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Abstract

Intelligent agents using reinforcement learning offer interest-
ing capabilities for optimizing processes, products, and ser-
vices in various branches of industry. Developing such ap-
plications at an economically viable level, however, is still a
major challenge: Regardless of the potential offered by rein-
forcement learning, many solutions suffer from a lack of ex-
plainability. Deploying an application that makes unexplain-
able decisions is a potential risk to a project’s success. Despite
the ongoing effort, most reinforcement learning solutions re-
main a black box. In this position paper, we motivate to use
concepts derived from human knowledge to unveil the inner
workings of an intelligent agent on a more meaningful level
without having to limit the algorithms themselves.

Introduction
Reinforcement learning, a method to create intelligent
agents, is a promising area of Machine Learning (ML) and
Artificial Intelligence (AI). In supervised and unsupervised
learning methods, algorithms gather knowledge from exist-
ing data and search for patterns, which in turn are applied to
new data. Thus, algorithms are fed by existing experiences
collected in the past. With reinforcement learning, agents
typically gather their own experiences by training in sim-
ulations. Successful actions are rewarded and the agents aim
to maximize their profits by improving their strategies. Sev-
eral recent examples show the potential: intelligent agents
learned to play Chess (Silver et al. 2017a) and Go (Silver
et al. 2017b), fly helicopters (Ng et al. 2006; Abbeel et al.
2007), or treat patients with serious illnesses (Parbhoo et al.
2017).

The core of reinforcement learning is an optimization pro-
cess driven by random exploration and increasing exploita-
tion of knowledge from gathered experiences. The agent
more or less blindly stumbles through the various poten-
tial actions, probing for success and reaching for higher
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rewards. Prominent pitfalls are that agents find highly re-
warded strategies unintended by developers (Amodei et al.
2016) or encounter a local maximum in the reward func-
tion and do not move further to explore possible alternatives
due to a temporary loss of reward. Furthermore, applica-
tions based on reinforcement learning tend to suffer from a
lack of reproducibility, even when trained with the same hy-
perparameters, and small changes in the parameters them-
selves quickly lead to very different results (Henderson et
al. 2018), making reinforcement learning solutions unreli-
able. Furthermore, agents cannot explain the reasoning be-
hind their actions, which leads to uncertainties during the
development cycle, because such situations cannot be de-
bugged. From a software engineering perspective, high un-
certainties, which cannot be controlled by the developer, are
a strong threat to the targeted and successful development of
software projects.

Explainability of AI algorithms – often referred to as
Exaplainable AI or XAI – is a major research topic, but most
approaches have a strong focus on analyzing algorithms and
the way data is processed. Unfortunately, we have to ar-
gue that the current state of the art still lacks the necessary
progress to mitigate the risks resulting from unexplainable
erroneous agent behavior. However, in this position paper
we argue that techniques well-known in software engineer-
ing can be used to achieve a first level of explainability on a
more meaningful level.

In this paper, we contribute to the emerging field of soft-
ware engineering for intelligent agents by describing how
concept-based engineering (Meyer and Gruhn 2019) can be
used to reason over agent decisions. This approach can be
used to derive curricula and hierarchical decompositions to
define an agent’s training. Applying curricula to machine
learning is also known as Machine Teaching (Simard et al.
2017) or Curriculum Learning (Bengio et al. 2009), which
is often used for supervised learning tasks. Machine teachers
provide additional knowledge and guide the agent’s learning
process to avoid wasting learning time with strategies that
are known to be inefficient.

We will first review related work with regard to reinforce-
ment learning and XAI. We then introduce our engineering
approach and describe thereafter how this can be used to ex-
plain an agent’s decisions and behavior. Finally, we conclude
the paper with an outlook on future work.



Background and Related Work
We will know discuss related work in the areas of machine
learning. First, we will focus on the development of intelli-
gent agents and reinforcement learning. We then review re-
cent approaches for Explainable AI.

