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Abstract. Potential reachability is a question about the linear structure of Petri nets. We prove
a criterion for the solvability of the state equation in the case of commutative coloured nets.
The proof relies on methods from commutative algebra and number theory. It generalizes the
well-known criterion for potential reachability ov&ifor p/t nets .
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Introduction

The linear theory of Petri nets is governed by the state equation. The state equation is an in-
homogeneous linear equation. It computes the transition from an initial state to a final state
due to the firing of one or more net transitions. Solvability of the state equation is therefore a
necessary condition for the reachability of a given markpotefitial reachability.

What this linear problem makes non-trivial, is the choice of the domain of coefficients: The
strongest version considers the mongidf non-negative integers, while relaxations allow
coefficients from the ring or the fieldQ. The problem acquires a new flavour in the realm of
coloured Petri nets: In the present paper we study potential reachability for the subclass of
commutative nets, the ring of coefficients will be the colour algebraf Ahe net resp. its
rational relaxation A. We prove:

* The state equation is solvable over the rational colour algehréf K is solvable over the
finitely many Artin factors of A&. In the reduced case all Artin factors are number fields
(Theorem 2.8).

* For areduced net the state equation is not solvable gydrig not solvable over the
finitely many factors of the normalization of AEach factor is a Dedekind domain (Theo-
rem 3.3).

* Necessary and sufficient for the solvability of the state equation over a Dedekind domain
is the equality concerning rank and Fitting ideal of the incidence matrix and the extended
matrix (Theorem 3.4).

This paper generalizes previous results about reachability for p/t netd MM1996],
[SW1999])). It continues our application of commutative algebra to Petri net theory.

1 Potential reachability over Zin p/t nets
Consider a finite p/t net N = ( T, P, wv" ) with transitions T, places P and weight functions

w,w:TxP- N.
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We introduce @N) the freeZ-module with base T, its dual'@, Z) := Homy(Cr(N), Z) as
well as the tensor product@, F) := G(N) Oz F with an arbitrarZ-module F. Similar ex-
pressions are used with P instead of T. We consider Parikh vectors as elementgffpm C
and markings as functionals froni(®, Z). The incidence map is tielinear map

wr: Cr(N) — C(N, 2), [wr (Zior net) 1 (Zpoe Mp p ) 1= Zgpyomee e My [W(E, P) - W (L, P) 1.

1.1 Definition (Potential reachability)

A marking Myestis potentially reachabl@verZ in the Petri net ( N, M), iff there exists a
Parikh vector [0 C(N), which satisfies thetate equation

Mpost: Ilere"' Wr (T )

1.2 Theorem (Potential reachability over Z), ((SW1999], Theor. 6.4)

A marking Myestis potentially reachable ovérin the Petri net ( N, Me), iff the incidence
matrix and the extended incidence matrix have the same rank and the same ideal of minors
(Fitting ideal), i.e. iff

e rankwr=rank (w,AM)=:r
e and<minor[r,w]>=<minor[r,(w,AM)]>0Z.

HereA M := Mpost- Mpreand < minor [ r, f ] > denotes the ideal generated by all minors of
rank r of a linear endomorphism f.

2 Potential reachability over A o in commutative nets

To fix the notation we recall some definitions from [SW1999]. We denote\liliefree
monoid with basis a set X. For a ring A we denote by Spec A the set of its prime ideals and by
Specm A the subset of maximal ideals. A general reference is [AM1969], [Boul1972].

2.1 Definition (Homogeneous net)

A homogeneous n&t = (T, P, C, w, w" ) is a tuple with two disjoint finite sets Trgnsi-
tions) and P placey, a finite set Cqolourg and two families o€olour functions

W= W (L P)kepome, W= W (L P)Xepiomee, With W (t, p), W (t, p) 0 Ency(Ch).

2.2 Definition (Colour algebra, commutative net)

Consider a homogeneous net N = ( T, P, Gw/ ). The associativE-algebra generated by
all colour functions

Az:=Z[w,w]0End (C)

is called thecolour algebraof N. The net N ifommutativeiff Az is commutative.

2.3 Proposition (Integrality of the colour algebra)

The colour algebra of a commutative net is an integral extension of thé. fingas an affine
representation



Az=7 [tl,...,ﬁd /< hl,...,l’b >,

Proof. Every endomorphism{@ End; (Cz) is annihilated by its minimal polynomial, a uni-
quely determined normed polynomial

PPOzZ[t]

with integer coefficients. Therefore every element fropsatisfies an integral equation and
Az is an integral extension @f ([AM1969], Chap. 5). Gauss' theorem implies, that the quo-
tient representation holds also over

Z[f10Z[t]/I<B(t)>.
We apply this consideration to the finitely many generators; @l obtain a representation
Az=Z[t,..k]/ <hy,....hp>
with polynomials hO Z [t,....&], J= 1,...,p, QED.

