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Abstract

Recently, interest has grown in connecting modern machine
learning approaches with traditional expert systems. This
can mean, e.g, to identify patterns with neural networks and
integrate them with knowledge graphs. While such com-
bined systems offer a variety of advantages, few domain-
independent approaches are known to make a hybrid arti-
ficial intelligence applicable without human interaction. To
this end, we present the implementation of a constructivist
machine learning framework (conML). This novel paradigm
uses machine learning to manage a knowledge base and
thereby allows for both raw data-based and symbolic infor-
mation processing on the same internal knowledge represen-
tation. Based on axioms for a constructivist machine learning,
we describe which operations are required to create, exploit
and maintain a knowledge base and how these operations may
be implemented with machine learning techniques. The major
practical obstacle in this approach is to implement an auto-
mated deconstruction process that avoids ambiguity, handles
continuous learning and allows knowledge abstraction. As we
demonstrate, however, these obstacles can be overcome and
constructivist machine learning can be put into practice.

Combining machine learning and knowledge engineering is
currently considered a potential game changing advance-
ment in artificial intelligence. Neural networks and other
machine learning techniques have proven strength in adapt-
ing to highly complex patterns and relationships, but are un-
able to represent existing knowledge explicitly and in an ab-
stract fashion as expert systems can. Expert systems, on the
other hand, operate on human-understandable knowledge
representations but are highly domain-specific and, more-
over, unable to process real-world data directly as machine
learning can. Therefore, it is expected that joining both fields
will produce a hybrid artificial intelligence that is “explain-
able, compliant and grounded in domain knowledge” (Mar-
tin et al. 2019). Such systems may, e.g., be able to iden-
tify patterns with neural networks and integrate them with
knowledge graphs (Subasic, Yin, and Lin 2019).
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In fact, the idea of a hybrid artificial intelligence has been
discussed for more than 30 years (Gallant 1988; Hendler
1989; Skeirik 1990; Levey 1991; Morik et al. 1993). So
far, however, most research in this field focuses on spe-
cific knowledge or application domains like medical diag-
nosis (Hudson, Cohen, and Anderson 1991; Karabatak and
Ince 2009; Herrmann 1995). This is to a large extent due
to the fact that knowledge bases are typically created manu-
ally, which is a highly time-consuming task that requires de-
tailled knowledge of the domain (Kidd 2012). No less time-
consuming are exploitation and maintenance of knowledge
bases, which are typical follow-up phases within the life
cycle of a knowledge base. While some progress has been
made in employing algorithms for these tasks, several ma-
jor challenges for an automated management of knowledge
bases are still considered unresolved (Martinez-Gil 2015).

Considering recent performance advancements in ma-
chine learning, manually managed knowledge bases obvi-
ously constitute a serious bottleneck in creating efficient hy-
brid systems. For truely automated systems, however, an im-
plementable semantic interface between inductive machine
learning and deductive expert systems is required. To this
end, we have introduced a constructivist machine learning
paradigm (Schmid 2019) based on the concept of learn-
able models and their storage in a knowledge base. While
machine learning is currently dominated by neuro-inspired
approaches, constructivist theories root in educational re-
search (Fox 2001) and, so far, few actual implementations
have been proposed for a constructivist machine learning
(Drescher 1989; Quartz 1993). Central challenge for putting
this into practice is the implementation of an automated de-
construction process, which to the best of our knowledge has
only once been addressed successfully (Schmid 2018).

Based on this paradigm, we designed a prototype for a
constructivist machine learning that employs a meta data-
based knowledge base. Here, we present the underlying op-
erationalizations and concepts required to put constructivist
machine learning into practice. The rest of the paper is or-
ganized as follows: In section I, we lay out guidelines for
automated knowledge base management. In section II, we
define Stachowiak-like models as building blocks for knowl-
edge representations. In section III, we introduce principles
for constructivist machine learning processes. In section IV,
we summarize our approach and point out future goals.
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Figure 1: Transformation of real-world data into an abstract knowledge base. Using a constructivist machine learning approach,
real-world data is processed block-wise by learning algorithms with the aim of identifying an optimal representation for a given
block. Each representation is then integrated into an existing knowledge base consisting of previously identified representations.