Developing Intelligent Agents – Technical
Background
Reinforcement Learning enables intelligent software agents
to optimize their behavior based on past experience. We as-
sume that the agent lives in a world characterized by an un-
derlying Markov Decision Process (MDP) consisting of the
tuple (S,A, P,R, γ). The set S contains all possible states
and the set A all possible actions that the agent can choose.
Each state s ∈ S and a valid selected action a ∈ A is fol-
lowed by a transition to a subsequent state s′ ∈ S. While the
transition can be deterministic, in reality, uncertainty factors
may occur making it more probabilistic. P (s, a, s′) thus de-
scribes the probability of a transition to the next state. Any
transition from a state s to a subsequent state s′ by execut-
ing an action a may result in an immediate value given by
the reward function R, which can be sparse in some cases,
meaning that not every new state necessarily has an immedi-
ate value. In many real-world problems, different steps need
to be taken before a particular outcome can be achieved, and
in order to be able to make long-term decisions accordingly,
the expected rewards usually have to be considered over sev-
eral steps. One possibility is to sum up the expected rewards
within a k finite horizon, but the result E

[∑k−1
t=0 rt

]
is then

limited by k, so that potential rewards are not considered in
subsequent states. Since there is usually no fixed k, it is more
common to use a discount factor 0 ≤ γ ≤ 1 to represent the
expected future reward E [

∑∞
t=0 γ

trt] with an infinite hori-
zon (Kaelbling, Littman, and Cassandra 1998).

The assumption in an MDP is that the agent can directly
observe the state s. In practice, the state variables are often
only partially or indirectly observable, thus a Partially Ob-
servable Markov Decision Process (POMDP) exists and the
agent has to estimate the actual state from its observations.
The result is a set B of possible estimates called beliefs. It
is possible to reduce the POMDP to an MDP by consider-
ing the set of possible beliefs themselves as a set of possible
states in which the agent can find itself. The result is an MDP
with a continuous state space described by (B,A, P,R, γ).

Given a complex MDP or POMDP, with reinforce-
ment learning a value function is used that calculates
the immediate value of a state s and quantifies its
value by taking into account the discounted expected
rewards in the future. The value function is defined by
V (s) = maxa

∑
s′ P (s, a, s

′) [R(s, a, s′) + γV (s′)].
Based on this function, the Q-function can be de-
rived, describing the expected future discounted re-
ward, given a state s and additionally an already
selected action a. The Q-function is defined by
Q(s, a) =

∑
s′ P (s, a, s

′) [R(s, a, s′) + γV (s′)].
Q-Learning is a method of reinforcement learning that

learns to approximate the Q-function. This is a kind of map-
ping problem of the state to the corresponding Q-value,

which can be learned with supervised learning. In theory,
any function approximator can be used, such as decision
trees (Pyeatt and Howe 2001). In practice, however, one of-
ten finds neural networks for more complex problems. If the
learning process is sufficiently accurate, the information re-
sulting from the approximated Q-function can be used to se-
lect the policy for the next action. One possibility, for exam-
ple, is to always use the action with the maximum Q-value.

Q-Learning is potentially capable of dealing with very
large and continuous state spaces. Especially if neural net-
works are used, all the possibilities of this technique can
be used. For example, the processing of image data by ap-
plying convolutional layers or temporal data using LSTM
cells or similar methods is possible. However, the action
space must be discrete and is limited in size (Lillicrap et al.
2015). In many areas, however, continuous action spaces can
be found. This requires learning a direct mapping function
from the state space to the action space using policy gradient
methods.

However, these methods often suffer from large variance
in policy gradients (Grondman et al. 2012), making them
potentially unstable (Lillicrap et al. 2015). Many success-
ful reinforcement learning algorithms are therefore based on
actor-critic architectures that can combine the advantages
of both, policy gradients and value function approximation.
One model, the actor, maps the observation space into the
action space and another model, the critic, learns the un-
derlying value function. Having a good approximation of
the value function may help to stabilize the estimates of the
policy gradient. Examples of techniques based on the actor-
critic architecture are Deep Deterministic Policy Gradients
(DDPG) (Lillicrap et al. 2015), Trust Region Policy Opti-
mization (TRPO) (Schulman et al. 2015), and Proximal Pol-
icy Optimization (PPO) (Schulman et al. 2017).