2.4 Proposition (Incidence map)

Consider a commutative net N = ( T, P, C, w" ) with colour algebra A

i) Theincidence map at the level of the colour algeisra morphism betweenzAnodules
wraz: Cr(N, Az) » C°(N, Az), Wraz(t 0 1) :=w(t, -) :=W(t, -)-w(t, -).

i) The evaluation of endomorphismg Al End;(C;) provides an addition@z-module
structurefor the colour module £

Az xCz - Cz (a, ) a(c).
iii) The incidence map at the level of the colour modsila morphism of Amodules
wr.c: Cr(N, Gz) - C°(N, G), wrc(t O ¢) :=w(t, -) (c).
It derives from the incidence map at the level of the colour algebra as the tensor product

Wr.c = Wra Uaz idcz.

2.5 Definition (Potential reachability, state equation)
Consider a commutative net N = ( T, P, C, w" ) with incidence map
wrc Cr(N, G) — C°(N, Gy).

A marking Myestis potentially reachablever Ay in the Petri net (N, M), iff there exists a
Parikh vector [0 C(N, C;), which satisfies thetate equation

I\/lpost: Mpre+ Wrc (T).

2.6 Remark (The category Az-Mod)

i) Proposition 2.4 gives evidence to our claim, that the colour algebra is the key algebraic ob-
ject of a commutative net - not the colour module: The common incidence map derives from
the incidence map at the level of the colour algebra. We will therefore concentrate on the
category of A-modules A-Mod. We consider this category to be the right environment of
high-level nets, not the “low-level” category &fmodules.



i) Torsion-freeZ-modules like G are always free. But in general {8 not free as Amodule.
Therefore we treat the question of reachability in two steps: First we compute the image of the
incidence map at the level of the colour algebra. Then we determine the structure of the colour
module considered as module over the colour algebra. Both steps can be easily handled in the
reduced case over the rational colour algelya A

2.7 Theorem (Splitting over the rational colour algebra)
Consider a commutative net N with colour algebyaaAd colour module £

i) The rational colour algebragA= Az Uz Q splits into a finite product of local Artin algebras
AQ [ anSpecm R Am-
If Az is reduced, then every factop,As a number field.

i) The rational colour module &= C; [az Ag splits into a finite product of finitely gener-
ated Ar-modules

CQ 0] anSpecm R Cm
If Az is reduced, then every factox, & a finite dimensional vector space over. A

Proof. ad i) Proposition 2.3 implies, that the rational colour algely& A finite-dimensional
Q-vector space, hence an Artin algebra. Every Artin algebra factors into a finite product of
local Artin algebras ([AM1969], Chap. 8, Theor. 8.7). In the reduced case every fagsor A
reduced, too. A reduced local Artin algebra is a finite extension of the base field.

ad ii) The tensor product commutes with finite products, hepce Co Uag Am, QED.

2.8 Theorem (Potential reachability over Ag)
For a commutative net N = (T, P, C,w" ) with colour algebra Aconsider the splitting
Ag OMmospecm & Am and @ OMmospecm © Cm
from Theorem 2.7 and the induced splitting of markings
M = ( Mm )rispeem 0 O C°(N, C7).
i) We have the equivalence:
* A marking Myost [ C"(N, G;) is potentially reachable in the Petri net (Nordvlover Ag.
» Every marking component pkm, mOSpecm A, satisfies the state equation ovey A
Mpostm = Mprem + Wr.cm( Tm )
with respect to the incidence map at the level gf C
WT.om := Wr am Oam idem: Cr(N, Cr) = C(N, Cn).

ii) If the colour algebra Ais reduced, then every incidence map at the level,@pGts into a
finite sum of morphisms between finite-dimensional vector spaces

Wram: Cr(N, An) - C(N, An).

In this case solvability of the state equation can be decided by the common rank criterion.



3 Potential reachability over A 7 in commutative nets

Extensions oF like the ring of Gaussian integetdi] are the prototype of Dedekind domains
(JAM1969], Chap. 9).

3.1 Definition (Dedekind domain)

A Noetherian domain A is callddedekind domainff every non-zero prime idealp Spec A
is maximal and every localization,Ap O Spec A, is a principal ideal domain.