I. Knowledge Management
In the context of knowledge engineering, a knowledge rep-
resentation is typically a mathematical formalization like a
logic, rule, frame or semantic net related to real-world as-
pects (Davis, Shrobe, and Szolovits 1993). We have recently
argued that any such formalization should be regarded as a
model in the sense of Stachowiak’s General Model Theory
(Schmid 2019). This implies that a formalization is not only
a representation and an abstraction, but also limited to cer-
tain temporal constraints, certain subjects and a certain pur-
pose (Stachowiak 1973). Here, we represent and use these
three-dimensional limitations explicitly by employing meta
data acquired together with raw data (Fig. 1).

Hierarchical Knowledge. By a basic definition, a knowl-
edge base can be simply viewed as “a set of formulas” (Lifs-
chitz, Morgenstern, and Plaisted 2008). In the present work,
we use an extended definition and regard a set of meta data-
enriched models as a knowledge base (Schmid 2019). We
further assume a meta data-based hierarchical ordering of
this set, as human knowledge is from an educational per-
spective assumed to be organized in distinct levels (Bloom
1956). Findings from neurobiology also indicate a hierar-
chical organization for cognitive brain areas (Markov and
Kennedy 2013). Using machine learning-based models as
knowledge representations, we reflect a hierarchical order-
ing by using the output of other such models as input.

Knowledge Domains. A revision of Bloom’s taxonomy
suggests that apart from levels also domains of human cog-
nition should be distinguished (Anderson and Krathwohl
2001). Conceptual knowledge, e.g., may be described as
knowledge about classifications, categories and structures.
Procedural knowledge, in contrast, may be described as
knowledge about subject-specific abilities, algorithms or se-
lection criteria. We suggest to use individual knowledge
bases for individual knowledge domains, i.e., factual, con-
ceptual, procedural and metacognitive models. In the present
work we wil focus on the conceptual knowledge domain and
the mechanisms involved with this type of knowledge.

Automated Knowledge Base Management. Managing
knowledge bases may be described by typical life cycle
phases. Following Martinez-Gil (2015), a creation phase is
characterized by acquisition, representation, storage and ma-
nipulation of knowledge, while an exploitation phase fo-
cusses on knowledge reasoning, retrieval and sharing; the
maintenance phase is concerned with integration, valida-
tion and meta-modeling of knowledge. Issues raising within
these phases have been recognized and discussed (Richard-
son and Domingos 2003; Guisado-Gámez, Dominguez-
Sal, and Larriba-Pey 2013; Falkner and Haselböck 2013).
Most work on operating knowledge bases use a semi-
automated approach, leaving much space for more effective
and efficient automated management strategies (Martinez-
Gil 2015). Important issues to be addressed include, on one
hand, automatic generation of large knowledge bases as well
as automatic selection, combination and/or tuning of main-
tenance strategies. On the other hand, efficiency and explain-
ablity of knowledge exploiting should be improved, too.

Employment of Machine Learning. Here, machine
learning techniques will be used for automatic generation of
knowledge bases as well as for automatic maintenance. In
creation phases, machine learning algorithms are employed
to identify and/or manipulate optimal knowledge represen-
tations. In maintenance phases, machine learning algorithms
are used for validating such knowledge representations and
for supporting their integration into the knowledge base. To
this end, a major objective of maintenance is to keep the
knowledge base ambiguity-free. For knowledge exploita-
tion, machine learning-based models of such a knowledge
base may be applied on new input data. This is due to the
design aspect that each model is represented by a super-
vised learning algorithm, i.e. a classifier or regressor. Con-
sequently, the underlying classifier or regressor may be used
on new data after training. Matching and mismatching new
data to a model can be achieved by the respective meta data.
In particular, application of the knowledge base can be re-
jected if no knowledge is available for a given input.



II. Models as Knowledge Representations
In the following, models will be used to represent acquired
knowledge. A model here is understood to be a pragmatic
model in the sense of Stachowiak’s General Model The-
ory (Stachowiak 1973). This includes mathematical func-
tions as well as their representation or approximation by
machine learning techniques. More importantly, however,
Stachowiak-like models feature meta data about the valid-
ity of the model regarding subject, purpose and time.