Developing Intelligent Agents – Challenges
Reinforcement learning strategies require the exploration of
new ways to gain experience from which the best poten-
tial actions can be approximated. Without prior knowledge,
only random exploration can take place. With increasing
knowledge about the environment, the agent might exploit
it further to find the best possible ways to reach the desired
goal. Exploration and exploitation are therefore important
elements of intelligent agents. The challenge is to find the
right trade-off between exploration and exploitation.

One of the core things that makes reinforcement learn-
ing work is the Bellmann Equation (Lillicrap et al. 2015).
It ensures that the agent’s policy converges to the optimum,
assuming infinite visits to each state of the environment and
infinite learning steps. Even if this cannot be achieved, a fi-
nite number of steps is usually sufficient to find an accept-
able approximation. However, state spaces quickly become
large, due to the curse of dimensionality. The number of nec-
essary steps usually increases with the size of the state and
action space. The problem is obviously even bigger in con-
tinuous spaces and can only be solved with generalization,
which means trying to learn the underlying function with the
help of a function approximator like neural networks. This
principle is very well known from supervised learning.



Having a good function approximation allows to deduce
from data that have not been seen before. In contrast to su-
pervised learning, however, reinforcement learning does not
know the real target function. Instead of the real values hav-
ing to be specified and labeled, the target function is tried to
be inferred from observations of the real environment. This
makes reinforcement learning more open to new solutions
that are less influenced by human biases, but has two short-
comings: dynamic training data and the lack of a determin-
istic transition function.

The set of training data is not static, it is dynamically
influenced by the learning itself. Each update may lead to
different explorations and thus to a possibly different dis-
tribution of the data. Learning from dynamically changing
observations is usually much more unstable than learning
from a fixed set. Furthermore, especially in realistic scenar-
ios, no deterministic transition function between the states
of the environment can be assumed. This is due to various
possibilities of uncertainties, such as unobservable variables
or external factors. Beyond self-contained toy examples, it
must therefore be assumed that the same action in the same
observed state does not necessarily lead to the same result.
Large updates due to fewer observations therefore also po-
tentially lead to instability. An advantage of reinforcement
learning here is that if the right hyperparameters are found,
potentially good policies can also be learned in stochastic
and noisy environments. However, finding the hyperparam-
eters that are ideal for exploration is another challenge and
the success of a reinforcement learning solution is poten-
tially unstable depending on the parameters used.

Another challenge is the assignment of rewards. To be
able to learn successfully, the agent needs negative or pos-
itive feedback after an action and reinforcement learning
works best with continuous feedback (Kulkarni et al. 2016).
Sometimes, however, the desired result depends on a long
sequence of actions without immediate reward and with each
action required, the number of possible paths in the solution
space increases. Thus, at some point, the agent needs some
luck to discover the reward. However, local minima may also
be discovered first and if more and more existing knowledge
is exploited, the agent may begin to develop more in this di-
rection and the targeted goal may not be achieved. In addi-
tion, the landscape of the value function may look very dif-
ferent than assumed by the reward function. The algorithm
optimizes the future cumulative reward and not necessarily
the immediate reward. However, the reward function defines
the immediate value. The difference between the immediate
landscape of the reward function and the landscape of the
value function can quickly become unintuitive, leading to
unexpected behavior. In the worst case, reward hacking can
occur, which means that the agent learns to do something
completely different from what was intended when defin-
ing the reward function (Amodei et al. 2016). Current pro-
cedures show the possible influence of these challenges on
the unpredictability of a result. Especially the choice of hy-
perparameters has a strong influence, at the same time the
reason is often not always obvious and explainable. This has
serious influences on the repeatability and controllability of
experiments but also on the design of applications (Hender-

son et al. 2018). Especially when we try to use reinforcement
learning as a method in the real world, where critical deci-
sions, processes and infrastructures are affected, this leads to
a serious flaw. Especially since the lack of explanation is not
only given for the internal algorithms (usually deep neural
networks), but often also for the configuration itself.

