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Abstract

This paper presents and evaluates an early pro-
totype of a cognitive twin: a digital reflection of
the user, intended to make decisions and carry
out tasks on the user’s behalf. The intention of
the cognitive twin is to model the cognitive pro-
cesses underlying the user’s decisions. To that end,
we implemented the twin in a computational cog-
nitive architecture. The model specifically uses
an Instance-Based Learning approach to modeling
human decision making that leverages the architec-
ture’s memory mechanisms. The task of this pro-
totype model is to help organize a social gather-
ing. Data is generated in a discrete simulation that
we are developing to freely experiment with issues
ranging from environment structure to data avail-
ability. We implement two versions of the cogni-
tive twin and show that it provides an effective per-
sonalized assistant with limited data availability.

Introduction

In the context of the Internet of Things (IoT), a
digital twin is the virtual replica of a sensor-based
connected device and of the processes that are as-
sociated with it. A network of digital twins can
then be conceived as a virtual space that mirrors
the physical properties of IoT entities, and that
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enables advanced monitoring, predictive analytics,
and ubiquitous computing. The benefits of digital
twins are evident in different domains, from indus-
trial manufacturing (Kritzinger et al. 2018), where
anticipating machine failures through digital simu-
lations can dramatically reduce maintenance costs,
to healthcare, where the growing number of inter-
connected health-monitoring systems (e.g, wear-
ables) is prompting providers to create personal-
ized digital solutions for their patients. Healthcare
is a perfect example of an area where IoT virtual-
ization also factors the human in, e.g., by creating
digital twins of the human body that can be used
for real-time remote-monitoring of physiological
functions (Bruynseels, Santoni de Sio, and van den
Hoven 2018). Beyond modeling the human as an
organism, digital twins can expand to cover social
dimensions of human life, which are characterized
by our daily interactions with portable electronics,
digital services, social networks, etc. Accordingly,
in this paper we introduce the notion of cognitive
(digital) twin, to highlight the key role that cogni-
tive mechanisms play in modeling human decision
making in the ToT digital space.

The aim of the cognitive twin is to make the de-
cisions that a user would would make and to deal
with those aspects of life that can be handled over
the internet. Much of our social lives are planned
over the internet and a cognitive twin would be
able to handle tasks such as the planning of so-
cial events: who should attend, when it should take
place, what activities should occur, etc. With an in-
crease in the use of IoT devices, we can imagine a
cognitive twin that not only knows when to turn
on the dishwasher, when to buy the soap, where to



buy the soap, but actually buy the soap, and even
turn on the dishwasher.

We propose a hybrid data-driven and
knowledge-based approach. Because our con-
text is human decision making, we implement
our digital twin in a computational cognitive
architecture. Our approach is to take advantage
of existing knowledge ontologies, and structured
procedural knowledge, but also learn decisions
from data. We believe this approach can bal-
ance domain generality while maintaining a low
implementation and data cost.

The architecture we are working with is a hybrid
cognitive architecture, ACT-R (Anderson 2007).
The ACT-R architecture, discussed more thor-
oughly below, consists of both symbolic elements:
declarative knowledge and procedural knowledge;
as well as sub-symbolic elements that support sta-
tistical learning at a human-timescale. The tight in-
tegration of these two levels of the architecture en-
ables the combination of knowledge representation
and reasoning with statistical machine learning in
every aspect of decision making rather than arti-
ficially segregating them into one or the other. In
this project we use a cognitive modeling approach,
Instance-Based Learning (IBL), in which past de-
cisions are used to inform future decisions by di-
rectly leveraging the mechanisms of the cognitive
architecture.

Dinner Party Planning

We have chosen as our proof-of-concept scenario
to implement the planning of a dinner party. We
chose this scenario for a number of reasons.
Perhaps one of the most obvious reasons for us-
ing a party planning scenario is that it is such a
strong use-case for a cognitive twin. Party plan-
ning requires back and forth negotiation between
the potential attendees with respect to scheduling
and also requires information about the social dy-
namics of possible attendees (avoid having people
that do not like each other at a party), food prefer-
ences or diet restrictions, etc. Some of that infor-
mation is sensitive, such as personal likes and dis-
likes. These are the the sort of tedious details that
not only require time of the host but time of the
potential guests. Planning a party requires a great
deal of structured knowledge and systematic pro-
cess in order to make decisions about the various
facets that need to be planned. Those facets inter-

act as well (for instance the guest list might deter-
mine when the party can take place and vice versa)
resulting in a potential complex process with mul-
tiple cycles of replanning.

