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Abstract. Potential reachability is a question about the linear structure of Petri nets. We prove
a criterion for the solvability of the state equation in the case of commutative coloured nets.
The proof relies on methods from commutative algebra and number theory. It generalizes the
well-known criterion for potential reachability over Z for p/t nets .

Key words. Commutative net, potential reachability, Artin algebra, Dedekind domain.

                                                          
1 cke-schneider.de data service, Paul Robeson-Straße 40, D-10439 Berlin, email: info@cke-schneider.de

2 Döllingerstraße 35, D-80639 München, email: wej@softlab.de

Introduction
The linear theory of Petri nets is governed by the state equation. The state equation is an in-
homogeneous linear equation. It computes the transition from an initial state to a final state
due to the firing of one or more net transitions. Solvability of the state equation is therefore a
necessary condition for the reachability of a given marking (potential reachability).

What this linear problem makes non-trivial, is the choice of the domain of coefficients: The
strongest version considers the monoid N of non-negative integers, while relaxations allow
coefficients from the ring Z or the field Q. The problem acquires a new flavour in the realm of
coloured Petri nets: In the present paper we study potential reachability for the subclass of
commutative nets, the ring of coefficients will be the colour algebra AZ of the net  resp. its
rational relaxation AQ. We prove:

• The state equation is solvable over the rational colour algebra AQ, iff it is solvable over the
finitely many Artin factors of AQ. In the reduced case all Artin factors are number fields
(Theorem 2.8).

• For a reduced net the state equation is not solvable over AZ, if is not solvable over the
finitely many factors of the normalization of AZ. Each factor is a Dedekind domain (Theo-
rem 3.3).

• Necessary and sufficient for the solvability of the state equation over a Dedekind domain
is the equality concerning rank and Fitting ideal of the incidence matrix and the extended
matrix (Theorem 3.4).

This paper generalizes previous results about reachability for p/t nets over Z ([DNM1996],
[SW1999]). It continues our application of commutative algebra to Petri net theory.

1 Potential reachability over Z in p/t nets
Consider a finite p/t net N = ( T, P, w−, w+ ) with transitions T, places P and weight functions

w−, w+: T x P → N.



We introduce CT(N) the free Z-module with base T, its dual CT(N, Z) := HomZ(CT(N), Z) as
well as the tensor product CT(N, F) := CT(N) ⊗Z F with an arbitrary Z-module F. Similar ex-
pressions are used with P instead of T. We consider Parikh vectors as elements from CT(N)
and markings as functionals from CP(N, Z). The incidence map is the Z-linear map

wT: CT(N) → CP(N, Z), [ wT ( Σt∈T nt t ) ] ( Σp∈P mp p ) := Σ(t,p)∈TxP nt mp [ w
+(t, p) - w−(t, p) ].

1.1 Definition (Potential reachability)
A marking Mpost is potentially reachable over Z in the Petri net ( N, Mpre ), iff there exists a
Parikh vector τ ∈ CT(N), which satisfies the state equation

Mpost = Mpre + wT ( τ ).

1.2 Theorem (Potential reachability over Z), ([SW1999], Theor. 6.4)

A marking Mpost is potentially reachable over Z in the Petri net ( N, Mpre ), iff the incidence
matrix and the extended incidence matrix have the same rank and the same ideal of minors
(Fitting ideal), i.e. iff

• rank wT = rank ( wT, ∆ M ) =: r

• and < minor [ r, wT ] > = < minor [ r, ( wT, ∆ M ) ] > ⊂ Z.

Here ∆ M := Mpost - Mpre and < minor [ r, f ] > denotes the ideal generated by all minors of
rank r of a linear endomorphism f.

2 Potential reachability over A Q in commutative nets
To fix the notation we recall some definitions from [SW1999]. We denote by XN the free
monoid with basis a set X. For a ring A we denote by Spec A the set of its prime ideals and by
Specm A the subset of maximal ideals. A general reference is [AM1969], [Bou1972].