Developing Intelligent Agents – Solution
Approaches
The development of intelligent agents through machine
learning techniques such as reinforcement learning offers
great potential for future applications. On the other hand,
especially on the engineering side of entire applications, a
major challenge is to control the potential variance of the
algorithms and to ensure that the final result meets the re-
quirements. The lack of controllability is given by a set of
intrinsically rooted properties of the underlying algorithms
discussed in the last section.

Given the possible future significance of the procedures,
however, there are already a number of possible solutions
within the community which have to be mentioned. It has
been shown that one promising way to address these prob-
lems is to decompose the core problem into smaller prob-
lems. This can be done in the context of reinforcement learn-
ing in two different ways.

The first possibility is a more architectural approach: Hi-
erarchical Reinforcement Learning. The core idea here is to
divide complex tasks into subtasks, which can be learned
more easily and reassembled later in further steps. From
a software engineering point of view, Hierarchical Rein-
forcement Learning is a way of Divide and Conquer us-
ing reinforcement learning, which is often very intuitive.
Especially in the area of robotics but also in other areas
this methodology has shown success and helped to success-
fully implement more complex tasks (Gudimella et al. 2017;
Meyer and Gruhn 2019; Kulkarni et al. 2016; Frans et al.
2017). The result of Hierarchical Reinforcement Learning is
a set of individual models that are linked by a defined hier-
archical structure.

The second option is Curriculum Learning. This is not
only limited to reinforcement learning but has its origin in
the supervised learning methods (Bengio et al. 2009). The
core idea here is a decomposition of the learning process it-
self. A model is first trained in a simpler environment and
then in increasingly complex environments. Like Hierarchi-
cal Reinforcement Learning, Curriculum Learning has been
successfully applied and proven in many cases (Hacohen
and Weinshall 2019; Florensa et al. 2017). The main dif-
ference is that here the learning process is subdivided and
not the model itself.

Explainable AI
Machine learning processes are gaining importance in the
development of software applications and are thus moving
more and more from research to practice and industrially
used applications. One of the big challenges today, which
results especially from the real world, is the comprehensibil-
ity of machine learning models and the resulting decisions.



Many methods, especially in the field of deep learning, are
often referred to as black-box. Although they are transpar-
ent at a technical level, their enormous internal complexity
makes them virtually incomprehensible. The comprehensi-
bility and explainability, however, is sometimes necessary
for reasons of acceptance or possibly also for legal reasons.
This leads to an increasingly important field of research in
the field of Explainable AI, which is also called XAI. The
XAI problem for models that would be considered as black-
boxes can be divided into three subproblems: Model ex-
plainability, outcome explainability, and model inspection
(Guidotti et al. 2019).

The problem of model explainability is about training an-
other model that imitates the original model and is itself
explainable. Decision trees are one of the essential mod-
els, which are considered to have a certain explainabil-
ity because the learned rules are directly readable. How-
ever, this must be limited to simple trees and does not nec-
essarily apply anymore to random forests. But even sim-
ple decision trees cannot be interpreted if they are suf-
ficiently complex. Due to the principally explainable na-
ture of the model, solving the problem by approximating
the actual model with a simple decision tree is an essen-
tial approach in the literature. Here there are successful
examples in current (van der Waa et al. 2018; Boz 2002;
Johansson and Niklasson 2009) and even earlier literature
(Craven and Shavlik 1996). The second frequently found
approach is the extraction of rules from the model which
cannot be explained itself. Rules are usually understand-
able for humans, although here it is also the case that this
applies only to a limited set of rules. Current approaches
show that rules can potentially be extracted from neural net-
works (Zilke, Mencı́a, and Janssen 2016) and even from
networks with complex recurrent structures, such as LSTM
cells (Murdoch and Szlam 2017).