3.2 Theorem (Normalization of the colour algebra)
Consider a commutative net with reduced colour algebran®l denote its normalization by
Az - B.

i) If Az has the irreducible components)XA
kind domains

k then B splits into a finite product of Dede-

B =Tiz1,. k Bi,
and each Bis the normalization of the corresponding component A

i) The extension g:= Gz Uaz B of the colour module £of N to the normalization splits into
a finite product

Cg =Mi=1,.k G,
and every Cis a locally free module over;,.B

Proof. ad i) For the splitting of the normalization of a reduced affine algebra cf. [Bou1972],
Chap. V, 81.2, Cor. 1 to Prop. 9. Because every componéntlAdimensional, its normali-
zation B is regular, hence a Dedekind domain.

ad ii) The splitting of the normalization B induces a corresponding splitting of the colour
module G with factors ¢= C; g B;, because the tensor product and the direct product
commute. Every torsion-free finitely generated module E over a Dedekind domain D splits
([Boul972], Chap. VII, 8§ 4.10, Prop. 24) as

E=D 0 IwithrON and IO D an ideal, QED.

3.3 Theorem (Potential reachability over Az)

For a commutative net N = (T, P, C,w" ) with reduced colour algebra. Aonsider the
normalization B and the splitting

B =Miz1,.xBiand G =Tj=1, kG
from Theorem 3.2. They induce for every markingNC"(N, C;) a splitting of the extension
Mg O C(N, Cg) as Ms = (M )i=1... ke

) If two markings My and Mos Satisfy the state equation over,Ahen all components M,
and Myost,i | = 1,... .k, satisfy the state equation over the Dedekind domain B

Mpost,i= Mpre,i + Wrci( Ti)



with respect to the incidence map at the level of the colour mogule C

wrci = Wrc Oaz Bi: Gi(N, G) — C(N, G).

i) Consider a Dedekind factor D :5 Bnd set g := G. Then the incidenc map at the level of
the colour module £

W D: CT(N, CD) - CP(N, C:D)
splits into a finite direct sum of D-linear maps
wp: Cr(N, D) ~ C°(N, D) resp. w C(N, 1) — C(N, 1), I 0 D an ideal.

Proof. ad ii) According to Theorem 3.2 the modules@lits into the direct sum of a free
D-module and an ideal I. This splitting carries over to the incidence mgpbecause it is
induced from the incidence map wy at the level of the colour algebra, QED.

3.4 Theorem (Linear algebra over a Dedekind domain)
Consider a Dedekind domain A, an ideal A and an A-linear map
f: In — |m

between locally free A-modules of finite rank. For a given eleménht®we have the
equivalence:

« There exists a solutionX 1" with f (x) =y
e rank (f)=rank(f,y)=:rand<minor[r,f]>=<minor[r, (f,y)[PA.
Proof. Every A-linear endomorphism of | is a homothety, i.e.
Homa(l, 1) A.
Hence f is represented by a matrix
M@ OM(mxn, A).

Every localization of a Dedekind domain is a principal ideal domain. Herefore the claim has
been proven in [SW1999], Prop. 6.2. The Fitting condition implies, that the two A-modules

My :=f(I") O M;:= Mz + spap<y >
have the same localization
Mlyp = MZ’p

for every prime ideal pl Spec A. The local-to-global principle ([AM1969], Prop. 3.9) implies
M1 = Mz, QED

4 Conclusion and outlook

Commutative nets make a first non-trivial step venturing from p/t nets into the domain of co-
loured nets. Commutative nets are determined by their colour algebra, which has a rich addi-
tional structure in comparison with the ridgThe standard example of n dining philosophers
has the colour algebra

Az=Z[t]/<t-1>.



For n = 6 the polynomiaf+L splits into the four irreducible factors
Dy(t) =t- 1,Du() =t + 1,D5(t) = B+ t +1,Pg(t) = £ - t +1.

Figure 1 represents the colour algebra by the spectrum of its prime ideals. P/t nets have the
colour algebr& as represented by the horizontal axis. The study of p/t nets over th@ field
focuses onto a single point, the origin of the axis. But already modulo-invariants and Proposi-
tion 1.2 take into consideration also the different prime& &%/t nets have a 1-dimensional
fine-structure over Spet.
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Figure 1 The colour algebraZof 6 dining philosophers

Commutative nets open up a second dimension. Restriction to the vertical ax@tppen-

siders the Artin structure of the net, cf. Chapter 2. Here the colour algebra factors into a prod-
uct. In the reduced case one is left with finitely many p/t nets over number fields. But every
point from Spec A is the generic point of a whole irreducible component of SpetnAyen-

eral the different components intersect in finitely many fibres §fgcin the reduced case a

first method to disentangle the components of Speis fhe normalization, cf. Chapter 3.

In order to strengthen the necessary condition from Theorem 3.3 to a sufficient criterion, one
has to focus on the finitely many singular points gf Por every singular point one obtains an
additional set of linear equations. The Parikh vectors on the components of the normalization
have to satisfy these equations, in order to match to a global solution arisingArom A
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