2.1 Definition (Homogeneous net)

A homogeneous net N = ( T, P, C, w−, w+ ) is a tuple with two disjoint finite sets T (transi-
tions) and P (places), a finite set C (colours) and two families of colour functions

w− = (w−(t, p))(t,p)∈TxP, w
+ = (w+(t, p))(t,p)∈TxP, with w−(t, p), w+(t, p) ∈ EndN(CN).

2.2 Definition (Colour algebra, commutative net)

Consider a homogeneous net N = ( T, P, C, w−, w+ ). The associative Z-algebra generated by
all colour functions

AZ := Z [ w−, w+ ] ⊂ EndZ (CZ)

is called the colour algebra of N. The net N is commutative, iff A Z is commutative.

2.3 Proposition (Integrality of the colour algebra)
The colour algebra of a commutative net is an integral extension of the ring Z. It has an affine
representation



AZ = Z [t1,...,tk] / < h1,...,hp >.

Proof. Every endomorphism f ∈ EndZ (CZ) is annihilated by its minimal polynomial, a uni-
quely determined normed polynomial

Pf (t) ∈ Z [ t ]

with integer coefficients. Therefore every element from AZ satisfies an integral equation and
AZ is an integral extension of Z ([AM1969], Chap. 5). Gauss‘ theorem implies, that the quo-
tient representation holds also over Z

Z [ f ] ≅ Z [ t ] / < Pf (t) >.

We apply this consideration to the finitely many generators of AZ and obtain a representation

AZ = Z [t1,...,tk] / < h1,...,hp >

with polynomials hj ∈ Z [t1,...,tk], j= 1,...,p, QED.

2.4 Proposition (Incidence map)

Consider a commutative net N = ( T, P, C, w−, w+ ) with colour algebra AZ.

i) The incidence map at the level of the colour algebra is a morphism between AZ-modules

wT,AZ: CT(N, AZ) → CP(N, AZ), wT,AZ(t ⊗ 1) := w( t, - ) := w+( t, - ) - w−( t, - ).

ii) The evaluation of endomorphisms AZ ⊂ EndZ(CZ) provides an additional AZ-module
structure for the colour module CZ:

AZ × CZ → CZ, (a, c) � a(c).

iii) The incidence map at the level of the colour module is a morphism of AZ-modules

wT,C: CT(N, CZ) → CP(N, CZ), wT,C(t ⊗ c) := w( t, - ) (c).

It derives from the incidence map at the level of the colour algebra as the tensor product

wT,C = wT,A ⊗AZ idCZ.

2.5 Definition (Potential reachability, state equation)

Consider a commutative net N = ( T, P, C, w−, w+ ) with incidence map

wT,C: CT(N, CZ) → CP(N, CZ).

A marking Mpost is potentially reachable over AZ in the Petri net (N, Mpre), iff there exists a
Parikh vector τ ∈ CT(N, CZ), which satisfies the state equation

Mpost = Mpre + wT,C ( τ ).

2.6 Remark (The category AZ-Mod)
i) Proposition 2.4 gives evidence to our claim, that the colour algebra is the key algebraic ob-
ject of a commutative net - not the colour module: The common incidence map derives from
the incidence map at the level of the colour algebra. We will therefore concentrate on the
category of AZ-modules AZ-Mod. We consider this category to be the right environment of
high-level nets, not the “low-level” category of Z-modules.



ii) Torsion-free Z-modules like CZ are always free. But in general CZ is not free as AZ-module.
Therefore we treat the question of reachability in two steps: First we compute the image of the
incidence map at the level of the colour algebra. Then we determine the structure of the colour
module considered as module over the colour algebra. Both steps can be easily handled in the
reduced case over the rational colour algebra AQ.

2.7 Theorem (Splitting over the rational colour algebra)
Consider a commutative net N with colour algebra AZ and colour module CZ.

i) The rational colour algebra AQ := AZ ⊗Z Q splits into a finite product of local Artin algebras

AQ ≅ Πm∈Specm AQ Am.