The author, user or subject σ, of a model may in natural
sciences be a sensor or a measuring device, and in observa-
tional studies or content analyses typically a human evalua-
tor. The set of all model subjects σi for which a given model
M is valid, is called ΣM and defined as the subset of the
(infinite) set Σ of all possible subjects:

ΣM ⊂ Σ (1)

The target parameter of a model is referred to as purpose
ζ. The set of all purposes ζi, for which a given modelM is
valid, is called ZM and defined as subset of the (infinite) set
Z of all possible model purposes:

ZM ⊂ Z (2)

The temporal validity of a given model M is in general
represented by a time span TM or a minimum limit τmin

and a maximum limit τmax, respectively:

TM = [τmin, τmax] (3)

In contrast to Stachowiak’s model concept, we limit our
approach to two types of models: to vector models on the
one hand and to algorithmically generated machine models
on the other. For both, a distinction is made between models
with and without explicitly defined pragmatic properties.

a) Vector Models
In supervised machine learning, a training vector consists of
an m-dimensional input vector I = (i0, ..., im−1) and an n-
dimensional output vector O = (o0, ..., on−1). Moreover, a
mapping between I and O is implicitly assumed. Such vec-
tors are referred to as (complete) vector model V:

V = (I,O) (4)
= (i0, ..., im−1, o0, ..., on−1) (5)

If a given I is assigned an empty output vector, O = ∅,
the corresponding V = (I, ∅) is termed an incomplete vector
model. Typical incomplete vector models are training vec-
tors used for an unsupervised machine learning process.

If the pragmatic properties T , Σ and Z are explicitly de-
fined for a complete vector model V , the resulting represen-
tation is called a pragmatically defined vector model V*:

V∗ = (V, TV ,ΣV , ZV) (6)

Note that the time span TV , within which V is valid, is
defined by the time of data collection. In the following, we
assume that error tolerances during data collection are negli-
gible and that minimum and maximum borders are identical:

TV = τmin = τmax (7)

b) Machine Models
If a finite set of j complete vector models is approximated by
a machine learning algorithm, the resulting approximation is
referred to as a machine modelM:

M∼ {V0, ...,Vj−1} (8)

A machine model M with given TM, ΣM and ZM is
called pragmatically defined machine modelM∗:

M∗ = (M, TM,ΣM, ZM) (9)

The temporal validity TM of a machine model M can
only be assumed to be hypothetical and defined by means of
hypothetical interval limits. These interval limits are derived
from the underlying n vector models V∗ (Schmid 2018),
which were used to train the machine learning algorithm:

TM=
[
min(TV∗

0
, ..., TV∗

n−1
),max(TV∗

0
, ..., TV∗

n−1
)
]
(10)

ΣM defines the machine learning algorithms involved in
creating and applying M. In order to allow for automated
model creation, we use generic descriptors. For a standard
machine model, ΣM will be a set containing only one ele-
ment. If |ΣM∗ | > 1 holds true for a given M∗, i.e., if the
model is valid for more than one machine learning algo-
rithm,M∗ is called an intersubjective machine model.
ZM defines the target parameters of a machine modelM.

In most cases, ZM will be a set containing only one ele-
ment. In order to allow for automated model creation, we
use generic descriptors that are a combination of the corre-
sponding knowledge domain, knowledge level and type of
task (e.g. binary classification). If M∗ is abstracted from
machine models M0, ...,Mn−1, a higher level of knowl-
edge is defined forM∗ than forM0, ...,Mn−1.

c) Model Relationships
The pragmatic features T , Σ, Z of Stachowiak-like models
may be employed to match and discriminate models auto-
matically. With vector models, e.g., this allows to identify
sets of pragmatically related vector models and define ap-
propriate learning strategies for each relationship.