The problem of outcome explainability deals with the ex-
plainability of a specific output for a given input. The over-
all explainability of the model is of secondary importance
and does not necessarily have to be given. The most com-
mon approach is to calculate a mask over the actual input
that identifies the subset that is mainly responsible for the
calculated result. Most of the approaches work on images.
These have the advantage that humans are particularly well
able to visually interpret and deduce more complex data
in this way. One way to determine the masking is to do
this via backpropagation, which is called Layer-wise Rele-
vance Propagation (Bach et al. 2015). Another possibility
is to create Attention-Maps over the input (Xu et al. 2015;
Fong and Vedaldi 2017). Since these approaches are strongly
based on the model (in most cases neural networks), there
are also further experiments of model agnostic methods. One
of the successful is the method Local Interpretable Model-
agnostic Explanations (LIME) (Ribeiro, Singh, and Guestrin
2016). The core idea is to generate examples from the neigh-
borhood of the output, which can then be interpreted by hu-
mans. Similar ideas can be found for example in (Turner
2016). The problem of model inspection deals with the ex-
plainability and identification of certain characteristics of a
model, such as the identification of certain neurons in a neu-

ral network that are responsible for certain tasks. Techni-
cally, similar approaches can be found as for the explana-
tion of the outcome, but the goal here is to get a general
overview of the model and why some inputs might work bet-
ter or worse. There are currently three main approaches. The
first is sensitivity analysis. Here it is examined to what ex-
tent uncertainty in the input influences the output (Saltelli
2002). Another possibility is to plot the partial dependency
between features and the output. Due to the limited compre-
hension of humans, however, this must be limited to a small
set (typically the most important one or two features). This
approach gives information about the form of the influence
on the task, e.g. whether it is linear, quadratic or in another
form (Friedman 2001). The third frequently found way is
Activation Maximization (AM), which is very similar to the
approaches that can be found in explaining the outcome and
determining an importance mask over the input. Here, how-
ever, the intermediate layers are also visualized (typically as
an image) (Yosinski et al. 2015).

Concept-based Engineering and
Decomposition

Idea and Context
Explainable AI currently works on the algorithm level, but
there are other levels that are helpful. If you try to under-
stand the actions of another human being, you don’t usually
do this on the technical level of neuron connections, but try
to understand how certain concepts and goals led to a deci-
sion. Using the possibilities of Hierarchical Reinforcement
Learning and Curriculum Learning, this level of understand-
ing can also be made possible for intelligent agents without
having to severely limit the complexity and capacity of the
underlying learning algorithms. What we present here is an
idea of how we can better combine knowledge engineering
and state-of-the-art technologies of machine learning, espe-
cially reinforcement learning, to achieve comprehensibility
not only at a more technical level but also at a more mean-
ingful human level. To better define this idea, we first define
the context in which machine learning applications typically
come into play and are developed in the real world.

Machine learning is always a solution in software devel-
opment projects if a certain aspect is not economical or good
enough to implement based on rules (Hesenius et al. 2019).
This is typically the case when the rules are not easy to de-
fine. In this case, the problems are usually problems that re-
quire tacit knowledge from the experts. Explicit knowledge
can usually simply be converted into rules, tacit knowledge
not.

If machine learning is used to solve these problems, ex-
pert knowledge is often no longer part of the solution. This
makes sense because knowledge in these cases is usually not
explicit, but what is discarded is that tacit knowledge can
also be externalized. The result is not knowledge that can be
described at the rule level, but more abstract knowledge that
is also called conceptual knowledge. Conceptual knowledge
is often too abstract to be transformed into rules, however,
it is a powerful tool that can be used as a basis for decom-
position, but is often simply underestimated and not used.
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Figure 1: The SECI-Model of Knowledge Dimensions and
Creation (Nonaka and Takeuchi 1995)

This is especially true when talking about ideas of complex
long-term strategies. There are some successful application
examples in the field of ontologies.