If A Z is reduced, then every factor Am is a number field.

ii) The rational colour module CQ := CZ ⊗AZ AQ splits into a finite product of finitely gener-
ated Am-modules

CQ ≅ Πm∈Specm AQ Cm.

If A Z is reduced, then every factor Cm is a finite dimensional vector space over Am.

Proof. ad i) Proposition 2.3 implies, that the rational colour algebra AQ is a finite-dimensional
Q-vector space, hence an Artin algebra. Every Artin algebra factors into a finite product of
local Artin algebras ([AM1969], Chap. 8, Theor. 8.7). In the reduced case every factor Am is
reduced, too. A reduced local Artin algebra is a finite extension of the base field.

ad ii) The tensor product commutes with finite products, hence Cm = CQ ⊗AQ Am, QED.

2.8 Theorem  (Potential reachability over AQ)
For a commutative net N = ( T, P, C, w-, w+ ) with colour algebra AZ consider the splitting

AQ ≅ Πm∈Specm AQ Am and CQ ≅ Πm∈Specm AQ Cm

from Theorem 2.7 and the induced splitting of markings

M = ( Mm )m∈Specm AQ ∈ CP(N, CZ).

i) We have the equivalence:

• A marking Mpost ∈ CP(N, CZ) is potentially reachable in the Petri net (N, Mpre) over AQ.

• Every marking component Mpost,m, m∈Specm AQ, satisfies the state equation over Am

Mpost,m = Mpre,m + wT,Cm( τm )

with respect to the incidence map at the level of Cm

wT,Cm := wT,Am ⊗Am idCm: CT(N, Cm) → CP(N, Cm).

ii) If the colour algebra AZ is reduced, then every incidence map at the level of Cm splits into a
finite sum of morphisms between finite-dimensional vector spaces

wT,Am : CT(N, Am) → CP(N, Am).

In this case solvability of the state equation can be decided by the common rank criterion.



3 Potential reachability over A Z in commutative nets
Extensions of Z like the ring of Gaussian integers Z [i] are the prototype of Dedekind domains
([AM1969], Chap. 9).

3.1 Definition (Dedekind domain)

A Noetherian domain A is called Dedekind domain, iff every non-zero prime ideal p ∈ Spec A
is maximal and every localization Ap, p ∈ Spec A, is a principal ideal domain.

3.2 Theorem (Normalization of the colour algebra)
Consider a commutative net with reduced colour algebra AZ and denote its normalization by

AZ → B.

i) If A Z has the irreducible components (Ai)i=1,...,k, then B splits into a finite product of Dede-
kind domains

B = Πi=1,..,k Bi,

and each Bi is the normalization of the corresponding component Ai.

ii) The extension CB := CZ ⊗AZ B of the colour module CZ of N to the normalization splits into
a finite product

CB = Πi=1,..,k Ci,

and every Ci is a locally free module over Bi.

Proof. ad i) For the splitting of the normalization of a reduced affine algebra cf. [Bou1972],
Chap. V, §1.2, Cor. 1 to Prop. 9. Because every component Ai is 1-dimensional, its normali-
zation Bi is regular, hence a Dedekind domain.

ad ii) The splitting of the normalization B induces a corresponding splitting of the colour
module CB with factors Ci = CZ ⊗B Bi, because the tensor product and the direct product
commute. Every torsion-free finitely generated module E over a Dedekind domain D splits
([Bou1972], Chap. VII, § 4.10, Prop. 24) as

E = Dr ⊕ I with r ∈ N and I ⊂ D an ideal, QED.