The degree of relationship between two given
Stachowiak-like modelsMa andMb is termed
1. complete (TΣZ),

if TMa
= TMb

, ΣMa
= ΣMb

, ZMa
= ZMb

.
2. subjective-intentional (ΣZ),

if TMa
6= TMb

, ΣMa
= ΣMb

, ZMa
= ZMb

;
3. temporal-intentional (TZ),

if TMa
= TMb

, ΣMa
6= ΣMb

, ZMa
= ZMb

;
4. temporal-subjective (TΣ),

if TMa = TMb
, ΣMa = ΣMb

, ZMa 6= ZMb
;

Such matching and discriminating is also a prerequisite
for automating a deconstruction process for machine mod-
els. Depending on the underlying pragmatic relationship,
procedures for a ΣT , TZ, TΣ or complete deconstruction
can be defined (section III).

When applying existing machine models, pragmatic fea-
tures also indicate applicability for a given task or input.
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Figure 2: Principle of Constructivist Machine Learning. A given block of data and meta data is used to select and learn an optimal
representation. This representation is then integrated into a knowledge base (for simplicity not depicted here) and/or modified accordingly.

III. Constructivist Machine Learning
According to modern educational concepts, human learning
takes place through construction, reconstruction or decon-
struction of models. Following this paradigm, we develop
concepts to implement such learning processes. To put con-
struction, reconstruction and deconstruction into practice,
we require a corresponding knowledge base consisting of
Stachowiak-like models (section II) and employ a data man-
agement process in order to organize for efficient learning.

Data Management. As Fig. 2 depicts, starting point for
a constructivist machine learning procedure is an arbitrary
set of pragmatically defined vector models (called block).
From these samples, subsets of pragmatically related vec-
tor models are identified and re-grouped into learn blocks.
Dependending on the sample relationship, ΣZ-, TΣ-, TZ-
or completely related learn blocks may be found. The size
of these learn blocks determines the following learning. Not
all forms of relationship, however, are equally suitable for a
model construction. Especially constructions based on com-
pletely and TZ-related learn blocks offer little added value.
Learn blocks of completely related vector models that are
not redundant but divergent even represent a serious source
of error. Learn blocks of TZ-related models basically al-
low the generation of new models, which then, however,
does not represent a construction process but an intersub-
jective reconstruction process. Therefore, for constructions
learn blocks of ΣZ-related vector models are preferred.

If at least one learn block exceeds a user-defined mini-
mum number of samples, the largest learn block is selected
to undergo one or more learning processes. All other learn

blocks are discarded. After the learning processes for this
learn block have terminated, the knowledge base is updated
according to the results of the learning processes. This may
imply storing a newly reconstructed model as well as modi-
fying or deleting existing models from the knowledge base.
As long as further blocks exist, this sequence of selecting
and processing data is repeated.

Representation Learning. Various combinations of
learning processes are possible for a given learn block. In
the most simple case, e.g., if the knowledge base contains no
models yet and target values are defined for the learn block,
only a reconstruction is carried out and the resulting machine
model is stored in the knowledge base. In an educational
context, reconstruction implies in general application, repe-
tition or imitation, in particular the search for order, patterns
or models (Reich 2004, p. 145). Similarly, the reconstruction
of a machine model is here understood as supervised learn-
ing from given examples. In contrast to classical supervised
learning, however, competing machine models are generated
and evaluated with regard to their intersubjective validity.

If no target values are defined for the learn block, such
targets are produced in a construction process, before the re-
sulting model candidates enter the reconstruction process. In
an educational context, construction is in general associated
with creativity, innovation and production, and in particular
with the search for new variations, combinations or transfers
(Reich 2004, p. 145). For machine models this is interpreted
as an unsupvervised learning that identifies or defines alter-
native n-dimensional outputs to a set of incomplete vector
models. Thereby, competing model candidates are created
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that are evaluated in a following reconstruction process. Ra-
tionale behind this is that it is a priori unclear which of the
models constructed from a learn block can be reconstructed
with best accuracy and intersubjectivity.