If the cognitive twin is going to plan a party for
a user, it has to know who that user would want
to attend. From a practical perspective, the twin
likely has to learn about that user’s friendships,
professional relationships, etc. One could imagine
a twin that works by asking about attendees but,
then, such a twin has less utility because it requires
significant effort on the part of the user.

From a practical perspective, there are a num-
ber of tasks we would expect the digital twin to
learn and a number of tasks that are more prac-
tically represented as knowledge. Between these
two extremes of pure data-driven learning, and
pure knowledge acquisition and authoring, there
are cases where we would expect a balanced hy-
brid approach to be the most practical.

Knowledge-based Party planning is a complex
process. There are a number of sub-tasks that are
required and the ordering of the sub-tasks is impor-
tant. The knowledge of how to plan a party, how-
ever, would be difficult to learn from data because
the steps are not necessarily performed in any fixed
sequence, the patterns of occurrence are abstract,
and requires tying together different facets of in-
formation that are rarely explicitly exhibited in be-
havior (therefore, would be difficult to collect data
for). Instead those processes are typically commu-
nicated at least in part explicitly as instructions,
in a process known as Interactive Task Learning
(Laird et al. 2017).

Data-Driven There are plenty of aspects to the
party planning task that can be purely data-driven.
For example, preferences in diets (e.g. vegetarian)
are exhibited in behavior and, therefore, leaves a
trace that can plausibly be learned from. Other
regularities like schedules, party sizes, and social
preferences, could all be plausibly learned from
available data.

Hybrid We believe that the party-planning sce-
nario can benefit from a balanced, hybrid ap-
proach. There are some aspects that can be and
should be data-driven (e.g. who your friends are),
while other aspects can benefit from both struc-
ture and data while others can largely be repre-
sented as structured knowledge (e.g. the process



of planning itself, diet categories, etc). An integra-
tive framework that can combine both process as-
pects is therefore required. Previous attempts have
been made at integrating cognitive architectures
and knowledge ontologies (Oltramari and Lebiere
2013).

ACT-R

ACT-R is a hybrid (symbolic, sub-symbolic) com-
putational cognitive architecture. The components
of the architecture represent a unified, neurally in-
spired theory of cognition (Anderson 2007). The
architecture is comprised of a set of modules, each
of which are constrained by the biological pro-
cesses and limitations of the brain. While the archi-
tecture does include modules for vision, audition,
and motor activity, the core of the system is com-
prised of a central production system and a declar-
ative memory.

The central production system represents proce-
dural knowledge (skills). Each production ‘fires’
in response to particular patterns or ‘chunks’ of in-
formation held in buffers that constitute the cog-
nitive architecture’s working memory. Skill acqui-
sition, response competition, and multitasking ca-
pacity are among the cognitive capacities modeled
in the production system.

Declarative memory is a long-term knowledge
storage and retrieval system. Declarative knowl-
edge is represented as chunks, that are proposi-
tional compositions of other chunks or more basic
values. Each chunk in declarative memory has an
activation that modulates its retrieval. The history-
based activation component is called base-level ac-
tivation, which reflects the chunk’s recency (when
it was encoded or recited) and frequency (number
of times it has been recited) to capture regulari-
ties of human behavior such as the power laws of
practice and forgetting. Furthermore a chunk’s ac-
tivation is affected by spreading activation, such
that related chunks (e.g., context information) can
boost the activation of chunks in memory, depend-
ing on their degree of co-occurrence. Chunks can
be retrieved through a pattern-matching process
in which a sub-pattern is requested and a com-
plete pattern is (potentially) returned. Importantly,
memory retrieval in ACT-R is not perfect. Chunks
with a low activation can fail to be retrieved
(forgetting) while a partial-matching process can
generalize to similar but not perfectly matching

chunks depending on how close their similarity is
to the requested pattern. Finally, chunk activation
includes a stochastic component that makes mem-
ory retrieval a probabilistic process.

