stem from
Java's origin in C++. Especially, Java will gladly convert 32-bit integers to 32-bit �oating point
numbers or vice versa, although information is lost in the process.

This is acceptable, albeit dangerous, for ordinary assignments or method calls. For token re-
movals such lossy conversions should not be done automatically, because in a Petri net, the direction

of information �ow is not always obvious. E.g., a �oat place might have an outgoing arc inscribed
with an integer variable. It is not clear whether we should accept the loss that results from convert-
ing �oat tokens to integer values when assigning the variable or the loss that results from converting
the integer value to a �oat, so that the token can be removed.

Therefore a new subtype relation losslessly convertible was introduced into the system. It is
only used for type checking arcs and it di�ers from the normal subtyping relation by not allowing
conversions from longs to either �oats or doubles and from integers to �oats. For method calls the
ordinary Java semantics was retained to achieve compatibility.

Synchronous channels are untyped. Because the direction of information transfer is unspeci�ed
for channels, the concept of lossless convertibility will be used here, too, if it is decided to add typed
channels in the future.

At the moment, tuples have one common type, as we do not di�erentiate between integer triples,
string pairs, tuples of arbitrary objects, and so on. Typed tuples would be a valuable addition, but
at the moment there are too many con�icting approaches, none of which is supported by the Java
environment. These issues should probably be postponed until it has been �nally decided whether
and how to integrate parameterized types in the Java language.

6 Conclusion

We have seen how a proper integration of Java and Petri nets leads to various design decisions on
both the net formalism and its implementation. Starting with tuples we required uni�cation and
pattern matching. We saw that action inscriptions, which greatly add to expressiveness, gave rise to
a surprising extension of the uni�cation algorithm. The wish for a seamless integration motivated
calls from Java to nets, which are supported by automatically generated stub objects. All algorithms
have been implemented in Renew 1.1, which is freely available [6].

References

[1] Søren Christensen and Niels Damgaard Hansen. Coloured Petri nets extended with channels for
synchronous communication. Technical Report DAIMI PB�390, Aarhus University, 1992.

[2] James Gosling, Bill Joy, and Guy Steele. The Java Language Speci�cation. The Java Series.
Addison-Wesley, 1997.

[3] Torben Bisgaard Haagh and Tommy Rudmose Hansen. Optimising a coloured Petri net simula-
tor. Master's thesis, University of Aarhus, December 1994.

Available at http://www.daimi.au.dk/CPnets/publ/thesis/HanHaa1994.pdf.

[4] Olaf Kummer. Simulating synchronous channels and net instances. In J. Desel, P. Kemper,
E. Kindler, and A. Oberweis, editors, 5. Workshop Algorithmen und Werkzeuge für Petrinetze,
Forschungsbericht Nr. 694, pages 73�78. Fachbereich Informatik, Universität Dortmund, October
1998.

[5] Olaf Kummer, Daniel Moldt, and Frank Wienberg. Symmetric communication between coloured
Petri net simulations and Java-processes. In Susanna Donatelli and Jetty Kleijn, editors, Ap-
plication and Theory of Petri Nets 1999, volume 1639 of Lecture Notes in Computer Science,
pages 86�105. Springer-Verlag, 1999.

[6] Renew � the reference net workshop. WWW page at http://www.renew.de/. Contains the
documentation for Renew and an introduction to reference nets.

[7] C. Sibertin-Blanc. Cooperative nets. In R. Valette, editor, Application and Theory of Petri Nets

1994, Proceedings 15th International Conference, Zaragoza, Spain, volume 815 of Lecture Notes

in Computer Science, pages 471�490. Springer-Verlag, 1994.