Knowledge Integration. After successful reconstruction,
mechanisms are needed to manage integration into the
knowledge base. In particular, a deconstruction process is
carried out to avoid redundancies and contradictions, if prag-
matically related models exist in the knowledge base. In an
educational context, deconstruction in general means the in-
vestigation of an already existing construct for incomplete-
ness, for the unforeseen and the unconscious, and in partic-
ular the search for possible omissions, simplifications, ad-
ditions and criticism (Reich 2004, p. 145). In constructivist
machine learning, deconstruction is in particular associated
with automated re-training of models and creating abstracted
models. Deconstruction may result in modifying or discard-
ing models of the knowledge base.

a) Construction
The aim of the construction process is to provide alternative
interpretations, or model candidates, with alternative model
purposes for a given learn block. In particular, more than
one model candidate is created for the same data during
construction and sent to a following reconstruction process.
The key components of the construction process are unsu-
pervised learning and candidate filtering (Fig. 3).

Unsupervised Learning. Depending on the knowledge
domain under consideration, different types of unsupervised
algorithms are employed. For conceptual knowledge in the
sense of Bloom’s taxonomy (section I), or knowledge about
classifications, categories and structures, respectively, clus-
tering algorithms are employed. The purpose of clustering
in this case is to identify distinguishable categories within
a learn block. In order to create diverse model candidates,

it is desirable to identify as many different machine models
as possible in as many different ways as possible. In a ba-
sic conceptual construction setting, the well-known k-Means
clustering as well as the neuro-inspired self-organizing map
(Baçao, Lobo, and Painho 2005) are used as alternative ap-
proaches. In a basic procedural construction setting, feature
clustering (Chavent et al. 2012) and autoencoders (Hinton
and Salakhutdinov 2006) may be employed. If the algo-
rithm requires to define in advance the number k of clus-
ters to be identified, all possible clusterings between 2 and
k are being tested. This maximum number of clusters is
called maximum categorical complexity κk in the following.
With each clustering method κk−1 machine models with
k = {2, ..., κk} clusters or categories are generated.

Candidate Filtering. Prerequisite for many clustering
methods is the prior definition of a number of clusters to
be determined. Usually, several runs with different cluster
numbers are carried out with the same procedure and the
clusterings obtained are evaluated with an external proce-
dure (Jain 2010). Here, optimal clustering is determined by
reconstructing model candidates. Before entering the recon-
struction process, however, clusterings are filtered by user-
defined settings for minimal cluster size and minimal clus-
tering error (e.g. minimal intra cluster error, if applicable).

b) Reconstruction
The aim of the reconstruction process is to validate model
candidates, assign model subjects and guarantee intersubjec-
tivity. The key components of this process are preprocessing,
supvervised learning and intersubjectivity evaluation (Fig.
4). If more than one model candidate enters the reconstruc-
tion process from the construction process, only one model
is selected as optimal learn block representation and trans-
ferred into the subsequent deconstruction process. All other
reconstructed models are discarded.
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Preprocessing. For a given learn block or set of vector
models, respectively, first the number of input variables is
assessed. If this number is greater than a user-defined max-
imum model complexity κ, an algorithmic feature selection
is carried out in order to reduce the complexity of the model
to ≤ κ. In principle, filter as well as wrapper and embedded
methods could be used for this. The most convenient deci-
sion criterion for this is the amount of data to be processed or
the selection processes to be performed. For large amounts
of data, filter methods are preferable due to their efficiency
and computation effort, but they do not always provide op-
timal feature subsets. Embedded feature selection methods,
on the other hand, promise a particularly careful selection of
features, but require considerably more computational effort
than filters for large amounts of data.

For this reason, a hybrid approach is used here. As a ba-
sic principle, if an input data set consists of a smaller set of
low-dimensional vector models, an embedded method is ap-
plied. Conversely, a filter is used if an input data set consists
of a particularly large set of particularly high-dimensional
vector models. Whether an embedded method is used or not
is decided by means of user-defined auxiliary parameters
for the maximum allowed number of input dimensions and
the maximum allowed number of vector models. By default,
Correlation-based Feature Selection (CFS) is used as filter,
and a Random Forest as embedded method.