For this project we make use of the Instance-
Based Learning methodology (IBL), which lever-
ages declarative memory by making decisions
based on retrieval from memory of previous deci-
sions rather than through heuristics or production
rules (Gonzalez, Lerch, and Lebiere 2003).

Data / Simulation

In order to collect data for a cognitive twin we
have chosen to implement a discrete simulation.
The simulation is currently under development but
produces sufficient data to test the cognitive twin.
Our aim, currently, with the simulation is a vehi-
cle for generating data in liue of human data. The
simulation represents human agents going about
their lives, while personal data is being collected
and stored. The agents in the simulation are dis-
tinct from cognitive agents. In a sense, the simu-
lated agents represent ‘real’ human beings (in liue
of human data) and the cognitive agents represent
their cognitive twins. Long-term, we aim to expand
on the simulation, making the ‘lives’ of the agents
more veridical, the properties of the network to re-
flect human social networks, etcetera. Also, as we
develop the simulation further, we hope to make
the data collected about users reflect more closely
the quality of data potentially collectable from real
humans. In the following we describe the simula-
tion in its current form, including aspects we are
not currently using in development and evaluation
of the cognitive twin.

The simulation creates a population of n agents
that carry out both scheduled (e.g. work) and un-
scheduled events (socializing, eating) over a period
of days. For this paper we simulate 720 days of
simulation. As our simulation is generated stochas-
tically, for this analysis we set a random seed, and
all analysis is performed on a single, generated
world. Relevant information about the activities in-
cluding the time, the event type, and specific de-
tails about the event are recorded in data files.

The simulation is controlled by a number of pa-
rameters. To generate a ‘world’, a user specifies a
population of n size. The simulation then generates
families, where the member-size is controlled by a
weighted distribution parameter. Although family



dynamics is not captured in the simulation at this
early stage of development, we have designed the
simulation to accommodate more complex interac-
tions in the future.

Since our main proof-of-concept case is the
party planning scenario, we have developed the
simulation such that activities include social activ-
ities, to track positive and negative social interac-
tions; food preparation, to track diet restrictions;
and daily activities, to track an individual’s sched-
ule.

Schedule The simulation ticks by the hour
and, currently, events have a 1-hour resolution.
Implementation-wise, there is no known restric-
tions on resolution. Days of the week are soft-
coded into the simulation (by dividing hours of
simulation time) and are used to design the sched-
ule. Each individual is assigned a static work and
sleep schedule, reflecting real-world schedules (9-
5 Monday to Friday). Eating can occur nested
within another event (i.e. eating at work), and the
start and end times are chosen from a weighted
distribution of pre-selected hours. For example,
breakfast can occur between 6 am and 9 am with
different weights for different hours (free parame-
ter).

At generation, agents are assigned scheduled
events. These events are mandatory and are called
‘sports’, ‘clubs’, and ‘hobbies’. The intention is
to create regularly-occurring events that should
be considered when scheduling a social event.
The events are selected from a weighted random
list, with the possibility of repeats reduced for
each by re-weighting the events. For example, the
likelihood of sports being selected is reduced if
sports is selected once. There is also a placeholder
‘None’ event. Events are selected, scheduled, and
re-weighted; the process repeats until an event fails
to be scheduled on randomly selected days or until
the None event is selected. It is, therefore, possi-
ble (though low probability) that some people will
have no activities for which they are committed.

All times, event types, and event details are
recorded in an individual’s log-file as well in a
global log-file.

Social Interactions When a ‘world’ is gener-
ated, social links between every pair of individual
agents in the simulation are generated randomly
from a truncated normal distribution, the variance

of which is a free parameter. Values for the social
links are real numbers ranging from -1 to 1. The
social links are both incoming and outgoing and,
as a result, can be asymmetric (i.e., one agent may
favor another, but may not be favored in return).
We consider a negative connection between per-
son A and person B to represent tension or nega-
tive feelings of A towards B. Large negative values
represent strong dislike. Positive values represent a
positive relation and we define values greater than
0.75 as friendship. When the simulation is running,
the social links are used when setting up social in-
teractions in the simulation. The social links be-
tween agents change over time as they interact with
one another (see Figures 4 and 5). Roughly, friends
become more likely to interact and enemies less
likely, as described below.