In knowledge management, a well-known model for the
description of different knowledge generations and conver-
sions is the SECI-model (figure 1) presented in (Nonaka and
Takeuchi 1995).

Knowledge can be available in tacit and explicit form.
In our experience, the boundary is fluid; stakeholders of-
ten have different intermediate states of knowledge. Since
methods of machine learning and artificial intelligence in
software development projects make sense when knowledge
is not available in a sufficiently explicit form to convert it
into acceptable rules at economically affordable costs, we
assume at this point that knowledge in machine learning
projects is, to a large extend, available to the stakeholders
as tacit knowledge. Implicit or tacit knowledge is gained
through the process of socialization, i.e. through observa-
tions, imitations, practice and participation in formal and in-
formal communities, such as business environments (Yeh,
Huang, and Yeh 2011). The conversion of tacit into explicit
knowledge takes place through the process of externaliza-
tion, whose main tool is articulation (Nonaka and Takeuchi
1995). Knowledge is not transformed directly (because it is
implicit knowledge), but more in the form of abstract ideas.
When knowledge carriers try to articulate tacit knowledge,
this happens in the form of metaphors and analogies that
sketch the knowledge. The resulting artifacts are called con-
cepts. These are knowledge components that can be learned,
which help to solve a given problem and over which we can
form rules and conclusions that can be understood by hu-
mans. In a way, the rough concepts that are formulated de-
scribe a sketchy idea of what the possible solution might
look like. For example, if you consider an area where most
of us humans are experts, such as cycling, it is relatively
difficult to describe the exact solution in the form of pro-

grammable rules, but if you speak on a conceptual level, it
becomes increasingly easier to identify important elements
and concepts. We know, for example, that it is important to
drive at a certain speed in order not to tip over. At the same
time, we know that it is important to have an idea of what the
maximum speed is in order to drive through a curve safely.
Finally, to be able to ride a bike, we also know that it is an
important concept to set the right focus based on the situa-
tion, such as to accelerate in order not to fall over or to slow
down in order not to crash in a curve. These are all concepts
that are still abstract, but that can be easily identified by con-
vincing domain experts to articulate their tacit knowledge.
In software engineering, there are already a large number of
established formats that can be used, for example, to gather
and capture hidden requirements from domain experts. Cap-
turing concepts is differently placed in the development pro-
cess and more focused on modeling the solution rather than
the requirement and problem space, however, these methods
(which typically come as a workshop) can be easily adapted.
Examples can be found for instance in (Grapenthin et al.
2013).

A more practical description
Since the idea of concept-based engineering is quite abstract,
we want to show in the following a more concrete example
of how this can look like in practice and how it can be used to
better understand the behavior of intelligent agents. The ex-
ample scenario is the optimization of a warehouse. There is
a sales curve for the product to be managed, which is shown
in figure 2. Due to various exogenous influencing factors,
there are variances in the measured sales (several different
warehouses with the same product serve as the basis here).
Each week a delivery can be ordered to increase the stock
again. However, there is a possibility that the delivery will
fail due to delays, weather, strikes or other problems, despite
the order being placed. Finding the optimal order quantity
can therefore not simply be calculated using the expected
sales curve, but must take into account storage costs and the
risks of delivery failure. In addition, there are data on pub-
lic holidays and the inclusion of the product in advertising
flyers, which allow a more accurate estimate than just using
the curve itself.

Concept Articulation and Elicitation Our approach
starts with a short creative workshop based on (Grapenthin
et al. 2013), in which all participants try to articulate their
knowledge in the form of analogies, important ideas or ex-
pectations. This conforms to the phase of externalization ac-
cording to the SECI model (Nonaka and Takeuchi 1995).
The result are important concepts which are relevant for the
given problem. These, for example, could be in this case
(formulated on a human level):

1. Concept of full demand fulfillment: It is important to have
an idea of which order is needed in order to satisfy each
demand. This is important because it is not meaningful to
order about this amount.