Supervised Learning. Preprocessing is followed by ap-
plication of at least two alternative supervised learning al-
gorithms that are carried out in parallel. It is important to
note that these algorithms do act independently, but aim
to achieve agreement. In order to enable broad application,
these methods should be able to solve both classification and
regression tasks. In order to facilitate automated configura-
tion, they should also be non-parametric, i.e. they should
not require a priori assumptions about the density distribu-
tion of the data. Furthermore, a fundamental diversity of the
procedures is desirable in the sense of different procedural
approaches. For this purpose, a biologically inspired and a

statistically motivated learning procedure are applied in par-
allel. Considering these criteria as well as the availability
of suitable implementations, the methods used for the re-
construction process are multi-layer perceptrons and random
forests. In addition, further methods like support vector ma-
chines could be used to increase to diversity of methods.

Intersubjectivity. Each supervised learning yields indi-
vidual target values for each input vector. Consequently,
the question arises to what extent these competing meth-
ods agree. Analogously to empirical studies, this is quan-
tified and evaluated with the interrater reliability coefficient
Krippendorf’s α. This coefficient can be calculated for both
nominal and metric scales and can therefore be used for
both classification and regression (Krippendorff 1970). In
contrast to other reliability coefficients, it can also be ap-
plied to any number of raters. An α value of 1 indicates
optimal reliability, while a value less than or equal to 0
implies that there is no match between scores. Krippen-
dorf’s α was repeatedly proposed as a standard measure
for quantifying interrater reliability (Krippendorff 2004;
Hayes and Krippendorff 2007). Those reconstructed models
that have been trained successfully, but whose α value does
not exceed a user-defined threshold value, are discarded. If
none of the reconstructed models exceeds this α threshold,
the current total reconstruction process is aborted.

Model Selection. If more than one model candidate
passes the reconstruction process, it must be decided which
of these competing models will be integrated into the knowl-
edge base. In order to identify the learn block representation
that is least dependent on specific methods, these models are
ranked in descending order using Krippendorff’s α. Since
the maximum α value implies the maximum degree of inter-
subjectivity, the model with the maximum α value can be in-
terpreted as the clearest model in the sense of Heinrich Hertz
(Hertz 1894, p. 2f). If two or more models within the se-
quence have an identical α value, the model with the small-
est original image space is selected from this new subset.
This can be interpreted as the choice of the simplest model.



Update Know-
ledge Base

TΣ? Store
New Model

Replace
Old Model

Model
Disposal

ΣZ? success? TΣZ?

TΣZ? Model
Fusion

Model
Differentiation

Learn Block
Generation

Reconstruction∗ Construction

Mx

T

Σ

Z

M
T

Σ

Z

Old Model

New Model

yes

no

yes

no
yes

no

yes

no

yes

no

RELATIONSHIP
MANAGEMENT MODEL RE-TRAINING

KNOWLEDGE
ABSTRACTION

Figure 5: Deconstruction process. For deconstruction, two pragmatically related models are considered pairwise. They can undergo a
re-training procedure, which makes use of the reconstruction process, or be used to abstract knowledge by undergoing a construction process.

c) Deconstruction
The aim of the deconstruction process is to combine new and
old knowledge in a way that avoids ambiguity and allows to
abstract knowledge automatically. The key components of
this process are relationship management, model re-training
and knowledge abstraction (Fig. 5). Prerequisite is that an
existing model has been identified from the corresponding
knowledge base that exhibits a pragmatic relationship to a
newly reconstructed model. In the event that two or more re-
lated models are identified for a newly reconstructed model,
these can either be deconstructed consecutively or the de-
construction process is aborted as soon as a complete, ΣZ,
TZ or TΣ deconstruction was successful.

Relationship Management. What procedures are carried
out during deconstruction depends on the type of relation-
ship (section II) between the two models entering the decon-
struction process together. The decision on what measures to
undertake is the initial task of the deconstruction process. In
case of completely and ΣZ-related models, this relationship
is assessed by model re-training, which makes use of the re-
construction process. In case of TΣ-related models, decon-
struction is carried out in terms of a knowledge abstraction
procedure, which makes use of the construction process. The
case of TZ-related models would reflect that models with
the same purpose and same temporal validity but differing
subjects have been identified, which under a fixed intersub-
jective reconstruction scheme is not possible; therefore, this
relationship is not explicitly handled in the following. If a

newly reconstructed model shows a complete relationship to
an existing model from the knowledge base, this may intro-
duce error and contradiction into the knowledge base. There-
fore, this relationship is handled with high priority.