Social interactions (parties) are created during
run-time at the start of each simulation day. Social
interactions, on any given day, are potentially cen-
tered around randomly selected individuals. The
parameter s is set as a proportion of the total
population and we used a value of 25 to ensure
that we generate sufficient data for testing. This
value was qualitatively assessed to maintain steady
world statistics and, as described below, we evalu-
ate the model with different ranges of history. Once
centers (hosts) are selected, attendees are selected
to attend.

Attendees to each social interaction are selected
from the population such that their likelihood of
being selected is weighted by the outgoing social
link from the ‘center’ to the potential attendees.
The outgoing links between the center and the at-
tendees are transformed to produce a probability
distribution, and non-uniform random samples are
selected. A free parameter which is set to con-
trol the minimum social interaction connection re-
quired to attend is set to a minimum value of -0.1,
so that people with slight dislike for each other
might attend. A small bias is also added to the
weights of connections above the friend threshold
(how we separate friends and close friends). The
bias is set to 0.3 and the friend threshold is set to
0.75. We use the values to help control the patterns
of interactions. These values were set qualitatively
to produce steady world statistics.

Not all centers will result in a social interaction.
Once attendees are picked, the social interaction
then has to be scheduled. Scheduling may fail due



to firm commitments by attendees. The minimum
size of social interactions are selected randomly
from a truncated normal distribution between 4 and
10. The shape of that distribution is also a free
parameter. If an insufficient number of people are
able to attend, the social interaction is canceled.

Furthermore, social interactions are resolved in
a queue, which is ordered by the original selection
of centers. Attendees that are in the queue for mul-
tiple events (lots of friends) may become busy, po-
tentially becoming unavailable for events further
down the queue.

During a social interaction, all agents in atten-
dance receive an interaction score with the other
guests. The interaction scores are selected from a
truncated normal distribution between -1 and 1,
and the shape of the distribution is a free param-
eter. The total score that an interaction receives is
a linear combination of: the random score (-1 to
1), the link from person A to person B, and the
link from person B to person A. For this paper,
those factors are all weighed the same as we have
yet to analyze the impact of these values on the
social dynamics across time. Values above 1 or
below -1 are truncated. As a result, it is possible
for the quality of relationships to change: friend-
ship links between agents may go from positive to
negative after interactions and, likewise, negative
links can become positive after interaction. Nega-
tive links becoming positive are most likely to oc-
cur in social interactions not centered by the agent
with outgoing negative links. Either the attendees
show up at a mutual friends party or there is an im-
balance in their outgoing and incoming links. Al-
though crude, this is meant to capture the influence
of past interactions. The time of interaction and the
scores between attendees is recorded in the log-file
for the individual as well as a global log-file.

To get a sense of what the socialization looks
like, we have plotted some basic statistics of the
interactions over 720 days of simulation.

Figure 1 shows the percent of people who have a
zero or greater (i.e., positive) outgoing social link
between them (blue), with the shaded area (gray)
showing one standard deviation. In orange is il-
lustrated the percent of people who are above the
‘close-friend’ threshold, with the orange shaded
area showing one standard deviation. Figure 2
shows the percent of people at a party who are
close friends with the party center (or host) (blue)

with the gray area showing one standard deviation.

As can be seen from those two figures, the rela-
tionships in the simulation are fairly stable. These
can be modified using the free parameters but we
have chosen to keep the relationships rather stable,
as we assume this reflects the nature of relation-
ships in the real world.
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Figure 3 represents the average connection be-
tween all guests in attendance at the social inter-
actions. Note that the simulation does not try to
maximize all the social links of a social interaction,
as attendees are chosen stochastically, weighted by
the outgoing social link from the party center.