3.3 Theorem (Potential reachability over AZ)
For a commutative net N = ( T, P, C, w-, w+ ) with reduced colour algebra AZ consider the
normalization B and the splitting

B = Πi=1,..,k Bi and CB = Πi=1,..,k Ci

from Theorem 3.2. They induce for every marking M ∈ CP(N, CZ) a splitting of the extension

MB ∈ CP(N, CB) as MB = ( Mi )i=1,..,k.

i) If two markings Mpre and Mpost satisfy the state equation over AZ, then all components Mpre,i

and Mpost,i, i = 1,...,k, satisfy the state equation over the Dedekind domain Bi

Mpost,i = Mpre,i + wT,Ci( τi )



with respect to the incidence map at the level of the colour module Ci

wT,Ci = wT,C ⊗AZ Bi: CT(N, Ci) → CP(N, Ci).

ii) Consider a Dedekind factor D := Bi and set CD := Ci. Then the incidenc map at the level of
the colour module CD

wT,D: CT(N, CD) → CP(N, CD)

splits into a finite direct sum of D-linear maps

wD: CT(N, D) → CP(N, D) resp. wI: CT(N, I) → CP(N, I), I ⊂ D an ideal.

Proof. ad ii) According to Theorem 3.2 the module Ci splits into the direct sum of a free
D-module and an ideal I. This splitting carries over to the incidence map wT,Ci, because it is
induced from the incidence map wT,Bi at the level of the colour algebra, QED.

3.4 Theorem (Linear algebra over a Dedekind domain)

Consider a Dedekind domain A, an ideal I ⊂ A and an A-linear map

f: In → Im

between locally free A-modules of finite rank. For a given element y ∈ Im we have the
equivalence:

• There exists a solution x ∈ In with f ( x ) = y

• rank ( f ) = rank ( f, y ) =: r and < minor [ r, f ] > = < minor [ r, ( f , y ) ] > ⊂ A.

Proof. Every A-linear endomorphism of I is a homothety, i.e.

HomA(I, I) ≅ A.

Hence f is represented by a matrix

M(f) ∈ M( m x n, A ).

Every localization of a Dedekind domain is a principal ideal domain. Herefore the claim has
been proven in [SW1999], Prop. 6.2. The Fitting condition implies, that the two A-modules

M1 := f (In) ⊂ M2 := M1 + spanA< y >

have the same localization

M1,p = M2,p

for every prime ideal p ∈ Spec A. The local-to-global principle ([AM1969], Prop. 3.9) implies
M1 = M2, QED.

4 Conclusion and outlook
Commutative nets make a first non-trivial step venturing from p/t nets into the domain of co-
loured nets. Commutative nets are determined by their colour algebra, which has a rich addi-
tional structure in comparison with the ring Z. The standard example of n dining philosophers
has the colour algebra

AZ = Z [ t ] / < tn-1 >.



For n = 6 the polynomial t6-1 splits into the four irreducible factors

Φ1(t) = t - 1, Φ2(t) = t + 1, Φ3(t) = t2 + t +1, Φ6(t) = t2 - t +1.

Figure 1 represents the colour algebra by the spectrum of its prime ideals. P/t nets have the
colour algebra Z as represented by the horizontal axis. The study of p/t nets over the field Q
focuses onto a single point, the origin of the axis. But already modulo-invariants and Proposi-
tion 1.2 take into consideration also the different primes of Z: P/t nets have a 1-dimensional
fine-structure over Spec Z.
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Figure 1 The colour algebra AZ of 6 dining philosophers

Commutative nets open up a second dimension. Restriction to the vertical axis Spec Q[t] con-
siders the Artin structure of the net, cf. Chapter 2. Here the colour algebra factors into a prod-
uct. In the reduced case one is left with finitely many p/t nets over number fields. But every
point from Spec AQ is the generic point of a whole irreducible component of Spec AZ. In gen-
eral the different components intersect in finitely many fibres Spec F[t]. In the reduced case a
first method to disentangle the components of Spec AZ is the normalization, cf. Chapter 3.

In order to strengthen the necessary condition from Theorem 3.3 to a sufficient criterion, one
has to focus on the finitely many singular points of AZ. For every singular point one obtains an
additional set of linear equations. The Parikh vectors on the components of the normalization
have to satisfy these equations, in order to match to a global solution arising from AZ.
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