Model Re-training. With ΣZ-related models, the aim of
deconstruction is to extend or replace the existing model
from the knowledge base. In particular, it is assessed
whether the temporal validity of the existing model can
be expanded according to the temporal validity of the new
model. Both models are fused into a new model that is re-
trained via the reconstruction process. If successful, the old
model is replaced by the fused model, otherwise the new
model and the fused model are discarded. For completely re-
lated models, re-training is initiated by model fusion as well
as by model differentiation. Model differentiation means
that it is tested whether the fused model may be split in two
submodels of more limited temporal validity.

In contrast to ΣZ relationships, deconstruction of com-
pletely related models can not only extend but also falsify
the validity of these models. If the model fusion is falsified
in this case, the differentiation of the fused model is exe-
cuted or, if necessary, one of the contradicting models is dis-
carded. The disposal of models is carried out according to
a user-defined regime, which makes a distinction between a
conservative (Mold retained,Mnew discarded) and an inte-
grative (Mold discarded,Mnew added to knowledge base)
regime. Alternatively, if Mnew is based on a larger set of
vector models thanMold,Mnew is added to the knowledge
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base andMold is discarded; otherwise,Mold is retained and
Mnew discarded. This regime is referred to as opportunistic.

Knowledge Abstraction. A TΣ relationship provides the
basis to construct a new model on the next higher level of
the knowledge base. In this case, both models share a con-
gruent temporal validity and a common set of model subjec-
tives while differing in their model purpose. First, the newly
reconstructed model is stored to the knowledge base. The
old model from the knowledge base is left unaltered. Using
the outputs, or target values respectively, of the TΣ-related
models, a new learn block without target values is formed.
This learn block is assigned a higher level than the underly-
ing models possess in the knowledge base and transferred to
a construction process, from which all further learning pro-
cesses may be passed. Thereby, repeated abstraction from a
single learn block is possible. Knowledge abstraction may
be limited by a user-defined maximum of knowledge levels.

IV. Conclusions and Future Work
With this work, we have defined implementation princi-
ples for a constructivist machine learning framework1. We
have demonstrated that by combining Stachowiak’s Gen-
eral Model Theory and constructivist learning theories, ma-
chine learning algorithms can be used to create, exploit
and maintain hierarchical knowledge bases. In contrast to
classical machine learning, this allows for an explicit rep-
resentation of acquired knowledge. Further, the employed
meta data structures support decisions on the applicability

1Currently, we are implementing conML for Python and other
languages. The project is available online from our Git repository at
http://git.informatik.uni-leipzig.de/ml-group

of a given model on a given input. High intersubjectivity
and low ambiguity can be achieved for learned models and
knowledge bases by implementing consent-oriented multi-
algorithm supervised learning. The suggested deconstruc-
tion mechanisms allow to update a knowledge base automat-
ically. Moreover, the deconstruction process defined even fa-
cilitates automated knowledge abstraction based on existing
models of the knowledge base (Fig. 6). Given these features,
constructivist machine learning is an ideal framework for
applications in which diverse data sources need to be inte-
grated, knowledge needs to be both assessible and automat-
ically updated, and where ambiguity has to be resolved.

Based on the presented principles, we will extend our ap-
proach of combining machine learning and knowledge en-
gineering in the future. While using generic descriptors for
model purposes already allows to create a generic ontol-
ogy, e.g., it is in practice desirable to match automatically
learned knowledge representations with existing ontologies.
By this, it may become possible to transform existing knowl-
edge bases at least partially into automatically managed sys-
tems. Further, we need to emphasize that our approach is
currently focusing on conceptual knowledge, but not limited
to this domain. Future work will in particular include work
on procedural knowledge and on ways to combine concep-
tual and procedural knowledge in a meta-cognitive domain.
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