Figure 3: Average Connection Between Party
Guests
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To have a sense of the social networks over time,
Figures 4 and 5 represent the steadiness of people
that have positive connections with a target over
time. It shows the percent of change of people in
the positive social network per day (blue), as well
as the change since time zero. Figure 5 shows the
same stats (blue vs orange) but where the members
of the social network are above the friend threshold
(0.75).



Figure 4: Positive Social Network Over Time
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Figure 5: Friend Social Circles Over Time
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Diet and Food

Individual agents in the simulation are either om-
nivores, vegetarians, or vegans, and consume food
according to their diets. The ontology of diets is
modeled from ConceptNet (Liu and Singh 2004)
and the foods in the simulation are, therefore,
structurally consistent with that knowledge. Build-
ing the structure into the simulation is important
for what we are trying to achieve, as we expect that
a learning system should recover that structure. We
propose that a system like the cognitive twin can
take advantage of existing knowledge graphs like
ConceptNet to take advantage of known structure
but should also be able to learn that structure, or
any combination thereof. In this work, we are not
not learning diet restrictions but intend to do so for
future work.

Cognitive Twin Model

At a high-level, the cognitive twin is intended as
an automated decision maker. It uses your data to
make the kinds of decisions you would make. In
the party-planning scenario, your cognitive twin is
intended to do some of the leg work of party plan-
ning for you. The cognitive twins, described below,
use the personal data from the simulation agents to
plan their next party for them (given an existing
history of social interactions).

The cognitive twin was developed in ACT-UP
(Reitter and Lebiere 2010), a toolkit implemen-
tation of ACT-R developed to make it easier to

integrate with simulations, and ultimately to de-
velop and distribute on portable platforms with
limited footprint and computing power, as well
as real-time performance and network-size scaling
requirements. The key equations leveraged were
those for declarative memory, as it reflects trade-
offs in recency vs frequency in generalizing pat-
terns of user activity, as well as generalization in
continuous spaces such as high-dimensional vec-
tors used in distributional semantics.

In the current model, batch activity data is
loaded into memory. We will discuss later the type
of protocol that could be used to request informa-
tion from peer cognitive twins, and their impact
on the algorithm used by the main cognitive twin
planning the activity.

Finding the most compatible set of guests re-
lies on ratings of past joint social activity. Those
are represented as chunks in memory consisting of
the user who provided the rating, the agent with
whom that user interacted, and the rating of the in-
teraction. Those ratings are not necessarily sym-
metrical, so each pairwise interaction might result
in two separate chunks with distinct values. Those
memory chunks have associated a base-level ac-
tivation that reflect the recency (and frequency
if the same rating between the same agents has
been provided multiple times) of the rating. Each
chunk activation can therefore be interpreted as
the relative importance of that rating among com-
peting ones, and factored accordingly by memory
retrieval processes. Specifically, the blending re-
trieval process (Lebiere 1999) is used to produce
a consensus estimate of social rating between two
agents by retrieving and aggregating individual rat-
ings weighted according to their activation. These
social compatibility ratings are used in a greedy al-
gorithm that starts with the central user organizing
the gathering. The rating of all potential guests are
evaluated against the current set of invitees (start-
ing with the host) and the guest with the highest
rating is selected. The process is repeated until the
guest list is full. It is possible that this process does
not yield an optimal outcome because of the se-
quential selection process could lead to a local op-
timum. An optional second phase (not yet imple-
mented) would consist of computing the social rat-
ing of each guest with respect to all other guests,
then swapping out the guest with the lowest rating
if another guest with a higher rating with the re-



maining guests could be found. This process would
be repeated until no such guest would be found.

The time scheduling process operates in a simi-
lar manner. All considered time slots are generated
by a process that combines user input with knowl-
edge constraints (e.g., social events are not sched-
uled in the middle of the night, or during regular
work hours). Past and scheduled activities of each
potential guest are represented in memory, each as
a chunk including identity of the agent, day, time
and nature of activity. For each potential time slot,
the availability of each guest is generated through
a blending process that generalizes from past and
future activities to infer regularities such as typi-
cal activities for a particular day/time slot without
needing to represent them explicitly, such as by ac-
cessing a calendar. The time slot with the highest
expected availability is selected. An optional pro-
cess (not yet implemented) would trigger another
guest selection process if enough guests cannot at-
tend at a given time slot.