2. Concept of complete sale: It is important to be able to es-
timate how much will be sold until the end of the season.



Figure 2: Exemplary sales curve and locally expected deviations for warehouse optimization

This is important because it does not make sense to order
under this quantity.

3. Concept of optimal balance: If you have an idea of the
quantity that will most likely always be sold and where
the maximum is where every demand can be met, it is
important to be able to find the right balance, which min-
imizes storage costs, etc. and at the same time maximizes
customer satisfaction.

Furthermore, we can also capture statements about the en-
vironments of the concepts to be learned:

1. Optimal Environment: The Optimal Environment does
not have any delivery failures. This environment is the
simplest imaginable.

2. Real Environment: The real environment has delivery fail-
ures. The consideration of these should tend to increase
order quantities and converge to the order quantities in an
optimal environment if no failures are expected.

What should be emphasized here is that all this knowl-
edge is simple knowledge that does not even need much ex-
perience in this field and can be formulated more or less
by anyone who is more involved with it. In our experience,
such abstract knowledge is relatively easy to find in many
environments.

Concept Mapping and Combination
Knowledge, especially at the conceptual level, is often for-
mulated very informally. In the second step, this must now
be transferred to the technical space. The optimization of
stock levels can be formulated as a Markov Decision Pro-
cess. At each time t there is a condition which is described
by the current stock, the date, as well as by further informa-
tion like coming holidays and inclusion in advertising flyers.
The action area is continuous and consists of the selection of

the requested goods. Goods are sold every step of the way.
The sales quantity follows a distribution based on histori-
cal data. With a given probability, the delivery is canceled
and the order is not implemented and must be balanced by
the goods in stock or the subsequent order (this essentially
results in the temporary order problem).

The question is, how are the identified concepts and en-
vironmental variations reflected on a technical level? There
are different possibilities here. The following is a non-
exhaustive list that should to be filled in the future research:
• Modified Reward Functions: The goal can be changed by

another reward function
• Different environmental parameters: Individual character-

istics of the environments can, for example, be switched
off

• Modified observations: Some observations can be supple-
mented or removed

• Modified actions: The action space can be simplified or
extended

• ...
In the example used, we can do the mapping as follows:

• Concept of full demand fulfillment: Since the sales vol-
ume is generated by a probability distribution, there is
no upper bound value here. However, the concept can be
represented by an environment in which the reward func-
tion weighs storage costs very low and costs for the non-
fulfillment of demands very high.

• Concept of complete sale: The same applies here with re-
versed weighting.

• Concept of optimal balance: Here the weighting in the
reward function is carried out realistically. In addition, the
observation is enriched by the decision of the other two
concepts.



• Optimal Environment: This is the original environment
with a different parameter: the default probability for de-
liveries is zero.

• Real Environment: This is the original environment.

The result of the mapping of concepts captured from the
business point of view to the technical level is a decompo-
sition on two levels, which is shown for the example used
here in figure 3. First in the form of concepts, which rep-
resent stand-alone or hierarchical tasks and further in the
form of different environments, which represent the train-
ing ground. The first is what is trained in the literature for
example by Hierarchical Reinforcement Learning. The lat-
ter is referred to in the literature as Curriculum Learning,
where the complexity of training environments is increas-
ing. Using these methods, we can now train the identified
concepts in a technical way. The result, in this case, are six
artifacts: In each case, one concept (agent) trained on the op-
timal environment and in each case, the continued version
trained on the realistic environment. Since the goal of this
position paper is not the concrete selection and configura-
tion of the algorithms, the exact execution is not considered
here and it is assumed that the training has been success-
fully completed in order to focus on the explainability part.
Details on how to train agents and machine learning mod-
els through Hierarchical Reinforcement Learning and Cur-
riculum Learning can be found here (Gudimella et al. 2017;
Meyer and Gruhn 2019; Kulkarni et al. 2016; Frans et al.
2017) or here (Bengio et al. 2009; Hacohen and Weinshall
2019; Florensa et al. 2017).