Results

The model was evaluated against a simulation of
100 different agents run for two years of simulated
time. At the end of that time, the model consists of
100 distinct cognitive twins, each loaded with the
history of its specific agent. That results in about
16,000 chunks in the memory for each twin, about
150 per week, corresponding to a mix of social
events and interaction values.

The model is run to generate a party for each
of the 100 agents. Two versions of the model were
run. Recall, this simulation is a set random seed
of possible worlds. The distributed version, as de-
scribed above, factors in the social interactions
with all current scheduled guests when adding a
new guest. The centered version, however, only
selects guests based upon their social interactions
with the host, as is the case for the simulation.
The parameters of the model are set to provide
fairly accurate performance, including a mismatch
penalty parameter (scaling the partial matching
process) of 5.0 and an activation noise parame-
ter (scaling the stochastic activation factor) of 0.1
as well as the usual time-based decay parameter
(weighting recency against frequency) of 0.5.

This evaluation focuses on the guest selection
process rather than the time scheduling. The mod-
els are evaluated against the simulation baseline

according to two measures, displayed in Figure 6.
The first measure is the average percentage of each
party that is made of close friends to the host. The
centered version of the cognitive twin (69.75%)
outperforms the distributed version of the cogni-
tive twin (56.75%) because it is more narrowly fo-
cused on optimizing compatibility with the host
social connections rather than mutual guest con-
nections. They both outperform the simulation al-
gorithm (49.25%) because of the built-in stochas-
ticity of that algorithm.

The second measure is the average connection
strength between each pair of guests (including
the host). By that measure, the distributed version
of the cognitive twin (0.680) outperforms the cen-
tered version of the twin (0.464) because it factors
the mutual guests connections instead of strictly
those from the host. Both outperform the simula-
tion algorithm (0.358) because of its combination
of narrow focus on the host and stochasticity.

Figure 6: Ratio Of Friends and Average Score at
Social Event
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The data requirements of the model were also
evaluated. For that purpose, the model was run in
the same settings as above, but with a more limited
history of social interactions. The length of history
was varied from 1 week to the full 2 years. Re-
sults for both measures describe above are plotted
in Figure 7.

For both model versions and both measures, per-
formance actually increases with decreasing his-
tory length. This results because changing social
connections means that historical data becomes in-
creasingly inaccurate over time. Cognitive mech-
anisms such as blending are usually able to gen-
eralize quite well with limited data. The optimum
history length is between 2 and 4 weeks depending



upon the measure and model version.

Figure 7: Ratio of Friends and Average Connection
by Weeks of Data
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Discussion

Parameters of the model were selected to be com-
patible with standard values used to match human
performance in ACT-R models (see models and
publications on the ACT-R web site at http://act-
r.psy.cmu.edu) and have not been optimized for
this specific simulation environment. For instance,
a larger time decay parameter would allow com-
bining the accuracy of a longer history without the
penalty of overly relying on obsolete information.

Another method for evaluating the model is
model tracing (Corbett and Anderson 1995). That
approach, developed to parameterize general mod-
els to match individual behavior traces, would con-
sist of running the cognitive twin alongside the
simulation, making predictions at each step that
could be compared to simulation events, as well
as gradually learning an increasingly long history
of its users.

Improved generalization over limited data could
also be obtained by relying on similarities between
agents rather than treating agents as distinct sym-
bolic entities. For instance, similarities between
agents could be set to reflect the degree of overlap
in their activities or social connections.

The structure of the various versions of the cog-
nitive twin also has implications for communica-
tion protocols between cognitive twins. For in-
stance, the centered version of the model does not
rely on any social information from other cogni-
tive twins, while the distributed version does re-
quire information from invited guests regarding fu-
ture potential guests. This leads to a trade-off be-
tween overall quality of the social gathering and

privacy of the guests. Developing an infrastructure
that can optimize those trade-offs while safeguard-
ing user data is an essential goal of the cognitive
twin approach.
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