Using Concepts to Explain Decisions and
Behavior

The resulting artifacts in the form of hierarchical sub-agents
and intermediate training results according to different en-
vironments or curriculum steps. The individual models are
still black-boxes, but the big advantage is that we know ex-
actly how they interact or should have evolved. This fact can
now be used at this point to understand the decisions made
and to explain what otherwise would not have been possi-
ble without further effort. To do this is not further complex.
It is only important to have an understanding of what the
technical intention behind the individual concepts and train-
ing steps was. That is why it is so important to create them
as described by a knowledge-driven process. With the idea
of how the concepts are related based on the existing con-
ceptual knowledge and when they are expected to interact
differently or in other ways, questions can now be posed to
the model and can be answered. We now show this in our
example in two cases.

1. Question 1: Does the agent estimate delivery failures
as probable? There are two versions of the final agent
due to the decomposition that was performed. First the
version trained on the optimal environment and then
the version trained on the real environment (Curricu-
lum Learning). We also know from human knowledge
that as the probability of delivery failure increases,
the order quantity must be increased in order to con-

tinue to meet demand. As a result, the difference be-
tween the two versions is an optimal measure for
this question: q1(xt) = optimalbalancerealenv(xt) −
optimalbalanceoptimalenv(xt), where in this case a
higher value describes a higher expectation of a delivery
failure.

2. How certain is the agent that his order is actually be-
ing sold? One of the most important concepts identi-
fied was to be able to estimate what is approximately
the maximum order quantity that must be placed to
meet any demand. If the agent is sure he can sell ev-
erything, the more he must tend to actually place this
maximum order quantity. So here we can formulate the
following score: q2(xt) = fulldemandrealenv(xt) −
optimalbalancerealenv, where a smaller value describes
a higher certainty.

By using the identified concepts, we are able to visual-
ize and represent the decisions of the intelligent agent at any
time. The result of the questions can be easily visualized.
Since the exact value range of the respective results does not
have to be known intuitively, we use a z-score to standardize
the results with z(xt) = xt−E[x]

σ(x)2 . This allowed us to sim-
ply map the results to a color range and display them in an
appropriate visualization (a really simple prototype can be
seen in Figure 4). In contrast to most of the related work in
the field of XAI, it is not necessary to explain the algorithms
themselves and the capabilities of the algorithms themselves
do not have to be restricted.

Conclusion and Future Work
In this position paper, we discussed how we use a concept-
based engineering approach to explain the decisions and be-
havior of intelligent agents based on reinforcement learn-
ing. Decomposing the agent’s training into concepts based
on tacit knowledge of domain experts simplifies develop-
ment and reveals options to inject domain-specific knowl-
edge into the agent. The defined and trained concepts can
be used to reason over the agent’s behavior and its decisions
as their interrelations and interactions are known. The moti-
vated idea differs from most current approaches to explain-
able AI systems (XAI) in that it essentially does not oper-
ate on a purely technical level, but rather on the conceptual
level known to humans. This makes this approach on the one
hand more meaningful and on the other hand enables the un-
restricted use of complex machine learning methods, such
as reinforcement learning, since no special requirements are
placed on the algorithms.

Since this is primarily a position paper, the work is still
at an early stage. However, we hope to encourage the com-
munity to take further steps in this direction and see this ap-
proach as a good complement to the more technical solutions
currently available for XAI.

For future work, several interesting tasks remain. First at-
tempts to merge typical software engineering and machine
learning development activities into combined process mod-
els have been published recently (e.g. Hesenius et al. (2019)
or Amershi et al. (2019)), which aim to guide developers
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Figure 4: Simple visualization of some example states of a
trained agent by questions formulated using previously iden-
tified concepts.

through the overall development cycle. However, they tend
to define necessary activities on a rather abstract level, we
thus plan to develop a more specific approach to create in-
telligent agents. Furthermore, we aim to develop tools and
artifacts that support teams in deriving the necessary knowl-
edge to train algorithms and to identify helpful concepts.
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